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Goal

TVD, WENO
WENO/SR – New scheme by Wang, Shu, Yee & Sj greenӧ
High order filter scheme by Yee & Sjӧgreen
Note: Study based on coarse grid computations obtaining the correct discontinuity
             locations  (not accurate enough to resolve the detonation front)

NASA Electric Arc Shock Tube (EAST)

1D Computation: 13 species(Air+He) using
MUTATION library; L = 8.5 m

Fine grid step h = 0.05mm, 16 times finer than 
coarse grid

Study the behavior of high order shock-capturing schemes
for problems containing stiff source terms & discontinuities

The issue of “incorrect shock speed” is concerned with solving the
conservative system with a conservative scheme

Schemes to be considered:

Example:
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Numerical Method Development Challenges
(Turbulence with Strong Shocks & Stiff Source Terms)

Conflicting requirements (for turbulence with strong shocks)
turbulence cannot tolerate numerical dissipation but needs 
some for numerical stability
Proper amount of numerical dissipation is required in the vicinity 
of shock/contact
(Recent development: Yee & Sjogreen, 2000-2009)

Non-linearity of the source terms
Incorrect numerical solution can be obtained for ∆t below the CFL limit. (Allowable 
∆t consists of disjoint segments: Yee & Sweby, Yee et al., Griffiths et al., Lafon & 
Yee, 1990 – 2002)

Stiffness of the source terms
Insufficient spatial/temporal resolution may lead to incorrect speed of propagation 
of discontinuities (LeVeque & Yee, 1990, Collela et al., 1986 + large volume of 
research work the last two decades)

(a) Standard shock-capturing methods have been developed for problems without 
      source terms
(b) Concern only source term of type S(U)

Note:
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Wrong Propagation Speed of Discontinuities
(Standard Shock-Capturing Schemes: TVD, WENO5, WENO7)

Chapman-Jouguet (C-J) 
1D detonation wave,
Helzel et al. 1999

Arrhenius reaction rate:

K 0 can be large
(stiff coeff.)

K T =K 0exp −T ign

T 

50 pts
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Wrong Propagation Speed of Discontinuities
(WENO5, Two Stiff Coefficients, 50 pts)

4 K0K 0=16 418

Reference, 10,000 pts
50 pts
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2D Reactive Euler Equations

Pressure:

Reaction rate: (a)

(b)

K T =K 0exp −T ign

T 
K T ={K 0 TT ign

0 TT ign

1t1 ux1 v y =K T 2

2t2 u x2 v y =−K T 2

u tu2 pxu v y =0
 v tu v xv2 py =0

E tu E pxv E py =0

p=−1E−1
2
u2v2−q02

=12Unburned gas mass fraction: z=2/

Stiff: large K0
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High Order Methods with Subcell Resolution
(Wang, Shu, Yee, & Sjӧgreen, JCP, 2012)

Numerical solution:

Split equations into convective and reactive operators
(Strang-splitting 1968) 

U tF U xG U y=S U 

U tF U xG U y=0 dU
dt
=S U 

U n1=A  t
2
R  t A t

2
U n

Convection operator Reaction operator

Note: time accuracy after Strang splitting is at most 2n d  order

Procedure:
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Subcell Resolution (SR) Method
Basic Approach

Any high resolution shock capturing operator can be used in the 
convection step
Test case: WENO5 with Roe flux & RK4
Any standard shock-capturing scheme produces a few transition 
points in the shock
=> Solutions from the convection operator step, if applied directly 
to the reaction operator, result in wrong shock speed

New Approach: Apply Subcell Resolution  (Harten 1989; Shu & Osher 1989)
                                to the solution from the convection operator step 
                                before the reaction operator
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Well-Balanced High Order Filter Schemes for 
Reacting Flows (Yee & Sjӧgreen, 1999-2010, Wang et al., 2009-2010)

Preprocessing step
 Condition (equivalent form) the governing equations by, e.g., 
 Ducros et al. Splitting  (2000) to improve numerical stability
High order base scheme step (Full time step)

 e.g. the 6th  order (or higher) central spatial scheme and 4th  order RK
Nonlinear filter step

Filter the base scheme step solution by a dissipative portion of
high-order shock capturing scheme, e.g., WENO of 5th  order
Use Wavelet-based flow sensor to control the amount & location
of the nonlinear numerical dissipation to be employed

 Well balanced scheme: preserve certain non-trivial physical steady state solutions exactly



