Behavior of Shock-Capturing Methods Below the CFL Limit

(Problems Containing Stiff Source Terms & Discontinuities)

H.C. Yee, D. Kotov, B. Sjögreen (Joint Work: W. Wang, C.-W. Shu, M. Panesi, A. Wray, D. Prabhu)

HYP2012, 25-29 June 2012, Padova, Italy

Outline

Motivation

(Wrong Propagation Speed of Discontinuities by Shock-Capturing Methods)

Numerical Methods with Dissipation Control

(Turbulence with Strong Shocks & Stiff Source Terms)

- Three Test Cases: 1D, 2D detonation and 13 species nonequilibrium
- Conclusions

Goal

Study the behavior of high order shock-capturing schemes for problems containing stiff source terms & discontinuities

The issue of "incorrect shock speed" is concerned with solving the conservative system with a conservative scheme

Schemes to be considered:

TVD, WENO WENO/SR – New scheme by Wang, Shu, Yee & Sjögreen High order filter scheme by Yee & Sjögreen <u>Note</u>: Study based on coarse grid computations obtaining the correct discontinuity locations (not accurate enough to resolve the detonation front)

Numerical Method Development Challenges (Turbulence with Strong Shocks & Stiff Source Terms)

- **Conflicting requirements** (for turbulence with strong shocks)
 - turbulence cannot tolerate numerical dissipation but needs some for numerical stability
 - Proper amount of numerical dissipation is required in the vicinity of shock/contact (Recent development: Yee & Sjogreen, 2000-2009)
- Non-linearity of the source terms

Incorrect numerical solution can be obtained for Δt below the CFL limit. (Allowable Δt consists of disjoint segments: Yee & Sweby, Yee et al., Griffiths et al., Lafon & Yee, 1990 – 2002)

Stiffness of the source terms

Insufficient spatial/temporal resolution may lead to incorrect speed of propagation of discontinuities (*LeVeque & Yee, 1990, Collela et al., 1986 + large volume of research work the last two decades*)

- <u>Note</u>: (a) Standard shock-capturing methods have been developed for problems without source terms
 - (b) Concern only source term of type S(U)

Wrong Propagation Speed of Discontinuities

(Standard Shock-Capturing Schemes: TVD, WENO5, WENO7)

Wrong Propagation Speed of Discontinuities

(WENO5, Two Stiff Coefficients, 50 pts)

6

2D Reactive Euler Equations

$$\begin{array}{ll} (\rho_1)_t + (\rho_1 u)_x + (\rho_1 v)_y &= K(T)\rho_2 \\ (\rho_2)_t + (\rho_2 u)_x + (\rho_2 v)_y &= -K(T)\rho_2 \\ (\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y &= 0 \\ (\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y &= 0 \\ E_t + (u(E+p))_x + (v(E+p))_y &= 0 \end{array}$$

Unburned gas mass fraction: $z = \rho_2 / \rho$ $\rho = \rho_1 + \rho_2$ Pressure: $p = (\gamma - 1)(E - \frac{1}{2}\rho(u^2 + v^2) - q_0\rho_2)$ Reaction rate: (a) $K(T) = K_0 \exp\left|\frac{-T_{ign}}{T}\right|$ (b) $K(T) = \begin{bmatrix} K_0 & T \ge T_{ign} \\ 0 & T < T_{ign} \end{bmatrix}$ Stiff: large K_0

High Order Methods with Subcell Resolution

(Wang, Shu, Yee, & Sjögreen, JCP, 2012)

Procedure:

Split equations into convective and reactive operators (Strang-splitting 1968) $U_t + F(U)_r + G(U)_v = S(U)$ $U_t + F(U)_x + G(U)_v = 0$ $\frac{dU}{dt} = S(U)$ Numerical solution: $U^{n+1} = A(\frac{\Delta t}{2})R(\Delta t)A(\frac{\Delta t}{2})U^n$ **Convection operator Reaction operator**

