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In this talk we show that after suitable data randomization there exists a
large set of supercritical periodic initial data for both 2D and 3D Navier-Stokes
equations for which global energy bounds are proved. As a consequence we
obtain almost sure supercritical global weak solutions. We also show that in 2D
these global weak solutions are unique.

To explain the problem more in details let’s start by considering the initial
value problem for the incompressible Navier-Stokes equations given by

∂t~u = ∆~u− P∇ · (~u⊗ ~u); x ∈ Td or Rd, t > 0
∇ · ~u = 0

~u(x, 0) = ~f(x),

(1)

where f is divergence free and P is the projection into divergence free vector
fields given via

P~h = ~h−∇ 1

∆
(∇ · ~h). (2)

It is well-known that global well-posedness of (1) when the space dimension
d = 3 is a long standing open question. This is related to the fact that the
equations (1) are so called super-critical when d > 2. Indeed recall that if the
velocity vector field ~u(x, t) solves the Navier-Stokes equations (1) in Td then
~uλ(x, t) with

~uλ(x, t) = λ~u(λx, λ2t),

is also a solution to the system (1) for the initial data

~u0 λ = λ~u0(λx) . (3)

The spaces which are invariant under such a scaling are called critical spaces for
the Navier-Stokes equations. Examples of critical spaces for the Navier-Stokes
in Td are:

Ḣ
d
2−1 ↪→ Ld ↪→ Ḃ

−1+ d
p

p|p<∞,∞ ↪→ BMO−1. (4)

In particular, for Sobolev spaces, ‖~uλ(x, 0)‖Ḣsc = ‖~u(x, 0)‖Ḣsc , when sc =
d
2 − 1. We recall that the exponents s are called critical if s = sc, sub-critical if
s > sc and super-critical if s < sc.

On the other hand, classical solutions to the (1) satisfy the decay of energy
which can be expressed as:

‖u(x, t)‖2L2 +

∫ t

0

‖∇u(x, τ)‖2L2 dτ = ‖u(x, 0)‖2L2 . (5)



Note that when d = 2 the energy ‖u(x, t)‖L2 , which is the globally controlled
thanks to (5), is exactly the scaling invariant Ḣsc = L2-norm. In this case the
equations are said to be critical. When d = 3, the energy ‖u(x, t)‖L2 is at the

super-critical level with respect to the scaling invariant Ḣ
1
2 -norm, and hence the

Navier-Stokes equations are said to be super-critical and the lack of a known
bound for the Ḣ

1
2 contributes in keeping the global well-posedness question for

the initial value problem (1) still open.

In this talk we consider the periodic Navier-Stokes problem in (1) and in
particular we address the question of long time existence of weak solutions for
supercritical initial data both in d = 2, 3, see also [8]. For d = 2 we address
uniqueness as well. Our goal is to show that by randomizing in an appropriate
way the initial data in H−α(Td), d = 2, 3 (for some α = α(d) > 0) which is
below the critical threshold space Hsc(Td), one can construct a global in time
weak solution to (1). Such solution is unique when d = 2. We note that similar
well-posededness results were obtained for the super-critical wave equations by
Burq and Tzvetkov in [1,2,3]. The approach of Burq and Tzvetkov was applied
in the context of the Navier-Stokes in order to obtain local in time solutions
to the corresponding integral equation for randomized initial data in L2(T3),
as well as global in time solutions to the corresponding integral equation for
randomized initial data that are small in L2(T3) by Zhang and Fang [9] and by
Deng and Cui [4] Also in [5], Deng and Cui obtained local in time solution to
the corresponding integral equation for randomized initial data in Hs(Td), for
d = 2, 3 with −1 < s < 0. However our result is the first to offer a construction
of a global in time weak solution to (1) for randomized initial data (without
any smallness assumption) in negative Sobolev spaces H−α(Td), d = 2, 3, for
some α = α(d) > 0.

Roughly speaking the idea of the proof is the following: we start with a
divergence free and mean zero initial data ~f ∈ (H−α(Td))d, d = 2, 3 and suitably

randomize it to obtain ~fω which in particular preserves the divergence free
condition. Then we seek a solution to the initial value problem (1) in the form

~u = et∆ ~fω + ~w. In this way we single out the linear evolution et∆ ~fω and
identify the difference equation that ~w should satisfy. At this point it becomes
convenient to state an equivalence lemma between the initial value problem for
the difference equation and the integral formulation of it. This equivalence is
similar to Theorem 11.3 in [7], see also [6]. We will be using the integral equation
formulation near time zero and the other one away from zero. The key point
of this approach is the fact that although the initial data are in H−α for some
α > 0, the heat flow of the randomized data gives almost surely improved Lp

bounds). These bounds in turn yield improved nonlinear estimates arising in
the analysis of the difference equation for ~w almost surely , and consequently a
construction of a global weak solution to the difference equation is possible.
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