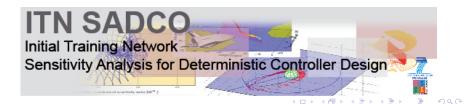
SBV regularity results for Hamilton-Jacobi equations

Daniela Tonon Joint work with Stefano Bianchini

ITN Marie Curie Network SADCO, Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Paris 6

June 28, 2012 HYP2012 PADOVA



(1)

Hamilton-Jacobi equations

$$\partial_t u + H(t, x, D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- $H: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$ is called Hamiltonian
- Ω is an open domain in \mathbb{R}^{n+1}

Definition (Crandall, Evans and Lions \sim 1980)

A locally Lipschitz continuous function $u : \Omega \to \mathbb{R}$ is called a *viscosity solution* of (1) provided that

i) *u* is a viscosity subsolution of (1): for each $v \in C^{\infty}(\Omega)$ such that u - v has a maximum at $(t_0, x_0) \in \Omega$,

$$\partial_t v(t_0, x_0) + H(t_0, x_0, D_x v(t_0, x_0)) \leq 0;$$

ii) *u* is a viscosity supersolution of (1): for each $v \in C^{\infty}(\Omega)$ such that u - v has a minimum at $(t_0, x_0) \in \Omega$,

 $\partial_t v(t_0, x_0) + H(t_0, x_0, D_x v(t_0, x_0)) \ge 0.$

(1)

Hamilton-Jacobi equations

$$\partial_t u + H(t, x, D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- $H: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$ is called Hamiltonian
- Ω is an open domain in \mathbb{R}^{n+1}

Definition (Crandall, Evans and Lions \sim 1980)

A locally Lipschitz continuous function $u: \Omega \to \mathbb{R}$ is called a *viscosity* solution of (1) provided that

i) *u* is a viscosity subsolution of (1): for each $v \in C^{\infty}(\Omega)$ such that u - v has a maximum at $(t_0, x_0) \in \Omega$,

$$\partial_t v(t_0, x_0) + H(t_0, x_0, D_x v(t_0, x_0)) \leq 0;$$

ii) *u* is a viscosity supersolution of (1): for each $v \in C^{\infty}(\Omega)$ such that u - v has a minimum at $(t_0, x_0) \in \Omega$,

 $\partial_t v(t_0, x_0) + H(t_0, x_0, D_x v(t_0, x_0)) \ge 0.$

(1)

Hamilton-Jacobi equations

$$\partial_t u + H(t, x, D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- $H: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$ is called Hamiltonian
- Ω is an open domain in \mathbb{R}^{n+1}

Definition (Crandall, Evans and Lions \sim 1980)

A locally Lipschitz continuous function $u: \Omega \to \mathbb{R}$ is called a *viscosity* solution of (1) provided that

i) *u* is a viscosity subsolution of (1): for each $v \in C^{\infty}(\Omega)$ such that u - v has a maximum at $(t_0, x_0) \in \Omega$,

$$\partial_t v(t_0, x_0) + H(t_0, x_0, D_x v(t_0, x_0)) \leq 0;$$

ii) *u* is a viscosity supersolution of (1): for each $v \in C^{\infty}(\Omega)$ such that u - v has a minimum at $(t_0, x_0) \in \Omega$,

$$\partial_t v(t_0, x_0) + H(t_0, x_0, D_x v(t_0, x_0)) \geq 0.$$

When H(t, x, p) is smooth in all variables and convex with respect to p

 \Rightarrow the viscosity solution of

 $\partial_t u + H(t, x, D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$

is the value function

$$u(t,x) := \min\left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s))ds \, \middle| \, \xi(t) = x, \, \xi \in [C^2([0,t])]^n \right\}$$

• *L*, the Lagrangian, is the Legendre transform

$$L(t, x, v) = \sup_{v} \left\{ \langle v, p \rangle - H(t, x, p) \right\}$$

• u_0 is the initial datum at time t = 0, u_0 bounded Lipschitz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

When H(t, x, p) is smooth in all variables and convex with respect to p

 \Rightarrow the viscosity solution of

 $\partial_t u + H(t, x, D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$

is the value function

$$u(t,x) := \min \left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s)) ds \, \middle| \, \xi(t) = x, \, \xi \in [C^2([0,t])]^n \right\}$$