<u>Note</u>: time accuracy after Strang splitting is at most 2nd order

Subcell Resolution (SR) Method Basic Approach

Any high resolution shock capturing operator can be used in the convection step

Test case: WENO5 with Roe flux & RK4

 Any standard shock-capturing scheme produces a few transition points in the shock

=> Solutions from the convection operator step, if applied directly to the reaction operator, result in wrong shock speed

New Approach: Apply Subcell Resolution (Harten 1989; Shu & Osher 1989) to the solution from the convection operator step before the reaction operator

Well-Balanced High Order Filter Schemes for Reacting Flows (Yee & Sjögreen, 1999-2010, Wang et al., 2009-2010)

Preprocessing step

Condition (equivalent form) the governing equations by, e.g., **Ducros et al. Splitting (2000)** to improve numerical stability

<u>High order base scheme step</u> (Full time step) e.g. the 6th order (or higher) central spatial scheme and 4th order RK

Nonlinear filter step

- Filter the base scheme step solution by a dissipative portion of high-order shock capturing scheme, e.g., WENO of 5th order
- Use Wavelet-based flow sensor to control the amount & location of the nonlinear numerical dissipation to be employed

<u>Well balanced scheme</u>: preserve certain non-trivial physical steady state solutions exactly

Properties of the High-Order Filter Schemes

- <u>High order (4th 16th)</u> Spatial Base Scheme conservative; no flux limiter or Riemann solver
- Physical viscosity is taken into account by the base scheme (reduce the amount of numerical dissipation to be used if physical viscosity is present)
- Efficiency: One Riemann solve per dimension per time step, independent of time discretizations
- <u>Accuracy</u>: Containment of numerical dissipation via a local wavelet flow sensor
- <u>Well-balanced scheme</u>: Able to exactly preserve certain nontrivial steady-state solutions of the governing equations (Wang et al. 2011)
- <u>Parallel Algorithm</u>: Suitable for most current supercomputer architectures

Three Test Cases (Computed by ADPDIS3D code)

- 1D C-J Detonation Wave (Helzel et al. 1999; Tosatto & Vigevano 2008)
- 2D Detonation Wave (Ozone decomposition) (Bao & Jin, 2001)
- 2D EAST Problem (13 species nonequilibrium)

All schemes employed in the study are included in ADPDIS3D solver (Sjögreen, Yee & collaborators)

1D C-J Detonation Wave

(Helzel et al. 1999; Tosatto & Vigevano 2008)

1D C-J Detonation (*K*₀ = 16418, 50 pts)

Filter Version of WENO5/SR: WENO5fi/SR (50 pts, CFL = 0.025)

Stiffness 100 K₀

1000 K₀

Behavior of the schemes below CFL limit

(Allowable Δt below CFL limit, consists of disjoint segments)

50 pts, Stiffness: 100 K_o

■ Diverged solution may occur for ∆t below CFL limit.

- CFL limit based on the convection part of PDEs
- Confirms the study by Lafon & Yee and Yee et. al. (1990 2000)

Behavior of the schemes below CFL limit (Obtaining the Correct Shock Speed)

2D Detonation Wave (Bao & Jin, 2001)

Initial Condition

$$\begin{vmatrix} \rho \\ u \\ v \\ p \\ z \end{vmatrix} = \begin{vmatrix} \rho_b \\ u_b \\ 0 \\ p_b \\ 0 \end{vmatrix}, \text{ if } x \leq \xi(y) \qquad \begin{vmatrix} \rho \\ u \\ v \\ p \\ z \end{vmatrix} = \begin{vmatrix} \rho_u \\ u_u \\ 0 \\ p_u \\ 0 \end{vmatrix}, \text{ if } x > \xi(y)$$
$$\xi(y) = \begin{cases} 0.004 \\ 0.005 - |y - 0.0025| \end{cases} \begin{vmatrix} y - 0.0025| \ge 0.001 \\ |y - 0.0025| \leq 0.001 \end{vmatrix}$$

2D Detonation Wave

2D Detonation, t=3e-8 s (500x100 pts) Comparison (WENO5,WENO5/SR,WENO5fi+split)

Behavior of the scheme below CFL limit (Obtaining correct shock speed, 2D Detonation, 200x40 pts) WEN05/SR, 3 stiff. coeff.

