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1 Navier-Stokes-Fourier system

Relative entropy methods are based on estimating the distance, in a suitable
metric, of a solution to a system of partial differential equations to a given
function, typically another solution of the same system. We use this approach
in the study of weak solutions to the full Navier-Stokes-Fourier system describing
the motion of a viscous, compressible and heat conducting fluid:

∂t% + divx(%~u) = 0, (1)

∂t(%~u) + divx(%~u⊗ ~u) +∇xp(%, ϑ) = divxS + %~f, (2)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)~u) +∇x

(
~q

ϑ

)
= σ, (3)

where % = %(t, x) is the fluid density, ~u = ~u(t, x) the velocity field, and ϑ =
ϑ(t, x) the absolute temperature. Furthermore, p(%, ϑ) is the pressure, s =
s(%, ϑ) the specific entropy, S = S(ϑ,∇x~u) the viscous stress determined by
Newton’s law

S(ϑ,∇x~u) = µ(ϑ)
(
∇x~u +∇t

x~u− 2
3
divx~uI

)
+ η(ϑ)divx~uI, (4)

and ~q = ~q(ϑ,∇xϑ) is the heat flux,

~q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (5)

Finally, the symbol σ stands for the entropy production,

σ =
1
ϑ

(
S(ϑ,∇x~u) : ∇x~u− ~q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
. (6)

We suppose that the fluid occupies a bounded domain Ω ⊂ R3, the boundary
of which is energetically insulated, specifically,

~u|∂Ω = 0, ~q(ϑ,∇xϑ) · ~n|∂Ω = 0. (7)

If, moreover, the external force ~f = ∇xF (x) is conservative, there are two
obvious constants of motion: The total mass∫

Ω

%(t, ·) dx = M0



and the total energy∫
Ω

(
1
2
%|~u|2 + %e(%, ϑ)− %F

)
(t, ·) dx = E0,

where e = e(%, ϑ) is the specific internal energy interrelated to the pressure and
the entropy by means of Gibbs’ relation

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D
(

1
%

)
. (8)

2 Thermodynamic stability, ballistic free energy

The so-called hypothesis of thermodynamic stability plays a crucial role in the
forthcoming analysis:

∂p(%, ϑ)
∂%

> 0,
∂e(%, ϑ)

∂ϑ
> 0. (9)

We introduce ballistic free energy

HΘ(%, ϑ) = %
(
e(%, ϑ)−Θs(%, ϑ)

)
, Θ > 0,

together with the relative entropy functional

E(%, ϑ|r, Θ) = HΘ(%, ϑ)− ∂HΘ(r, Θ)
∂%

(%− r)−HΘ(r, Θ). (10)

As a direct consequence of (9), we check that

% 7→ HΘ(%,Θ) is strictly convex for any fixed Θ,

ϑ 7→ HΘ(%, ϑ) is decreasing for ϑ < Θ and increasing for ϑ > Θ.

Consequently,

E(%, ϑ|r, Θ) ≥ c(K)
(
|%− r|2 + |ϑ−Θ|2

)
for (%, ϑ) ∈ K, (11)

E(%, ϑ|r, Θ) ≥ c(K)
(
1 + %e(%, ϑ) + %|s(%, ϑ)|

)
for (%, ϑ) ∈ [0,∞)2 \K, (12)

where K ⊂ (0,∞)2 is a compact set containing and open neighbourhood of
(r, Θ).

3 Stability of equilibria

Consider the equilibrium solution %̃, ϑ,

∇xp(%̃, ϑ) = %̃∇xF, %̃ = %̃(x), ϑ > 0 a positive constant,



determined by the constraints∫
Ω

%̃ dx = M0,

∫
Ω

(
%̃e(%̃, ϑ)− %̃F

)
dx = E0.

Solutions of (1 - 3), supplemented with the boundary conditions (7), satisfy
the total dissipation balance:

d
dt

∫
Ω

(
1
2
%|~u|2 + E(%, ϑ|%̃, ϑ)

)
dx + ϑ

∫
Ω

σ dx = 0, (13)

where %̃, ϑ is the equilibrium solution.
Thus the coercivity properties (11), (12) imply that the functional∫

Ω

(
1
2
%|~u|2 + E(%, ϑ|%̃, ϑ)

)
dx

represents a distance between the trajectory t 7→ {%(t, ·), ϑ(t, ·), ~u(t, ·)} to the
equilibrium {%̃, ϑ, 0}. In particular, relation (13) yields unconditional conver-
gence of solutions to equilibria for t →∞, see [2].

4 Weak solutions and weak-strong uniqueness
principle

Weak solutions satisfy equations (1 - 3) in the sense of distributions, where the
entropy production rate σ complies with inequality

σ ≥ 1
ϑ

(
S(ϑ,∇x~u) : ∇x~u− ~q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
, (14)

and the whole system is supplemented by the total energy balance

d
dt

∫
Ω

(
1
2
%|~u|2 + %e(%, ϑ)

)
dx =

∫
Ω

%~f · ~u dx. (15)

Such a definition is
• compatible in the sense that regular weak solutions satisfy the system in

the classical sense, in particular, they satisfy (14) with equality sign;
• weak solutions exist globally in time for any finite energy initial data under

suitable structural restrictions imposed on the state equation and the viscosity
coefficients.

Finally, it can be shown, by the method of relative entropy, that the weak
solutions satisfy the weak-strong uniqueness principle. The proof is based on
using the relative entropy functional in the form∫

Ω

(
%|~u−~̃u|2 + E(%, ϑ|%̃, ϑ̃)

)
dx, (16)



where {%̃, ϑ̃,̃~u} is a (hypothetical) strong solution emanating from the same
initial data. It can be shown that the weak and strong solutions coincide as
long as the latter exists, see [1].
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