

Universität Stuttgart

Micro-Macro Modelling and Simulation of Liquid-Vapour Flow

A Multiscale Method for Compressible Liquid-Vapor Flow with Surface Tension

Christoph Zeiler

Institut für Angewandte Analysis und Numerische Simulation

June 2012

Free Boundary Value Problem in \mathbb{R}^d

Bulk Phases $\begin{aligned} \varrho_t + \operatorname{div}(\varrho \, \boldsymbol{v}) &= 0, \\ (\varrho \, \boldsymbol{v})_t + \operatorname{div}(\varrho \, \boldsymbol{v} \otimes \boldsymbol{v} + p(\varrho) \, \boldsymbol{I}) = \boldsymbol{0}. \end{aligned}$

Phase Boundary $\begin{bmatrix} \varrho(\boldsymbol{v} \cdot \boldsymbol{n} - \sigma) \end{bmatrix} = 0,$ $\begin{bmatrix} \varrho(\boldsymbol{v} \cdot \boldsymbol{n} - \sigma) \, \boldsymbol{v} + p(\varrho) \, \boldsymbol{n} \end{bmatrix} = (d - 1) \gamma \kappa \, \boldsymbol{n}.$ + condition for entropy dissipation

For a well-posedness result with zero entropy dissipation see [Benzoni-Gavage, Freistühler 2004]

Outline

Heterogeneous Multiscale Method

Microscale Sharp Interface Model A Curvature Dependent Pressure Function Solution

Application of the HMM in 2d

Outlook

Heterogeneous Multiscale Method

[Engquist et al. 2007]

Domain $\Omega \in \mathbb{R}^d$ with fluid in two phases at time t>0

- liquid $\Omega_{\text{liq}}(t)$,
- vapour $\Omega_{\rm vap}(t)$,
- curved phase boundary $\Gamma(t) = \partial \Omega_{\text{liq}}(t) \cap \partial \Omega_{\text{vap}}(t).$

We consider physical quantities in Euler coordinates (\pmb{x},t)

- $\bullet \ \ \, {\rm density} \ \, \varrho({\boldsymbol x},t)>0,$
- velocity $\boldsymbol{v}(\boldsymbol{x},t) \in \mathbb{R}^{d}$.

Heterogeneous Multiscale Method

[Engquist et al. 2007]

Domain $\Omega \in \mathbb{R}^d$ with fluid in two phases at time t>0

- liquid $\Omega_{\text{liq}}(t)$,
- vapour $\Omega_{vap}(t)$,
- curved phase boundary $\Gamma(t) = \partial \Omega_{\text{liq}}(t) \cap \partial \Omega_{\text{vap}}(t).$

Phase Boundary

Approximate $\Gamma(t)$ with $\Gamma_{h}(t)$ consisting of element edges.

Heterogeneous Multiscale Method

[Engquist et al. 2007]

Macroscale

Dynamics of the bulk phases Ω_{liq} and $\Omega_{\text{vap}}.$ Model: Isothermal Euler equation

$$\begin{aligned} \varrho_t + \operatorname{div}(\varrho \, \boldsymbol{v}) &= 0, \\ (\varrho \, \boldsymbol{v})_t + \operatorname{div}(\varrho \, \boldsymbol{v} \otimes \boldsymbol{v} + p(\varrho) \, \boldsymbol{I}) &= \boldsymbol{0}, \end{aligned}$$

with a pressure function \boldsymbol{p} that covers liquid and vapour phase.

Heterogeneous Multiscale Method

[Engquist et al. 2007]

Microscale

Dynamics at the phase boundary.

We assume that it is sufficient to consider a 1D Riemann type problem on the microscale.