Note: CFL limit based on the convection part of PDEs

Remark

Spurious solutions (below CFL limit):

- (a) Wrong propagation speed of discontinuities
- (b) Diverged solution
- (c) Other wrong solution

These spurious solutions are solutions of the discretized counterparts but not the solutions of the governing equations

Scheme Performance (8 Procs.)

1D Detonation Problem (Grid 300, CFL = 0.05, RK4)

	WENO5	WENO5/SR	WENO5fi+split	WENO5fi/SR+split
CPU eff, iterations/sec	630	610	1720	1590
Discontinuity location error (grid points)	10	0	0	-3

2D Detonation Problem (Grid 500x100, CFL = 0.05, RK4)

	WENO5	WENO5/SR	WENO5fi+split	WENO5fi/SR+split
CPU eff, iterations/sec	4.0	3.6	9.5	5.7
Discontinuity location max error (grid points)	4	0	0	-3

2D EAST Problem (Viscous Nonequilibrium Flow)

NASA Electric Arc Shock Tube (EAST) – joint work with Panesi, Wray, Prabhu

13 Species mixture:

 e^{-} , He , N , O , N_{2} , NO , O_{2} , N_{2}^{+} , NO $^{+}$, N $^{+}$, O_{2}^{+} , O $^{+}$, He $^{+}$

High Pressure Zone

ρ	$1.10546 kg / m^3$
T	6000 K
p	12.7116 MPa
Y_{He}	0.9856
Y_{N_2}	0.0144

Low Pressure Zone

ρ	$3.0964e - 4 kg/m^{3}$
Т	300 K
р	26.771 Pa
Y_{O_2}	0.21
Y_{N_2}	0.79

EAST: Temperature Computed at t = 1.e-5 s Shock/Shear Locations Grid Dependance TVD, CFL = 0.7

Concluding Remarks & Future Plans

- High order methods performance:
 - WENO5/SR performs slightly better then WENO5fi+split (For Considered Test Cases)
 - For Turbulence & Combustion WENO5fi+split is more accurate then WENO5/SR (Work in progress)
- Containment of numerical dissipation on existing shockcapturing schemes can delay the onset of wrong propagation speed of discontinuities

Future Work:

- Method extension for multispecies case
- Test cases that include Turbulence & Combustion

Thank you!

2D Detonation, 500x100 pts WENO5,WENO5/SR,WENO5fi,WENO5fi+split 1D Cross-Section of <u>Density</u> at t = 1.7E-7

Note: Wrong shock speed by WENO5fi using 200x40 pts

Scalar Case Behavior of WENO5 & WENO5/SR below CFL limit

Source term:

(Obtaining the Correct Discontinuity Speed)

Behavior of standard schemes below CFL limit (Obtaining the Correct Shock Speed)

Note: CFL limit based on the convection part of PDEs

References

- Bao, W. & Jin, S. 2001 The random projection method for stiff detonation capturing. SIAM J. Sci. Comput. Vol. 23, No. 3, 1000–10026.
- B.Sjögreen & H.C.Yee 2009 Variable high order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows. Commun. Comput. Phys. 5, 730–744.
- Chorin, A. 1976 Random choice solution of hyperbolic systems. J. Comput. Phys. 22, 517-533.
- Ducros, F., Laporte, F., Soul`eres, T., Guinot, V., Moinat, P. & Caruelle, B. 2000 Highorder fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows. J. Comp. Phys. 161, 114–139. Harten, A. 1989 Eno schemes with subcell resolution. J. Comp. Phys. 83, 148–184.
- Helzel, C., LeVeque, R. & Warneke, G. 1999 A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Stat. Comp. 22, 1489–1510.
- Kailasanath, K., Oran, E., Boris, J. & Young, T. 1985 Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61, 199–209.
- LeVeque, R. & Yee, H. 1990 A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comp. Phys. 86, 187–210.
- Olsson, P. & Oliger, J. 1994 Energy and maximum norm estimates for nonlinear conservation laws. Tech. Rep. 94.01. RIACS.

