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Biological background

Chemotaxis
Directed movement of mobile species towards lower/higher
concentration of chemical substance present in the surrounding
environment

Example: Vasculogenesis
a process of de novo formation of
blood vessels

chemotactic factor: VEGF-A
released by cells

percolative and ”Swiss cheese”
transitions depending on the
initial mass Figure: In vitro experiments of

Vasculogenesis (Serini et. al)
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Hyperbolic model of vasculogenesis [Gamba A., Preziosi L. et al.
(2003)]


ρt + div(ρ~u) = 0
(ρ~u)t + div(ρ~u⊗~u) = χρ∇φ− αρ~u−∇P(ρ)
φt = D∆φ+ aρ− bφ

ρ - density of endothelial cells
φ - concentration of chemical factor VEGF

Forces acting on cells:
internal force Fvol = −∇P(ρ), where P(ρ) = εργ , ε > 0, γ > 1
body force - chemotaxis Fchem = χρ∇φ, χ > 0
contact force Fdiss = −αρu, α > 0

⇒ solutions containing vacuum

Di Russo, C. and Sepe, A. - ”Existence and Asymptotic Behavior of Solutions to a Quasilinear

Hyperbolic-Parabolic Model of Vasculogenesis” (2011), preprint.
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Hyperbolic model of chemotaxis: stationary solutions

Problem:
We look for non constant stationary solutions of system

ρt + (ρu)x = 0
(ρu)t + (ρu2 + P(ρ))x = −αρu + χρφx

φt = Dφxx + aρ− bφ
(1)

defined on a bounded domain Ω = [0,L] with homogeneous Neumann
boundary conditions

ρx|∂Ω = 0, φx|∂Ω = 0, u|∂Ω = 0

and the total mass, conserved in time, given by M =
∫ L

0 ρ(x, t)dx.

Motivation: description and study of vascular-like networks observed
in the in vitro experiments with human, endothelial cells [Serini et.al.]
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General case: P(ρ) = εργ , γ > 1

(ρu)x = 0,(
ρu2 + P(ρ)

)
x = −αρu + χρφx,

−Dφxx = aρ− bφ.

u|∂Ω = 0 ⇒ ρu = 0 ⇒ P(ρ)x = χρφx

Solutions:
1. ρ = M

L , φ = aM
bL , u = 0

2. ρ = 0 or ργ−1 = χ(γ−1)
εγ φ+ K

φ :
−Dφxx = aρ− bφ if ρ > 0

Dφxx = bφ if ρ = 0
Problems in finding an explicit solution I:
- number of bumps p ∈ N is not known a priori
- for p > 1: more unknown constants than available equations
- for γ > 2 finding φk is not trivial
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Assumption: p = 1, P(ρ) = ερ2

Lateral bump

If α = aχ
2εD −

b
D > 0 and L > π√

α
then there exists a unique, positive

solution of the form

on [0, x̄], φ(x) =
2εβK
αχ

cos(
√
αx)

cos(
√
αx̄)
− aK
αD

, ρ(x) =
χ

2ε
φ(x) + K

on [x̄,L], φ(x) =
2εbK
χ

tan(
√
βL)

sinh(
√
β(x− L))

cosh(
√
β(x̄− L))

, ρ(x) = 0

given by the smallest x̄ ∈ 1√
α

]π2 , π[ satisfying√
β

α
tan(
√
αx̄) = tanh(

√
β(x̄− L)) (2)

and K equal to K = αM
β√
α

tan(
√
αx̄)−βx̄

.
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Assumption: p = 1, P(ρ) = ερ2

Lateral bump

ρ(x) =

{ χ
2εφ(x) + K x ∈ [0, x̄]
0 x ∈ (x̄,L]

Centered bump

ρ(x) =


0 x ∈ [0, x̄)
χ
2εφ(x) + K x ∈ [x̄,L− x̄]
0 x ∈ (L− x̄,L]

Solution is SYMMETRIC

Problems in finding an explicit solution II: existence of interface
points x̄k in the case p > 1 is an open problem
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Numerical scheme for a 1d quasilinear model of vasculogenesis


ρt + (ρu)x = 0
(ρu)t + (ρu2 + P(ρ))x = −αρu + χρφx

φt = Dφxx + aρ− bφ

⇒ Standard FDM

Requirements for a numerical scheme:
consistency with the original system
preservation of the non negativity of densities and concentrations
preservation of the total mass
treatment of vacuum states
good approximation of non constant steady states
low numerical viscosity
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Approach I: standard finite difference scheme

Ut + F(U)x = S(U),

U =

(
ρ
ρu

)
, F(U) =

(
ρu

ρu2 + P(ρ)

)
, S(U) =

(
0

−αρu + χρφn
x

)
.

Standard finite difference scheme on uniform grid with centered
approximation of the source term

Un+1
i = Un

i + ∆tHi(Un) + ∆t

(
0

χρn
i
φn

i+1−φ
n
i−1

2∆x − αρn+1
i un+1

i

)

Hi(Un) - space discretization of the homogeneous part

Problems at non constant steady states:
Mass conservation
Approximation of velocity field
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Approach II: Well-balanced, finite volume scheme

General semi-discrete finite volume scheme

∆x
d
dt

Ui + Fi+1/2 − Fi−1/2 = Si

where
- Ui = (ρi(t), ρi(t)ui(t)) is a cell-average vector of discrete unknowns
- Fi+1/2 = F(U−i+1/2,U

+
i+1/2), with F - consistent C1 numerical flux function

Well-balancing:
Si = S−i+1/2 + S+

i−1/2 = F(U−i+1/2)− F(Ui) + F(Ui)− F(U+
i−1/2)

=⇒ ansatz motivated by the balance relation F(U)x = S(U)