• L, the Lagrangian, is the Legendre transform

$$L(t, x, v) = \sup_{v} \left\{ \langle v, p \rangle - H(t, x, p) \right\}$$

• u_0 is the initial datum at time t = 0, u_0 bounded Lipschitz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

When H(t, x, p) is smooth in all variables and convex with respect to p

 \Rightarrow the viscosity solution of

 $\partial_t u + H(t, x, D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$

is the value function

$$u(t,x) := \min \left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s)) ds \, \middle| \, \xi(t) = x, \, \xi \in [C^2([0,t])]^n \right\}$$

• L, the Lagrangian, is the Legendre transform

$$L(t, x, v) = \sup_{v} \{ \langle v, p \rangle - H(t, x, p) \}$$

• u_0 is the initial datum at time t = 0, u_0 bounded Lipschitz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Convex case

- 日本 - 4 日本 - 4 日本 - 日本

References

Previous Results

The structure of the non differentiability set of viscosity solutions has been studied by Fleming (1969), Cannarsa and Soner (1987), and others.

When the Hamiltonian is strictly convex

 $H_{pp}(t, x, p)$ is positive definite

 \Rightarrow *u* is locally *semiconcave* in both variables:

 $orall K\subset \subset \Omega, \ \exists C>0 \ ext{s.t.} \ (t,x)\mapsto u(t,x)-C(t^2+|x|^2) \ ext{is concave on } K$

 $\Rightarrow Du = (\partial_t u, D_x u)$ is BV_{loc} , that is $D^2 u$ is a matrix of measures with locally bounded variation

Convex case

References

Previous Results

The structure of the non differentiability set of viscosity solutions has been studied by Fleming (1969), Cannarsa and Soner (1987), and others.

When the Hamiltonian is strictly convex

 $H_{pp}(t, x, p)$ is positive definite

 \Rightarrow *u* is locally *semiconcave* in both variables:

 $\forall K \subset \subset \Omega, \ \exists C > 0 \text{ s.t. } (t, x) \mapsto u(t, x) - C(t^2 + |x|^2) \text{ is concave on } K$

 $\Rightarrow Du = (\partial_t u, D_x u)$ is BV_{loc} , that is $D^2 u$ is a matrix of measures with locally bounded variation

Convex case

References

ション ふゆ アメリア メリア しょうくしゃ

Previous Results

The structure of the non differentiability set of viscosity solutions has been studied by Fleming (1969), Cannarsa and Soner (1987), and others.

When the Hamiltonian is strictly convex

 $H_{pp}(t, x, p)$ is positive definite

 \Rightarrow *u* is locally *semiconcave* in both variables:

 $\forall K \subset \subset \Omega, \ \exists C > 0 \text{ s.t. } (t, x) \mapsto u(t, x) - C(t^2 + |x|^2) \text{ is concave on } K$

 \Rightarrow $Du = (\partial_t u, D_x u)$ is BV_{loc} , that is $D^2 u$ is a matrix of measures with locally bounded variation

Given $f \in BV(\mathbb{R}^n)$, it is possible to decompose the distributional derivative of f into three mutually singular measures:

 $Df = D_a f + D_c f + D_j f.$

- $D_a f$ is the absolutely continuous part with respect to \mathcal{H}^n
- $D_j f$ is the part of the measure which is concentrated on the rectifiable (n-1)-dimensional set J, where the function f has "jump" discontinuities
- D_cf is the singular part which satisfies D_cf(E) = 0 for every Borel set E with Hⁿ⁻¹(E) < ∞.

If $D_c f = 0$, we say that $f \in SBV(\mathbb{R}^n)$

When $f \in [BV(\mathbb{R}^n)]^k$ Df is a matrix of Radon measures and the decomposition can be applied to every component of the matrix.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Given $f \in BV(\mathbb{R}^n)$, it is possible to decompose the distributional derivative of f into three mutually singular measures:

 $Df = D_a f + D_c f + D_i f.$

- $D_a f$ is the absolutely continuous part with respect to \mathcal{H}^n
- $D_j f$ is the part of the measure which is concentrated on the rectifiable (n-1)-dimensional set J, where the function f has "jump" discontinuities
- D_cf is the singular part which satisfies D_cf(E) = 0 for every Borel set E with Hⁿ⁻¹(E) < ∞.