References

- Shu, C.-W. & Osher, S. 1989 Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J. Comp. Phys. 83, 32–78.
- Sjögreen, B. & Yee, H. 2009 On skew-symmetric splitting and entropy conservation schemes for the euler equations. In Proceedings of the 8th European Conference on Numerical Mathematics & Advanced Applications (ENUMATH 2009). Uppsala University, Uppsala, Sweden.
- Sjögreen, B. & Yee, H. C. 2004 ultiresolution wavelet based adaptive numerical dissipation control for shock-turbulence computation. J. Scient. Computing 20, 211– 255.
- Strang, G. 1968 On the construction and comparison of difference schemes. SIAM J.Numer. Anal. 5, 506–517.
- Tosatto, L. & Vigevano, L. 2008 Numerical solution of under-resolved detonations. J. Comp. Phys. 227, 2317–2343.
- Wang, W., Shu, C., Yee, H. & Sjögreen, B. 2012 High order finite difference methods with subcell resolution for advection equations with stiff source terms. J. Comput. Phys. 231, 190–214.
- Wang, W., Yee, H., Sjögreen, B., Magin, T. & Shu, C. 2011 Construction of low dissipative high-order well-balanced filter schemes for nonequilibrium flows. J. Comput. Phys. 230, 4316–4335.

References

- Yee, H., Sandham, N. & Djomehri, M. 1999a Low dissipative high order shockcapturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238.
- Yee, H. & Sjögreen, B. 2007 Development of low dissipative high order filter schemes for multiscale navier-stokes/mhd systems. J. Comput. Phys. 225, 910–934.
- Yee, H. & Sjögreen, B. 2010 High order filter methods for wide range of compressible flow speeds. In Proceedings of ASTRONUM-2010. San Diego, Calif
- Yee, H. & Sjögreen, B. 2011 Local flow sensors in controlling numerical dissipations for a wide spectrum of flow speed and shock strength. In preparation.
- Yee, H., Sjögreen, B., Shu, C., Wang, W., Magin, T. & Hadjadj, A. 2011 On numerical methods for hypersonic turbulent flows. In Proceedings of ESA 7th Aerothermodynamics Symposium. Site Oud Sint-Jan, Brugge, Belgium.
- Yee, H. & Sweby, P. 1997 Dynamics of numerics & spurious behaviors in cfd computations. In Keynote paper, 7th ISCFD Conference. Beijing, China, rIACS Technical Report 97.06, June 1997.
- Yee, H., Torczynski, J., Morton, S., Visbal, M. & Sweby, P. 1999b On spurious behavior of cfd simulations. Int. J. Num. Meth. Fluids 30, 675–711.
- Yee, H., Vinokur, M. & Djomehri, M. 2000 Entropy splitting and numerical dissipation.
 J. Comput. Phys. 162, 33–81.