Properties of the High-Order Filter Schemes

High order (4th  - 16th) Spatial Base Scheme conservative; no flux 
limiter or Riemann solver
Physical viscosity is taken into account by the base scheme
(reduce the amount of numerical dissipation to be used if physical viscosity is 
present)

Efficiency: One Riemann solve per dimension per time step, 
independent of time discretizations
Accuracy: Containment of numerical dissipation via a local wavelet 
flow sensor
Well-balanced scheme: Able to exactly preserve certain nontrivial 
steady-state solutions of the governing equations (Wang et al. 2011)
Parallel Algorithm: Suitable for most current supercomputer 
architectures
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Three Test Cases
(Computed by ADPDIS3D code)

1D C-J Detonation Wave
(Helzel et al. 1999; Tosatto & Vigevano 2008)

2D Detonation Wave (Ozone decomposition)
(Bao & Jin, 2001)

2D EAST Problem (13 species nonequilibrium)

All schemes employed in the study are included in 
ADPDIS3D solver (Sjӧgreen, Yee & collaborators)
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1D C-J Detonation Wave
(Helzel et al. 1999; Tosatto & Vigevano 2008)

Right state
(totally unburned gas)

u

uu

pu
=101 

Left state
(totally burned gas)

b

ub

pb
= u

[ pb 1− pu]
 pb

SCJ− pb/b
1/2

−bb2−c1/2


SCJ=[u uu pbb
1/2]/u

b=−pu−u q0 −1 c= pu
22−1 puu q0/1

Ignition temperature 
Heat release
Rate parameter

T ign=25
q0=25

K 0=16 418

K T =K 0exp −T ign

T 
13



1D C-J Detonation (K0 = 16418, 50 pts) 
Temperature Mass Fraction

WENO5:            Standard 5th order WENO
WENO5/SR:      WENO5 + subcell resolution
WENO5fi:          Filter version of WENO5
WENO5fi+split: WENO5fi + preprocessing (Ducros splitting)
Reference:         WENO5, 10,000 points
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Filter Version of WENO5/SR: WENO5fi/SR
(50 pts, CFL = 0.025)

100 K0 1000 K0Stiffness

15



Behavior of the schemes below CFL limit
(Allowable ∆t below CFL limit, consists of disjoint segments)

50 pts, Stiffness: 100 K0

Density by different CFL
 WENO5/SR

 Diverged solution may occur for ∆t below CFL limit. 
 CFL limit based on the convection part of PDEs
 Confirms the study by Lafon & Yee and Yee et. al. (1990 - 2000) 16



Behavior of the schemes below CFL limit
(Obtaining the Correct Shock Speed)

Stiff. K0

Stiff. 100 K0

Stiff. 1000 K0

1D Detonation                  Grid 50                       Grid 150                           Grid 300

Note: CFL limit based on the convection part of PDEs 17



2D Detonation Wave ( Bao & Jin, 2001)
Initial Condition

uvp
z
= 
b

ub

0
pb

0
 , if x y  uvp

z
=
u

uu

0
pu

0
 , if x y 

 y ={ 0.004 ∣y−0.0025∣0.001
0.005−∣y−0.0025∣ ∣y−0.0025∣0.001
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2D Detonation Wave

T ign=0.1155⋅1010

q0=0.5196⋅1010

K 0=0.5825⋅1010

Totally unburned gas

u

uu

pu
=1.201⋅10−3

0
8.321⋅105 

Totally burned gas

SCJ=[u uu pbb
1/2]/u

b=−pu−u q0 −1 c= pu
22−1 puu q0/1

Ignition temperature 
Heat release
Rate parameter

b

ub

pb
= u

[ pb 1− pu]
 pb

8.162⋅104

−bb2−c1/2


K T ={K 0 TT ign

0 TT ign

19



2D Detonation, t=3e-8 s (500x100 pts)
Comparison (WENO5,WENO5/SR,WENO5fi+split)

Density      Reference               WENO5               WENO5/SR         WENO5fi+split
WENO5: 4000 x 800

20



Behavior of the scheme below CFL limit
(Obtaining correct shock speed, 2D Detonation, 200x40 pts)

WENO5/SR, 3 stiff. coeff.