If $D_c f = 0$, we say that $f \in SBV(\mathbb{R}^n)$

When $f \in [BV(\mathbb{R}^n)]^k$ Df is a matrix of Radon measures and the decomposition can be applied to every component of the matrix.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Given $f \in BV(\mathbb{R}^n)$, it is possible to decompose the distributional derivative of f into three mutually singular measures:

$$Df = D_a f + D_c f + D_i f.$$

- $D_a f$ is the absolutely continuous part with respect to \mathcal{H}^n
- $D_j f$ is the part of the measure which is concentrated on the rectifiable (n-1)-dimensional set J, where the function f has "jump" discontinuities
- D_cf is the singular part which satisfies D_cf(E) = 0 for every Borel set E with Hⁿ⁻¹(E) < ∞.

If $D_c f = 0$, we say that $f \in SBV(\mathbb{R}^n)$

When $f \in [BV(\mathbb{R}^n)]^k$ Df is a matrix of Radon measures and the decomposition can be applied to every component of the matrix.

・ロト (四) (目) (日) (日) (日)

Given $f \in BV(\mathbb{R}^n)$, it is possible to decompose the distributional derivative of f into three mutually singular measures:

$$Df = D_a f + D_c f + D_j f.$$

- $D_a f$ is the absolutely continuous part with respect to \mathcal{H}^n
- $D_j f$ is the part of the measure which is concentrated on the rectifiable (n-1)-dimensional set J, where the function f has "jump" discontinuities
- $D_c f$ is the singular part which satisfies $D_c f(E) = 0$ for every Borel set E with $\mathcal{H}^{n-1}(E) < \infty$.

If $D_c f = 0$, we say that $f \in SBV(\mathbb{R}^n)$

When $f \in [BV(\mathbb{R}^n)]^k$ Df is a matrix of Radon measures and the decomposition can be applied to every component of the matrix.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Given $f \in BV(\mathbb{R}^n)$, it is possible to decompose the distributional derivative of f into three mutually singular measures:

$$Df = D_a f + D_c f + D_i f.$$

- $D_a f$ is the absolutely continuous part with respect to \mathcal{H}^n
- $D_j f$ is the part of the measure which is concentrated on the rectifiable (n-1)-dimensional set J, where the function f has "jump" discontinuities
- $D_c f$ is the singular part which satisfies $D_c f(E) = 0$ for every Borel set E with $\mathcal{H}^{n-1}(E) < \infty$.

If $D_c f = 0$, we say that $f \in SBV(\mathbb{R}^n)$

When $f \in [BV(\mathbb{R}^n)]^k$ Df is a matrix of Radon measures and the decomposition can be applied to every component of the matrix.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Given $f \in BV(\mathbb{R}^n)$, it is possible to decompose the distributional derivative of f into three mutually singular measures:

$$Df = D_a f + D_c f + D_i f.$$

- $D_a f$ is the absolutely continuous part with respect to \mathcal{H}^n
- $D_j f$ is the part of the measure which is concentrated on the rectifiable (n-1)-dimensional set J, where the function f has "jump" discontinuities
- $D_c f$ is the singular part which satisfies $D_c f(E) = 0$ for every Borel set E with $\mathcal{H}^{n-1}(E) < \infty$.

If $D_c f = 0$, we say that $f \in SBV(\mathbb{R}^n)$

When $f \in [BV(\mathbb{R}^n)]^k$ Df is a matrix of Radon measures and the decomposition can be applied to every component of the matrix.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - めん⊙

Previous Results

• Cannarsa, Mennucci and Sinestrari in ARMA 1997

 $\partial_t u + H(t, x, D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$,

H strictly convex in the last variable, $u(0, \cdot) = u_0(\cdot) \in W^{1,\infty}(\mathbb{R}^n) \cap C^{R+1}(\mathbb{R}^n)$, with $R \ge 1$, then Du is locally SBV

• (n=1)Ambrosio and De Lellis in J. Hyperbolic Differ. Equ. 2004, Bianchini, De Lellis and Robyr in ARMA 2011

$$\partial_t u + H(D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$,

H belongs to $C^2(\mathbb{R}^n)$ and

$$c_H^{-1} Id_n(p) \leq H_{pp}(p) \leq c_H Id_n(p)$$

for some $c_H > 0$. Then the set of times

$$S := \{t \mid D_{x}u(t, \cdot) \notin SBV_{loc}(\Omega_{t})\}$$

is at most countable.