EAST Problem. Governing equations

NS equations for 2D (i=1,2) or 3D (i=1,2,3) chemically non-equilibrium flow:

$$\begin{split} \frac{\partial \rho_s}{\partial t} + \frac{\partial}{\partial x_j} (\rho_s u_j + \rho_s d_{sj}) &= \Omega_s \\ \frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j + p \delta_{ij} - \tau_{ij}) &= 0 \\ \frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_j} (u_j (E + p) + q_j + \sum_s \rho_s d_{sj} h_s - u_i \tau_{ij}) &= 0 \\ \rho = \sum_s \rho_s \qquad p = RT \sum_{s=1}^{N_s} \frac{\rho_s}{M_s} \qquad \rho E = \sum_{s=1}^{N_s} \rho_s \Big(e_s(T) + h_s^0 \Big) + \frac{1}{2} \rho v^2 \\ \tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \mu \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \qquad d_{sj} = -D_s \frac{\partial X_s}{\partial x_j} \qquad q_j = -\lambda \frac{\partial T}{\partial x_j} \\ \Omega_s = M_s \sum_{r=1}^{N_r} \left(b_{s,r} - a_{s,r} \right) \left[k_{f,r} \prod_{m=1}^{N_s} \left(\frac{\rho_m}{M_m} \right)^{a_{m,r}} - k_{b,r} \prod_{m=1}^{N_s} \left(\frac{\rho_m}{M_m} \right)^{b_{m,r}} \right] \end{split}$$

35

Reaction Operator

New Approach: Apply Subcell Resolution (Harten 1989; Shu & Osher 1989) to the solution from the convection operator step before the reaction operator

Identify shock location, e.g. using Harten's indicator for z_j – x-mass fraction of unburned gas:

$$s_{ij}^{x} = minmod(z_{i+1,j} - z_{ij}, z_{ij} - z_{i-1,j})$$

Shock present in the cell Iii if

 $|s_{i,j}^{x}| > |s_{i-1,j}^{x}|$ and $|s_{i,j}^{x}| > |s_{i+1,j}^{x}|$

y-direction, similarly:

$$s_{ij}^{y} = minmod(z_{i,j+1} - z_{ij}, z_{ij} - z_{i,j+1})$$

Apply subcell resolution in the direction for which a shock has been detected.
 If both directions require subcell resolution – choose the largest jump

$$\left| s_{ij}^{x} \right|$$
 or $\left| s_{ij}^{y} \right|$

Reaction Operator (Cont.)

For I_{ij} with shock present, $I_{i-q,j}$ and $I_{i+r,j}$ without shock present:

- Compute ENO interpolation polynomials P_{i-q} and P_{i+r}
- Modify points in the vicinity of the shock (mass fraction z_{jj} , temperature T_{jj} and density ρ_{ij})

$$\begin{vmatrix} \tilde{z}_{ij} \\ \tilde{T}_{ij} \\ \tilde{\rho}_{ij} \end{vmatrix} = \begin{vmatrix} P_{i-q,j}(x_i, z) \\ P_{i-q,j}(x_i, T) \\ P_{i-q,j}(x_i, \rho) \end{vmatrix}, \quad \theta \ge x_i \qquad \begin{vmatrix} \tilde{z}_{ij} \\ \tilde{T}_{ij} \\ \tilde{\rho}_{ij} \end{vmatrix} = \begin{vmatrix} P_{i+r,j}(x_i, z) \\ P_{i+r,j}(x_i, T) \\ P_{i+r,j}(x_i, \rho) \end{vmatrix}, \quad \theta < x_i$$

where Θ is determined by the conservation of energy *E*:

$$\int_{x_{i-1/2}}^{\theta} P_{i-q,j}(x, E) dx + \int_{\theta}^{x_{i+1/2}} P_{i+r,j}(x, E) dx = E_{ij} \Delta x$$

Advance time by modified values for the Reaction operator (use, e.g., explicit Euler)

$$(\rho z)_{ij}^{n+1} = (\rho z)_{ij}^{n} + \Delta t S(\tilde{z}_{ij}, \tilde{T}_{ij}, \tilde{\rho}_{ij})$$

Nonlinear Filter Step $(U_t + F_x(U) = 0)$

 Denote the solution by the base scheme (e.g. 6th order central, 4th order RK)

$$U^* = L^* (U^n)$$

Solution by a nonlinear filter step

$$U_{j}^{n+1} = U_{j}^{*} - \frac{\Delta t}{\Delta x} [H_{j+1/2} - H_{j-1/2}]$$
$$H_{j+1/2} = R_{j+1/2} \overline{H}_{j+1/2}$$