- sharp interface
 - isothermal Euler equation and jump conditions across the phase boundary
- diffuse interface
 - Navier-Stokes-Korteweg model

Heterogeneous Multiscale Method

Heterogeneous Multiscale Method

[Engquist et al. 2007]

Heterogeneous Multiscale Method

⁷ Institut für Angewandte Analysis und Numerische Simulation

Microscale Sharp Interface Model

Within a macro time step, there are essentially Riemann problems to solve:

$$(\tau, u)(\xi, 0) := \begin{cases} (\tau_{-}, u_{-}) & \text{for } \xi \le 0, \\ (\tau_{+}, u_{+}) & \text{for } \xi > 0. \end{cases}$$
(RP)

- In Lagrange coordinates (ξ, t) :
 - specific volume $\tau := \rho^{-1} > 0$
 - velocity $u \in \mathbb{R}$

Microscale Sharp Interface Model

$$\begin{pmatrix} \tau \\ u \end{pmatrix}_t + \begin{pmatrix} -u \\ \tilde{p}(\tau) \end{pmatrix}_{\xi} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{in} \quad \mathbb{R} \times (0, \infty).$$
 (Euler)

We solve the Riemann problem (RP) for the isothermal Euler equation (Euler) such that

- 1. the solution in bulk phases is entropy solution,
- 2. there exists one phase boundary that satisfies

$$\sigma \llbracket \tau \rrbracket + \llbracket u \rrbracket = 0,$$

$$\sigma \llbracket u \rrbracket + \llbracket \tilde{p}(\tau) \rrbracket = (d-1)\gamma\kappa,$$

(RH^{\kappa})

3. Liu's entropy criterion holds ([Liu 1974]).

σ	speed of the phase boundary	d	spatial dimension
$\gamma > 0$	surface tension coefficient	κ	mean curvature
$\tilde{p}(\tau)$	$:= p(au^{-1})$ Van-der-Waals Pressure	$\llbracket \tau \rrbracket$	$:= \tau_{-} - \tau_{+}$

Microscale

A Curvature Dependent Pressure Function

We introduce a curvature dependent pressure function \tilde{p}^{κ} :

 $\tilde{p}^{\kappa}(\tau) := \begin{cases} \tilde{p}(\tau) + (d-1)\gamma\kappa & \text{in the liquid phase,} \\ \tilde{p}(\tau) & \text{in the vapour phase.} \end{cases}$

$$\begin{pmatrix} \tau \\ u \end{pmatrix}_t + \begin{pmatrix} -u \\ \tilde{p}^{\kappa}(\tau) \end{pmatrix}_{\xi} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{in} \quad \mathbb{R} \times (0, \infty)$$
 (Euler^{\kappa})

The Rankine Hugoniot conditions for (Euler^{κ}) coincides with (RH^{κ}).

Appropriate free energy

$$\tilde{\psi}^{\kappa}(\tau) := \begin{cases} \tilde{\psi}(\tau) - (d-1)\tau\gamma\kappa & \text{in the liquid phase,} \\ \tilde{\psi}(\tau) & \text{in the vapour phase.} \end{cases}$$

such that $\frac{\mathrm{d}}{\mathrm{d}\tau}\tilde{\psi}^{\kappa}(\tau) = -\tilde{p}^{\kappa}(\tau)$ and $\tilde{\psi}^{\kappa} + \tau \,\tilde{p}^{\kappa} = \tilde{\psi} + \tau \,\tilde{p}$.

Microscale A Curvature Dependent Pressure Function

Generalised Maxwell construction for \tilde{p}^κ

Microscale A Curvature Dependent Pressure Function

Generalised Maxwell construction for \tilde{p}^{κ}

Microscale A Curvature Dependent Pressure Function

Generalised Maxwell construction for \tilde{p}^{κ}

Microscale A Curvature Dependent Pressure Function

Generalised Maxwell construction for \tilde{p}^{κ}

Microscale Solution

$$\begin{pmatrix} \tau \\ u \end{pmatrix}_t + \begin{pmatrix} -u \\ \tilde{p}^{\kappa}(\tau) \end{pmatrix}_{\xi} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{in} \quad \mathbb{R} \times (0, \infty).$$
 (Euler ^{κ})

Theorem [Z 2012]

The Riemann problem for (Euler^{κ}) with $|\kappa| < C$ has a unique (Liu) entropy solution. The solution consist of elementary waves and exactly one phase boundary satisfying (RH^{κ}).

entropy dissipativity condition:

$$\sigma \llbracket E^{\kappa}(\tau, u) \rrbracket - \llbracket F^{\kappa}(\tau, u) \rrbracket \le 0,$$

$$E^{\kappa}(\tau, u) = \frac{1}{2}u^2 + \tilde{\psi}^{\kappa}(\tau), \ F^{\kappa}(\tau, u) = u\,\tilde{p}^{\kappa}(\tau).$$

For a construction, we follow [Godlewski, Seguin 2006].