Previous Results

• Cannarsa, Mennucci and Sinestrari in ARMA 1997

$$\partial_t u + H(t, x, D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$,

H strictly convex in the last variable, $u(0, \cdot) = u_0(\cdot) \in W^{1,\infty}(\mathbb{R}^n) \cap C^{R+1}(\mathbb{R}^n)$, with $R \ge 1$, then Du is locally SBV

• (n=1)Ambrosio and De Lellis in J. Hyperbolic Differ. Equ. 2004, Bianchini, De Lellis and Robyr in ARMA 2011

$$\partial_t u + H(D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$,

H belongs to $C^2(\mathbb{R}^n)$ and

$$c_H^{-1} Id_n(p) \leq H_{pp}(p) \leq c_H Id_n(p)$$

for some $c_H > 0$. Then the set of times

$$S := \{t \mid D_x u(t, \cdot) \notin SBV_{loc}(\Omega_t)\}$$

is at most countable.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Ideas and general strategy

Idea (Bressan)

If $D_x u(\bar{t}, \cdot)$ is not SBV for a certain time \bar{t} , then at future times $\bar{t} + \delta$ the Cantor part of $D_x^2 u(\bar{t}, \cdot)$ gets transformed into jump singularities

Strategy

Construct a bounded monotone functional F(t), whose jumps are related to the presence of a Cantor part in $|D_x^2 u(t, \cdot)|$

F can have only a countable number of jumps $\Rightarrow |D_x^2 u(t, \cdot)|$ can have positive Cantor part for a countable number of *t*'s only

ション ふゆ く 山 マ チャット しょうくしゃ

Ideas and general strategy

Idea (Bressan)

If $D_x u(\bar{t}, \cdot)$ is not SBV for a certain time \bar{t} , then at future times $\bar{t} + \delta$ the Cantor part of $D_x^2 u(\bar{t}, \cdot)$ gets transformed into jump singularities

Strategy

Construct a bounded monotone functional F(t), whose jumps are related to the presence of a Cantor part in $|D_x^2 u(t, \cdot)|$

F can have only a countable number of jumps $\Rightarrow |D_x^2 u(t, \cdot)|$ can have positive Cantor part for a countable number of *t*'s only

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Ideas and general strategy

Idea (Bressan)

If $D_x u(\bar{t}, \cdot)$ is not SBV for a certain time \bar{t} , then at future times $\bar{t} + \delta$ the Cantor part of $D_x^2 u(\bar{t}, \cdot)$ gets transformed into jump singularities

Strategy

Construct a bounded monotone functional F(t), whose jumps are related to the presence of a Cantor part in $|D_x^2 u(t, \cdot)|$

F can have only a countable number of jumps $\Rightarrow |D_x^2 u(t, \cdot)|$ can have positive Cantor part for a countable number of *t*'s only

In the case H = H(p), the viscosity solution is

$$u(t,x) = \min_{y \in \Omega_0} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}$$

 $u(t, \cdot)$ is differentiable iff $y := x - tH_p(D_x u(t, x))$ is the only minimizer

y is the only minimizer for $u(s, x - sH_p(D_xu(t, x))) \ 0 \le s \le t$

- Characteristics are straight lines
- Characteristics do not cross (No-crossing property)

In the case H = H(p), the viscosity solution is

$$u(t,x) = \min_{y \in \Omega_0} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}$$

$u(t, \cdot)$ is differentiable iff $y := x - tH_p(D_x u(t, x))$ is the only minimizer

y is the only minimizer for $u(s, x - sH_p(D_xu(t, x))) \ 0 \le s \le t$

- Characteristics are straight lines
- Characteristics do not cross (No-crossing property)

