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Biological background

Chemotaxis

Directed movement of mobile species towards lower/higher

concentration of chemical substance present in the surrounding
environment

Example: Vasculogenesis

@ a process of de novo formation of
blood vessels

@ chemotactic factor: VEGF-A
released by cells

@ percolative and "Swiss cheese”
transitions depending on the

initial mass Figure: In vitro experiments of
Vasculogenesis (Serini et. al)
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Hyperbolic model of vasculogenesis [Gamba A., Preziosi L. et al.

(2003)]

(pid); + div(pi @ i) = xpV o — apii — VP(p)

{ pr + div(pu) =0
¢1 = DAY + ap — bg

@ p - density of endothelial cells
@ ¢ - concentration of chemical factor VEGF
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Hyperbolic model of vasculogenesis [Gamba A., Preziosi L. et al.
(2003)]

pr + div(pid) =0
(pid); + div(pii ® ) = xpV'é — apii — VP(p)
¢ = DAY + ap — bo

@ p - density of endothelial cells
@ ¢ - concentration of chemical factor VEGF
Forces acting on cells:
@ internal force  F,,; = —VP(p), where P(p) =¢cp?, &> 0,7 > 1
@ body force - chemotaxis  Fopem = xpVe, x >0
@ contact force  Fuis = —apu, o >0
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Hyperbolic model of vasculogenesis [Gamba A., Preziosi L. et al.
(2003)]

pr + div(pu) =0
(pid); + div(pi @ i) = xpV o — apii — VP(p)
¢t = DAY+ ap — bg

@ p - density of endothelial cells
@ ¢ - concentration of chemical factor VEGF

Forces acting on cells:
@ internal force  F,,; = —VP(p), where P(p) =ep?, €>0,7>1
@ body force - chemotaxis  Fepem = xpVep, x >0
@ contact force  Fuis = —apu, a >0

= solutions containing vacuum

Di Russo, C. and Sepe, A. - "Existence and Asymptotic Behavior of Solutions to a Quasilinear
Hyperbolic-Parabolic Model of Vasculogenesis” (2011), preprint.
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Outline

e Analysis of non constant stationary solutions of a quasilinear,
hyperbolic model of chemotaxis
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Hyperbolic model of chemotaxis: stationary solutions

Problem:
We look for non constant stationary solutions of system

pr+ (pu)y =0
(pu)s + (pu® + P(p))x = —apu + Xpx (1)
¢t :D¢m+dp—b¢

defined on a bounded domain Q = [0, L] with homogeneous Neumann
boundary conditions

prloa =0, éilog =0, ulapg =0

and the total mass, conserved in time, given by M = fOL p(x, t)dx.

Motivation: description and study of vascular-like networks observed
in the in vitro experiments with human, endothelial cells [Serini et.al.]
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(pu)x - Oa
(p® +P(p)), = —apu+ xpdx,
—Doye = ap — bo.

oo =0 = pu=0 = P(p).= xpd»
Solutions:

1'/’:%7 ¢:%a u=0



(pu)x - 07
(p® +P(p)), = —apu+ xpdx,
—Doye = ap — bo.

upa=0 = pu=0 = P(p)y = xpPx

Solutions:
1.p= %7 ¢ = %a u=0

2.p=0 or p"Y_l:X(Z—;l)(ﬁ-i-K

—D¢yy = ap—>bo if p>0

®" Doy = bo if p=0



General case: P(p) =cp?, v>1

(p”)x = 0,
(pu? + P(p))x = —apu+ Xppx,
—Doye = ap — bo.

M|8Q =0 = pu=0 = P(p)x = XPPx

Solutions:

1.p=% o¢=9% u=0

_ -1 _ x(v=1)
2.p=0 or p? —XTngrK

—-D = ap—bp if p>0 nys
o = if p=0 S
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General case: P(p) =cp?, v>1

(p”)x = 0,
(pu? + P(p))x = —apu+ Xppx,
—Doye = ap — bo.

u|aQ =0 = pu=0 = P(p)x = XPPx

Solutions:

1.p:%, qu%, u=20 :

2.p=0 or pV_IZX(Zi;])d)—i-K . :

5. “Dow = ap—bo if p>0 ﬂm /\ p, /
Dby = bo if p=0 S L. 17l 1L

Problems in finding an explicit solution I:

- number of bumps p € N is not known a priori

- for p > 1: more unknown constants than available equations
- for v > 2 finding ¢ is not trivial
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Assumption: p = 1, P(p) = ¢p?