Microscale

Solution

Solution for a bubble of radius 1 with different surface tension coefficients $\gamma.$

Microscale

Solution

Solution for a bubble of radius 1 with different surface tension coefficients $\gamma.$

Application of the HMM in 2d (with P. Engel)

Macroscale Solver

- Finite Volume method for the 2d Euler system
- unstructured grid
- cut cells along the level set zero
- level set driving

$$\frac{\partial \varphi}{\partial t} + (\sigma \, \boldsymbol{n}) \cdot \operatorname{grad} \varphi = \boldsymbol{0}$$

curvature

$$\kappa = \operatorname{div}\left(\frac{\operatorname{grad}\varphi}{|\operatorname{grad}\varphi|}\right)$$

Application of the HMM in 2d

$$\begin{split} \varrho(\pmb{x},0) &= \\ \begin{cases} 0.3191 &: \text{inside} \\ 1.8063 &: \text{outside}, \end{cases} \\ \pmb{v}(\pmb{x},0) &= \pmb{0}, \\ \gamma &= 0.001 \end{split}$$

Application of the HMM in 2d

$$\begin{split} \varrho(\pmb{x},0) &= \\ \begin{cases} 0.3191 &: \text{inside} \\ 1.8063 &: \text{outside}, \end{cases} \\ \pmb{v}(\pmb{x},0) &= \pmb{0}, \\ \gamma &= 0 \end{split}$$

Application of the HMM in 2d $_{\mbox{Solution}}$

$$\begin{split} \varrho(\pmb{x},0) &= \\ \begin{cases} 0.35 & : |\pmb{x}| \leq 0.4 \\ 1.9 & : |\pmb{x}| > 0.4, \end{cases} \\ \pmb{v}(\pmb{x},0) &= \pmb{0}, \\ \gamma &= 0.0025 \end{split}$$

Application of the HMM in 2d

Energy (cf. [Gurtin 1985])

$$E(\varrho, \boldsymbol{v}) = \int_{\Omega} \frac{1}{2} \varrho |\boldsymbol{v}|^2 + W(\varrho) \, \mathrm{d}x + \gamma |\Gamma|, \qquad W(\varrho) = \varrho \, \tilde{\psi}(1/\varrho),$$
$$E_{\mathsf{stat}} = \min \left\{ E(\varrho, \mathbf{0}) \, \middle| \, \int_{\Omega} \varrho \, \mathrm{d}x = \mathsf{const.} \right\}$$

Outlook

- implementation in Dune / C++
- interface tracking
- curvature reconstruction

Microscale

Navier-Stokes-Korteweg model

Literature

[Engquist et al. 2007] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods: a review.

[Gurtin 1985] M. E. Gurtin.

On a theory of phase transitions with interfacial energy.

[Jägle, Rohde, Z 2012] F. Jaegle, C. Rohde, and C. Zeiler. A multiscale method for compressible liquid-vapor flow with surface tension submittet at ESAIM Proceedings, preprint: http://www.simtech. uni-stuttgart.de/forschung/publikationen/publ/index.html

[Liu 1974] T. P. Liu.

The Riemann problem for general 2×2 conservation laws.

[Benzoni-Gavage, Freistühler 2004] S. Benzoni-Gavage and H. Freistühler. Effects of surface tension on the stability of dynamical liquid-vapor interfaces.

[Godlewski, Seguin 2006] Edwige Godlewski and Nicolas Seguin. The Riemann problem for a simple model of phase transition.