In the case H = H(p), the viscosity solution is

$$u(t,x) = \min_{y \in \Omega_0} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}$$

 $u(t, \cdot)$ is differentiable iff $y := x - tH_p(D_x u(t, x))$ is the only minimizer

y is the only minimizer for $u(s, x - sH_p(D_xu(t, x))) \ 0 \le s \le t$

- Characteristics are straight lines
- Characteristics do not cross (No-crossing property)

In the case H = H(p), the viscosity solution is

$$u(t,x) = \min_{y \in \Omega_0} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}$$

 $u(t, \cdot)$ is differentiable iff $y := x - tH_p(D_x u(t, x))$ is the only minimizer

y is the only minimizer for $u(s, x - sH_{\rho}(D_{x}u(t, x))) \ 0 \le s \le t$

- Characteristics are straight lines
- Characteristics do not cross (No-crossing property)

In the case H = H(p), the viscosity solution is

$$u(t,x) = \min_{y \in \Omega_0} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}$$

 $u(t, \cdot)$ is differentiable iff $y := x - tH_p(D_x u(t, x))$ is the only minimizer

y is the only minimizer for $u(s, x - sH_{\rho}(D_{x}u(t, x))) \ 0 \le s \le t$

- Characteristics are straight lines
- Characteristics do not cross (No-crossing property)

In the case H = H(p), the viscosity solution is

$$u(t,x) = \min_{y \in \Omega_0} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}$$

 $u(t, \cdot)$ is differentiable iff $y := x - tH_p(D_x u(t, x))$ is the only minimizer

y is the only minimizer for $u(s, x - sH_p(D_xu(t, x))) \ 0 \le s \le t$

- Characteristics are straight lines
- Characteristics do not cross (No-crossing property)

What about points where u(t, x) is not differentiable in x?

Definition

Let $u: \Omega \to \mathbb{R}$, for any $(t, x) \in \Omega$ the set

$$D_x^+ u(t, x) = \left\{ p \in \mathbb{R}^n | \limsup_{y \to x} \frac{u(t, y) - u(t, x) - \langle p, y - x \rangle}{|y - x|} \le 0 \right\},$$

is called the *spatial superdifferential* of u at (t, x).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What about points where u(t, x) is not differentiable in x?

Definition

Let $u:\Omega \to \mathbb{R}$, for any $(t,x)\in \Omega$ the set

$$D_x^+ u(t,x) = \left\{ p \in \mathbb{R}^n | \limsup_{y \to x} \frac{u(t,y) - u(t,x) - \langle p, y - x \rangle}{|y - x|} \leq 0 \right\},$$

is called the *spatial superdifferential* of u at (t, x).

The curve $\xi(s) := x - sH_p(p)$ for $p \in D_x^+u(t, x)$ is called *generalized* characteristic

• Generalized characteristics are straight lines

• If we reduce to a sufficiently small time interval generalized characteristics do not cross (No-crossing property)

$$X_{t,0}(x) := x - tH_p(D_x^+ u(t,x)) \quad \forall x \in \Omega_t$$

 $\chi_{t,0}(x) := x - tH_{\rho}(D_x u(t, x)) \quad \forall x \in U_t := \{x \mid D_x^+ u(t, x) \text{ is single-valued} \}$

The curve $\xi(s) := x - sH_p(p)$ for $p \in D_x^+ u(t, x)$ is called *generalized characteristic*

- Generalized characteristics are straight lines
- If we reduce to a sufficiently small time interval generalized characteristics do not cross (No-crossing property)

$$X_{t,0}(x) := x - tH_p(D_x^+ u(t, x)) \quad \forall x \in \Omega_t$$

 $\chi_{t,0}(x) := x - tH_{\rho}(D_x u(t,x)) \quad \forall x \in U_t := \{x \mid D_x^+ u(t,x) \text{ is single-valued} \}$

The curve $\xi(s) := x - sH_p(p)$ for $p \in D_x^+ u(t, x)$ is called *generalized characteristic*

