A model for shock wave chaos

Aslan Kasimov

King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

aslan.kasimov@kaust.edu.sa

We propose the following simple model equation that describes chaotic shock waves:

\[u_t + \frac{1}{2} \left(u^2 - uu_s \right)_x = f(x, u_s). \]

It is given on the half-line \(x < 0 \) and the shock is located at \(x = 0 \) for any \(t \geq 0 \). Here \(u_s(t) \) is the shock state and \(f \) is a given source term [1]. The equation is a modification of the Burgers equation that includes non-locality via the presence of the shock-state value of the solution in the equation itself. The model predicts steady-state solutions, their instability through a Hopf bifurcation, and a sequence of period-doubling bifurcations leading to chaos. This dynamics is similar to that observed in the one-dimensional reactive Euler equations that describe detonations. We present nonlinear numerical simulations as well as a complete linear stability theory for the equation.

References

Joint work with: Luiz Faria (KAUST, Thuwal, Saudi Arabia), Rodolfo R. Rosales (MIT, Cambridge, MA)