Note: CFL limit based on the convection part of PDEs 21



Behavior of the schemes below CFL limit
(Obtaining the Correct Shock Speed)

2D Detonation                Grid 200x40                     Grid 500x100

Stiff. K0

Stiff. 100 K0

Stiff. 1000 K0

Note: CFL limit based on the convection part of PDEs 22



Remark
Spurious solutions (below CFL limit):

(a) Wrong propagation speed of discontinuities
(b) Diverged solution
(c) Other wrong solution

These spurious solutions are solutions
of the discretized counterparts but not
the solutions of the governing 
equations

23



Scheme Performance (8 Procs.)
1D Detonation Problem  (Grid 300, CFL = 0.05, RK4)

WENO5 WENO5/SR WENO5fi+split WENO5fi/SR+split
CPU eff, 
iterations/sec 630 610 1720 1590

Discontinuity 
location error
(grid points)

10 0 0 -3

2D Detonation Problem  (Grid 500x100, CFL = 0.05, RK4)

WENO5 WENO5/SR WENO5fi+split WENO5fi/SR+split
CPU eff, 
iterations/sec 4.0 3.6 9.5 5.7

Discontinuity 
location max 
error
(grid points)

4 0 0 -3
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2D EAST Problem (Viscous Nonequilibrium Flow)
NASA Electric Arc Shock Tube (EAST) – joint work with Panesi, Wray, Prabhu

13 Species mixture:
e − , He , N ,O , N 2 , NO ,O2 , N 2

 , NO  , N  ,O2
 ,O  , He 

High Pressure Zone Low Pressure Zone
 
 
 

 

 

 1.10546 kg /m3

T 6000 K
p 12.7116 MPa
Y He 0.9856
Y N 2

0.0144

 
 
 

 

 

 3.0964e−4 kg /m3

T 300 K
p 26.771 Pa
Y O2

0.21
Y N 2

0.79
25



EAST: Temperature Computed at t = 1.e-5 s
Shock/Shear Locations Grid Dependance

TVD, CFL = 0.7

601x121
Uniform

1201x121
Uniform

690x121
Cluster near shock

Fine grid h = 0.05 mm
Grid points needed for x-dimension: 170,000
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Concluding Remarks & Future Plans
High order methods performance:
– WENO5/SR performs slightly better then WENO5fi+split
   (For Considered Test Cases)
– For Turbulence & Combustion WENO5fi+split is more
   accurate then WENO5/SR (Work in progress)
Containment of numerical dissipation on existing shock-
capturing schemes can delay the onset of wrong 
propagation speed of discontinuities  

Future Work:
Method extension for multispecies case 
Test cases that include Turbulence & Combustion

27



Thank you!
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2D Detonation, 500x100 pts
 WENO5,WENO5/SR,WENO5fi,WENO5fi+split

1D Cross-Section of Density at t = 1.7E-7

Zoom

Note: Wrong shock speed by WENO5fi using 200x40 pts
29



Scalar Case  Behavior of WENO5 & WENO5/SR below CFL limit
                    (Obtaining the Correct Discontinuity Speed)

Stiff. K0

Stiff. 100 K0

Stiff. 1000 K0

            Grid 50                       Grid 150                       Grid 300

Note: CFL limit based on the convection part of PDE

Source term:
S = K

0
(1-u)(u-0.5)u

K
0
 = 10,000

30



Behavior of standard schemes below CFL limit
(Obtaining the Correct Shock Speed)

Stiff. K0

Stiff. 100 K0

Stiff. 1000 K0

1D Detonation                  Grid 50                       Grid 150                           Grid 300

Note: CFL limit based on the convection part of PDEs 31
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EAST Problem. Governing equations
∂s

∂ t 
∂
∂ x j

s u js d sj =s

∂
∂ t ui

∂
∂ x j

ui u jpij−ij =0

∂
∂ t E ∂

∂ x j
u jEpq j∑

s
s d sj hs−uiij =0

=∑
s
s p=RT∑

s=1

N s s

M s
E=∑

s=1

N s

s esT hs
0 1

2
v2

NS equations for 2D (i=1,2) or 3D (i=1,2,3) chemically non-equilibrium flow:

ij=  ∂ui

∂ x j

∂u j

∂ xi − 2
3
∂uk

∂ xk
ij d sj=−Ds

∂X s

∂ x j
q j=−

∂T
∂ x j

s=M s∑
r=1

N r

bs , r−as , r  [k f ,r∏
m=1

N s  m

M m 
am ,r

−kb , r∏
m=1

N s  m

Mm 
bm , r ] 35



Reaction Operator

 Identify shock location, e.g. using Harten's indicator for zij  – x-mass fraction of 
  unburned gas:

  Shock present in the cell Iij if 

  y-direction, similarly:

 Apply subcell resolution in the direction for which a shock has been detected. 
  If both directions require subcell resolution – choose the largest jump

∣si , j
x ∣∣si−1, j

x ∣ and ∣si , j
x ∣∣si1, j

x ∣

sij
x=minmod  z i1, j−zij , zij−z i−1, j

sij
y=minmod z i , j1−z ij , zij−z i , j1

∣sij
x∣ or ∣sij

y∣

New Approach: Apply Subcell Resolution  (Harten 1989; Shu & Osher 1989)
                                to the solution from the convection operator step 
                                before the reaction operator
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Reaction Operator (Cont.)
 For Iij with shock present, Ii-q, j  and Ii+r, j  without shock present:

 Compute ENO interpolation polynomials               and             

 Modify points in the vicinity of the shock (mass fraction zij , temperature Tij  
 and density ρij )

 where Ө is determined by the conservation of energy E:

 Advance time by modified values for the Reaction operator (use, e.g., explicit Euler)

P i−q P ir

 zij
T ij

ij
= Pi−q , j xi , z 

Pi−q , j xi ,T 
Pi−q , j xi ,  , x i  zij

T ij

ij
= Pir , j  xi , z 

Pir , j  xi , T 
Pir , j  xi ,  , xi

∫
xi−1/2



Pi−q , j x , E dx∫


xi1/2

P ir , j x , E dx=E ij x

 z ij
n1= z ij

n t S  zij , T ij , ij
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Nonlinear Filter Step               

U j
n1=U j

∗−  t
 x

[H j1/2−H j−1/2]

H j1/2=R j1/2 H j1 /2

U∗=L∗ U n

H j1/2

h j1/ 2
m =

 j1/2
m

2
s j1/2

m  j1/2
m 

s j1/2
m - Wavelet sensor (indicate location where dissipation needed)

Denote the solution by the base scheme (e.g. 6th  order central, 
4th  order RK)

Solution by a nonlinear filter step

        - numerical flux,           - right eigenvector, evaluated at the 
          Roe-type averaged state of
Elements of              :

U tF x U =0 

H j1/2 R j1/2
U j

∗

 j1/2
m - Control the amount of

m=13N S−1

 j1/2
m

- Dissipative portion of a shock-capturing scheme

 j1/2
m
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Improved High Order Filter Method
Form of nonlinear filter:

Wavelet sensor Shock capturing 
numerical flux 
(e.g. WENO5)

High-order 
central numerical flux
(e.g. 6th  order central)

= f M ⋅0

f M =min  M 2

2
41−M 22

1M 2 ,1 

h j1/2
m =

 j1/2

2
 s j1/2

m g j1/2
m −b j1/2

m 

2007 – κ = global constant
2009 – κj + 1 / 2  = local, evaluated at each grid point
Simple modification of κ (Yee & Sj green, 2009)ӧ

For other forms of                          see (Yee & Sj green, 2009)ӧ j1/2 , s j1/2
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Control the Amount of         
= f M ⋅0

f 1 M =min  M 2

2
41−M 22

1M 2 ,1 
f 2M =Q M ,2Q M ,3/2

Q M , a={P M /a  Ma
1 Ma

P  x=x435−84x70x2−20x3

I. Mach # < 0.4

II. Mach # > 0.4
   ● Shock strength indicator (e.g. numerical Schlieren)
   ● Dominating shock jump variable
   ● Turbulent fluctuation region
       – Wavelets with high order vanishing moments
       – Wavelet based Coherent Vortex Extraction (CVE), Farge et. al (1999, 2001)

 j1/2
m

 j1/2
m(             - Dissipative portion of a shock-capturing scheme)
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Control the Amount of         
= f M ⋅0 f 2M =Q M ,a1Q M , a2/2

Q M , a={P M /a  Ma
1 Ma P  x=x435−84x70x2−20x3

 j1/2
m

 j1/2
m(             - Dissipative portion of a shock-capturing scheme)
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High Order Methods with Subcell Resolution
 Wang, Shu, Yee, & Sjӧgreen, 2012, JCP

Numerical solution:

or:

A – Convection operator R – Reaction operator

 Procedure: splitting equations into convective and reactive operators
Using Strang-splitting (Strang, 1968) 

U tF U xG U y=S U 

U tF U xG U y=0 dU
dt
=S U 

U n1=A  t
2
R  t A t

2
U n

U n1=A  t
2
R  t

N r
R  t

N r
A  t

2
U n
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