Lateral bump
If @ = 5% — % >0andL > % then there exists a unique, positive
solution of the form

_ 26K cos(y/ax) aK

X
ax cos(yax) _ap’ P =o)X

on [0,x], ¢(x)

_ _ 2ebK sinh(v/B(x — L)) B
on [ L], ¢(x)= . tan(~/SL) coh(/BE=L)) p(x) =0
given by the smallest x € ﬁ]g, [ satisfying
\/5 tan(y/ax) = tanh(y/B(x — L)) (2)

- oM
and K equal to K = —Z an(y/ax)— 6%’
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Exact solutions of p and ¢

Lateral bump

_f £o(x)+K x€[0,7]
p(x)_{(z) x € (x,L]




Assumption: p = 1, P(p) = ¢p?

Exact solutions of p and ¢

Lateral bump

_f £o(x) +K x€[0,7]
”(X)—{ 0 ve (%1

o

Exact solution of p and ¢

Centered bump

0 x € [0,X)
p(x) =19 3£o(x) +K x€[x,L—X]
0 x € (L—x,L]

Solution is SYMMETRIC
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Assumption: p = 1, P(p) = ¢p?

Exact solutions of p and ¢

Lateral bump

_f £o(x) +K x€[0,7]
”(X)—{ 0 ve (%1

o

Exact solution of p and ¢

Centered bump

0 x € [0,X%)
p(x) =19 5£o(x) +K xc[x,L—X]
0 x€(L—xL]
Solution is SYMMETRIC o TN S

Problems in finding an explicit solution II: existence of interface
points x; in the case p > 1 is an open problem
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pr+ (pu)y =0
(pu); + (pu* + P(p))x = —aupu+ xpx
¢ = Doyx + ap — be




pr+ (pu)x =0
(pu) + (pu* + P(p))x = —apu + Xpox
@1 = Doy +ap — bo = Standard FDM




Numerical scheme for a 1d quasilinear model of vasculogenesis

pr + (pu)x =0
(pu); + (pu® + P(p))x = —apu + Xpx

Requirements for a numerical scheme:
@ consistency with the original system
preservation of the non negativity of densities and concentrations
preservation of the total mass

good approximation of non constant steady states

°
°
@ treatment of vacuum states
°
@ low numerical viscosity
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Approach I: standard finite difference scheme

U+ F(U)x = S(U),
V= ( ppu >  FO)= ( pu? iMP(P) > » S0 = < —O‘P”ixp(bz >

Standard finite difference scheme on uniform grid with centered
approximation of the source term

n ?—H* 1 n+1 r}+1

0
UMt = Ut + AtH(U™) + At ( )
XPi 2Ax —ap; U

H;(U") - space discretization of the homogeneous part
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Approach I: standard finite difference scheme

U+ F(U)x = S(U),
V= ( ppu > , FlO)= ( pu’ iMP(P) > A= < —O‘P”(‘)Fxp‘z’;l )

Standard finite difference scheme on uniform grid with centered
approximation of the source term

n ?—H* 1 n+1 r}+1

0
UMt = Ut + AtH(U™) + At ( )
XPi 2Ax —ap; U

H;(U") - space discretization of the homogeneous part
Problems at non constant steady states:

@ Mass conservation
@ Approximation of velocity field
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Approach II: Well-balanced, finite volume scheme
General semi-discrete finite volume scheme

d
AXEUi +Fip—Fi1p==Si

where

- U; = (pi(2), pi(t)ui(r)) is a cell-average vector of discrete unknowns
-Fiy1)p = }"(Uijrl/z, UI.L/Z), with F - consistent C' numerical flux function
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Approach II: Well-balanced, finite volume scheme
General semi-discrete finite volume scheme

d
AXEUi +Fip—Fi1p==Si

where
- U; = (pi(1), pi(t)ui(t)) is a cell-average vector of discrete unknowns

-Fiy1)p = }"(Uijrl/z, Ul.il/z), with F - consistent C' numerical flux function

Well-balancing:

@ Si=8,,n T8, =FU,, )~ F(U)+F(U) - FUL, ,)

— ansatz motivated by the balance relation F(U), = S(U)

@ Reconstruction of Uil/z using the equilibrium system
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Approach II: Well-balanced, finite volume scheme

First order Euler forward time discretization

vt =ur + %; (7'— (U;i-l/?UiJ—rs-l/Z) _‘F(Uiil/Z’Uitl/2>>

+ o (F () -7 (0510))

- Fis a C! numerical flux function
- F is an analytical flux
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Approach II: Well-balanced, finite volume scheme

First order Euler forward time discretization

vt =ur + %; (7'— (U;uz?UL/z) _I(U;I/Z’Uitl/2>>

+ o (F () -7 (0510))

- Fis a C! numerical flux function
- F is an analytical flux

Reconstruction of U _ . : Approximate integration of the equilibrium

i+1/2°
system in suitable intervals
(pu* + P(p))x = —vput + Xxpobi [Xit12,%ip1] — U,-J_rH/z

u, =0

under the assumption:
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@ Equilibrium schemes for scalar conservation laws [R.Botchorishvili, B.
Perthame, A.Vasseur ]

@ U.S.I. for Euler equations with high friction [F.Bouchut, H.Ounaissa,
B.Perthame]



Numerical method: well-balanced schemes

@ Equilibrium schemes for scalar conservation laws [R.Botchorishvili, B.
Perthame, A.Vasseur ]

@ U.S.I. for Euler equations with high friction [F.Bouchut, H.Ounaissa,
B.Perthame]

@ Introduction of well-balanced approach and non-conservative products
[J.M.Greenberg, A.Y.Leroux]

@ Well-balanced schemes in the framework of non-conservative products
[L.Gosse]
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Numerical method: well-balanced schemes

Equilibrium schemes for scalar conservation laws [R.Botchorishvili, B.
Perthame, A.Vasseur ]

U.S.1. for Euler equations with high friction [F.Bouchut, H.Ounaissa,
B.Perthame]

Introduction of well-balanced approach and non-conservative products
[J.M.Greenberg, A.Y.Leroux]

Well-balanced schemes in the framework of non-conservative products
[L.Gosse]

Hydrostatic reconstruction [E.Audusse et.al]

Well-balanced scheme for Gamba-Preziosi model of chemotaxis with
linear pressure v = 1 [F.Filbet, C-W.Shu]
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Numerical method: well-balanced schemes

Equilibrium schemes for scalar conservation laws [R.Botchorishvili, B.
Perthame, A.Vasseur ]

U.S.1. for Euler equations with high friction [F.Bouchut, H.Ounaissa,
B.Perthame]

Introduction of well-balanced approach and non-conservative products
[J.M.Greenberg, A.Y.Leroux]

Well-balanced schemes in the framework of non-conservative products
[L.Gosse]

Hydrostatic reconstruction [E.Audusse et.al]

Well-balanced scheme for Gamba-Preziosi model of chemotaxis with
linear pressure v = 1 [F.Filbet, C-W.Shu]

Asymptotically high order scheme (AHO) for Cattaneo model of
chemotaxis (that works only for the semilinear model) [R.Natalini,
M.Ribot]

Well-balanced scheme in the framework of non-conservative products
for Cattaneo model of chemotaxis [L.Gosse]
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Reconstruction of the interface variables UfH P

@ We introduce the internal energy ¢(p) such that

) =" ana wie) = () + 22

is finite for p — 0

and rewrite the equilibrium system in the form

{ uy =0,
(W(p) — x¢), = —ou.
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Reconstruction of the interface variables UfH P

@ We introduce the internal energy ¢(p) such that

) =" ana wie) = () + 22

is finite for p — 0

and rewrite the equilibrium system in the form

{ u, =0,
(W(p) — x¢), = —ou. J

@ Integrating for example in [x,-,xl-+1/2] yields:

Uipyjg = Uiy
Xit1/2
V(pip1/2) = V(o) — a/ udx + x(biy1/2 — i)

= How to assure consistency and non negativity of density?
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Proposition

Let F = (F?, F*)T be the analytical flux of the quasilinear model of
chemotaxis and let F be a consistent, C! numerical flux preserving the non
negativity of p for the homogeneous problem.