Reconstruction of U±i+1/2 using the equilibrium system
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Approach II: Well-balanced, finite volume scheme

First order Euler forward time discretization

Un+1
i = Un

i +
∆t
∆x

(
F
(

U−i+1/2,U
+
i+1/2

)
−F

(
U−i−1/2,U

+
i−1/2

))
+

∆t
∆x

(
F
(

U−i+1/2

)
− F

(
U+

i−1/2

))
- F is a C1 numerical flux function
- F is an analytical flux

Reconstruction of U±i+1/2: Approximate integration of the equilibrium
system in suitable intervals{

(ρu)x = 0
(ρu2 + P(ρ))x = −αρu + χρφx

in

[
xi, xi+1/2

]
→ U−i+1/2[

xi+1/2, xi+1
]
→ U+

i+1/2

under the assumption:
ux = 0

.
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Numerical method: well-balanced schemes

Equilibrium schemes for scalar conservation laws [R.Botchorishvili, B.
Perthame, A.Vasseur ]

U.S.I. for Euler equations with high friction [F.Bouchut, H.Ounaissa,
B.Perthame]

Introduction of well-balanced approach and non-conservative products
[J.M.Greenberg, A.Y.Leroux]

Well-balanced schemes in the framework of non-conservative products
[L.Gosse]

Hydrostatic reconstruction [E.Audusse et.al]

Well-balanced scheme for Gamba-Preziosi model of chemotaxis with
linear pressure γ = 1 [F.Filbet, C-W.Shu]

Asymptotically high order scheme (AHO) for Cattaneo model of
chemotaxis (that works only for the semilinear model) [R.Natalini,
M.Ribot]

Well-balanced scheme in the framework of non-conservative products
for Cattaneo model of chemotaxis [L.Gosse]
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Reconstruction of the interface variables U±i+1/2

We introduce the internal energy e(ρ) such that

e′(ρ) =
P(ρ)

ρ2 and Ψ(ρ) = e(ρ) +
P(ρ)

ρ
is finite for ρ→ 0

and rewrite the equilibrium system in the form{
ux = 0,
(Ψ(ρ)− χφ)x = −αu.

Integrating for example in
[
xi, xi+1/2

]
yields:

u−i+1/2 = ui,

Ψ(ρ−i+1/2) = Ψ(ρi)− α
∫ xi+1/2

xi

udx + χ(φi+1/2 − φi)

⇒ How to assure consistency and non negativity of density?
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Proposition

Let F = (Fρ,Fρu)T be the analytical flux of the quasilinear model of
chemotaxis and let F be a consistent, C1 numerical flux preserving the non
negativity of ρ for the homogeneous problem.
The finite volume scheme

∆x
d
dt

Ui + F
(

U−i+1/2,U
+
i+1/2

)
−F

(
U−i−1/2,U

+
i−1/2

)
= Si

with

Si = S−i+1/2 + S+
i−1/2 =

(
0

Fρu
(
ρ−i+1/2

)
− Fρu(ρi)

)
+

(
0

Fρu(ρi)− Fρu
(
ρ+

i+1/2

) )
and the reconstruction(
ρ−i+1/2, u

−
i+1/2

)
=
(
Ψ−1[Ψ(ρi)− α(ui)+∆x + χ(min(φi, φi+1)− φi)]+, ui

)
,(

ρ+
i+1/2, u

+
i+1/2

)
=
(
Ψ−1[Ψ(ρi+1) + α(ui+1)−∆x + χ(min(φi, φi+1)− φi+1)]+, ui+1

)
,

i) is consistent away from the vacuum
ii) preserves the non negativity of ρi(t)
iii) preserves the non constant steady states.
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Numerical test: approximation of the free boundary

∆x = 0.1 ∆x = 0.05 ∆x = 0.01

Figure: Comparison between different approximations of the source term:

SS (green) - Well-balanced finite volume method
SC (pink) - Finite volume method with centered in space ap-

prox. of the source
RC (blue) - Finite difference method with centered in space ap-

prox. of the source
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Numerical test: approximation of the velocity field

Figure: Density and momentum profiles:

On the left: - Finite difference method with centered in space ap-
prox. of the source

On the right - Well-balanced finite volume method
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Summary

FDM - centered source FVM - WB source

free boundary high numerical viscosity approximate Riemann
solvers

mass conserva-
tion

Additional conditions Ok

non constant s.s. No for velocity field Ok

M >> 1 Ok No

γ > 5 Ok No
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Numerical results: dependence on L and χ

L\χ 5 50 200

1

7

30

α = aχ
2εD −

b
D < 0 or (α > 0 and L < π√

α
)→ only constant steady states

non constant states: enough space + chemotaxis ”dominant”
condition determining the number of bumps at any domain ???
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Numerical results: dependence on γ and total mass M

Dependence on the adiabatic exponent γ

Figure: Profiles of the density (on the left) and the concentration (on the right) at
steady states. Comparison for γ = {2, 3, 4, 5}.

Dependence on the total mass M =
∫ L

0 ρ(x, t)dx for γ = 2 and γ = 3

Figure: Density profiles for γ = 2 (on the left) and for γ = 3 (on the right).
Comparison for M = {0.201, 2.01, 10.05, 20.1}
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Relation between numerical results and experimental observations

Experiment Numerical results

formation of vascular network non - constant steady states con-
taining regions where ρ > 0 and
where ρ = 0

characteristic length of chords minimal size of the domain to form
non constant steady states

communication between cells via
VEGF-A

chemotaxis ”dominant” to form non
constant equilibria

incompressibility of cells estimates of the adiabatic coeffi-
cient γ

percolative and ”swiss cheese”
transitions

γ = 2 doesn’t reproduce the influ-
ence of the initial mass, while γ = 3
does
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Thank you for your attention.
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