- $\overline{H}_{j+1/2}$ numerical flux, $R_{j+1/2}$ right eigenvector, evaluated at the Roe-type averaged state of U_j^*
- Elements of $\overline{H}_{j+1/2}$:

$$\overline{h}_{j+1/2}^{m} = \frac{\kappa_{j+1/2}^{m}}{2} (s_{j+1/2}^{m}) (\phi_{j+1/2}^{m}) \qquad m = 1 \dots 3 + N_{s} - 1$$

 $\phi_{j+1/2}^{m}$ - Dissipative portion of a shock-capturing scheme $s_{j+1/2}^{m}$ - Wavelet sensor (indicate location where dissipation needed) $\kappa_{j+1/2}^{m}$ - Control the amount of $\phi_{j+1/2}^{m}$

Improved High Order Filter Method

Form of nonlinear filter:

$$\overline{h}_{j+1/2}^{m} = \frac{\kappa_{j+1/2}}{2} (s_{j+1/2}^{m}) (g_{j+1/2}^{m} - b_{j+1/2}^{m})$$
Wavelet sensor
Wavelet sensor
High-order
numerical flux
(e.g. WENO5)
High-order central)

2007 – κ = global constant 2009 – $\kappa_{j+1/2}$ = local, evaluated at each grid point Simple modification of κ (Yee & Sjögreen, 2009) $\kappa = f(M)$.

$$\kappa = f(M) \cdot \kappa_{0}$$

$$f(M) = min \left(\frac{M^{2}}{2} \frac{\sqrt{(4 + (1 - M^{2})^{2})}}{1 + M^{2}}, 1 \right)$$

For other forms of $\kappa_{j+1/2}$, $s_{j+1/2}$ see (Yee & Sjögreen, 2009)

Control the Amount of $\phi_{j+1/2}^{m}$ ($\phi_{j+1/2}^{m}$ - Dissipative portion of a shock-capturing scheme) $\kappa = f(M) \cdot \kappa_{0}$

I. Mach # < 0.4

$$f_{1}(M) = \min \left| \frac{M^{2}}{2} \frac{\sqrt{(4 + (1 - M^{2})^{2})}}{1 + M^{2}}, 1 \right|$$

$$f_{2}(M) = (Q(M, 2) + Q(M, 3))/2$$

$$Q(M, a) = \left| \begin{array}{c} P(M/a) & M < a \\ 1 & M \ge a \end{array} \right|$$

$$P(x) = x^{4}(35 - 84x + 70x^{2} - 20x^{3})$$
II. Mach # > 0.4

- Shock strength indicator (e.g. numerical Schlieren)
- Dominating shock jump variable
- Turbulent fluctuation region
 - Wavelets with high order vanishing moments
 - Wavelet based Coherent Vortex Extraction (CVE), Farge et. al (1999, 2001)

High Order Methods with Subcell Resolution

Wang, Shu, Yee, & Sjögreen, 2012, JCP

 Procedure: splitting equations into convective and reactive operators Using <u>Strang-splitting</u> (Strang, 1968)

$$U_{t} + F(U)_{x} + G(U)_{y} = S(U)$$

$$U_{t} + F(U)_{x} + G(U)_{y} = 0 \qquad \frac{dU}{dt} = S(U)$$
A - Convection operator R - Reaction operator
Numerical solution: $U^{n+1} = A(\frac{\Delta t}{2})R(\Delta t)A(\frac{\Delta t}{2})U^{n}$
or: $U^{n+1} = A(\frac{\Delta t}{2})R(\frac{\Delta t}{N_{r}})...R(\frac{\Delta t}{N_{r}})A(\frac{\Delta t}{2})U^{n}$