The finite volume scheme

d _
DU+ F (U0 Ul ) = F (U s Ui ) = S
with

0 0
Si=Sp+Sti,= ul - u + u u
i+1/2 i—1/2 < FP (pi+1/2) — FrP(p;) ) < FPY(p;) — FP (p;:l/Z) )

and the reconstruction

p,':_]/pu,‘:_[/z = (\U_l[\li(pi) — a(u;)+ Ax + x(min(¢y, ¢ir1) — éi)]+, u )7
Pt n) = (YT W (0i1) + auis) - Bx + x(min(dy, ¢i1) = i) tis1),

i) is consistent away from the vacuum
ii) preserves the non negativity of p;(7)

iii) preserves the non constant steady states.
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Numerical test: approximation of the free boundary

b oo e Srr e N,

Ax =0.1 Ax =0.05 Ax =0.01

Figure: Comparison between different approximations of the source term:

SS (green) - Well-balanced finite volume method

SC (pink) - Finite volume method with centered in space ap-
prox. of the source

RC (blue) - Finite difference method with centered in space ap-

prox. of the source
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Numerical test: approximation of the velocity field

Steady states: standard. explicit scheme with pointwise Steady states: finite volume, well balanced scheme
discr i the source

ation of

6 !
—=—Densit;
—Density —*—Momentum
~—Momentum 4 —

4

2 2

0

-
0 02 0.4 06 08 0 02 0.4 0.6 08 1

Figure: Density and momentum profiles:

Onthe left: - Finite difference method with centered in space ap-
prox. of the source
Ontheright - Well-balanced finite volume method
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Summary

FDM - centered source

FVM - WB source

free boundary

mass
tion

conserva-

non constant s.s.
M>>1

v>35

Monika Twarogowska (INRIA)

high numerical viscosity

Additional conditions

No for velocity field
Ok

Ok

approximate
solvers

Ok

Ok
No

No
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Numerical results: dependence on L and x

H L\x \ 5 \ 50 \ 200 H
. .
1

| | |

7 | | |
|

I A d | | | l " ‘I J\
AN EAY I N AN
@ o= % - 2 <0or(a>0andL < %) — only constant steady states

@ non constant states: enough space + chemotaxis "dominant”
@ condition determining the number of bumps at any domain ???
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Numerical results: dependence on ~ and total mass M
Dependence on the adiabatic exponent ~

coiration protes a1 T=200
i -
f 5

. |
\ 0 |
|

Figure: Profiles of the density (on the left) and the concentration (on the right) at
steady states. Comparison for v = {2,3,4,5}.
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Numerical results: dependence on ~ and total mass M

Dependence on the adiabatic exponent ~

Figure: Profiles of the density (on the left) and the concentration (on the right) at

steady states. Comparison for v = {2,3,4,5}.
Dependence on the total mass M = fOL p(x,t)dx fory=2and v =3

Figure: Density profiles for v = 2 (on the left) and for v = 3 (on the right).
Padova, 26/06/2012

Comparison for M = {0.201,2.01, 10.05,20.1}
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Relation between numerical results and experimental observations

Experiment

Numerical results

formation of vascular network

characteristic length of chords

communication between cells via
VEGF-A

incompressibility of cells

percolative and “swiss cheese’

transitions

Monika Twarogowska (INRIA)

non - constant steady states con-
taining regions where p > 0 and
where p =0

minimal size of the domain to form
non constant steady states

chemotaxis "dominant” to form non
constant equilibria

estimates of the adiabatic coeffi-
cient v

~ = 2 doesn’t reproduce the influ-
ence of the initial mass, while v =3
does

Padova, 26/06/2012
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Thank you for your attention.

Monika Twarogowska (INRIA) Padova, 26/06/2012 22/22



	Chemotaxis: vasculogenesis process
	Analysis of non constant stationary solutions of a quasilinear, hyperbolic model of chemotaxis
	Numerical approximation
	Numerical tests