- Generalized characteristics are straight lines
- If we reduce to a sufficiently small time interval generalized characteristics do not cross (No-crossing property)

$$X_{t,0}(x) := x - tH_p(D_x^+u(t,x)) \quad \forall x \in \Omega_t$$

 $\chi_{t,0}(x) := x - tH_p(D_x u(t, x)) \quad \forall x \in U_t := \{x \mid D_x^+ u(t, x) \text{ is single-valued} \}$

The curve $\xi(s) := x - sH_p(p)$ for $p \in D_x^+ u(t, x)$ is called *generalized* characteristic

- Generalized characteristics are straight lines
- If we reduce to a sufficiently small time interval generalized characteristics do not cross (No-crossing property)

$$X_{t,0}(x) := x - tH_p(D_x^+u(t,x)) \quad \forall x \in \Omega_t$$

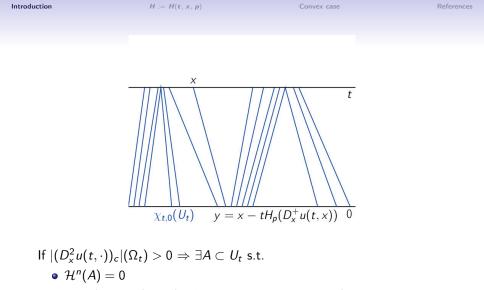
 $\chi_{t,0}(x) := x - tH_p(D_x u(t, x)) \quad \forall x \in U_t := \{x \mid D_x^+ u(t, x) \text{ is single-valued} \}$

The curve $\xi(s) := x - sH_p(p)$ for $p \in D_x^+ u(t, x)$ is called *generalized* characteristic

- Generalized characteristics are straight lines
- If we reduce to a sufficiently small time interval generalized characteristics do not cross (No-crossing property)

$$X_{t,0}(x) := x - tH_p(D_x^+u(t,x)) \quad \forall x \in \Omega_t$$

 $\chi_{t,0}(x) := x - tH_p(D_x u(t, x)) \quad \forall x \in U_t := \{x \mid D_x^+ u(t, x) \text{ is single-valued} \}$



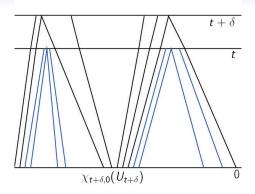
• A is the set where the Cantor part is concentrated

۲

$$\chi_{t,0}(A) \cap \chi_{t+\delta,0}(U_{t+\delta}) = \emptyset \quad \forall \delta > 0.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?



- If $|(D_x^2 u(t, \cdot))_c|(\Omega_t) > 0 \Rightarrow \exists A \subset U_t \text{ s.t.}$
 - $\mathcal{H}^n(A) = 0$
 - A is the set where the Cantor part is concentrated
 - ۲

$$\chi_{t,0}(A) \cap \chi_{t+\delta,0}(U_{t+\delta}) = \emptyset \quad \forall \delta > 0.$$

SBV Regularity when H := H(t, x, p)

(H1) $H \in C^{3}([0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n})$ with bounded second derivatives $\exists a, b, c > 0 \text{ s.t.}$ i) $H(t, x, p) \ge -c$ ii) $H(t, x, 0) \le c$ iii) $|H_{px}(t, x, p)| \le a + b|p|$ (H2) $\exists c_{H} > 0 \text{ s.t.}$ for any $t \in \mathbb{R}, x \in \mathbb{R}^{n}$ $c_{H}^{-1} ld_{n}(p) \le H_{pp}(t, x, p) \le c_{H} ld_{n}(p)$

Theorem (Bianchini and T. [2]) Let u be a viscosity solution of

 $\partial_t u + H(t, x, D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$,

assume (H1), (H2). Then the set of times

 $S := \{t \mid D_{\mathsf{x}}u(t, \cdot) \notin [SBV_{loc}(\Omega_t)]^n\}$

is at most countable. In particular $D_x u \in [SBV_{loc}(\Omega)]^n$, $\partial_t u \in SBV_{loc}(\Omega)$.

SBV Regularity when H := H(t, x, p)

(H1) $H \in C^{3}([0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n})$ with bounded second derivatives $\exists a, b, c > 0 \text{ s.t.}$ i) $H(t, x, p) \ge -c$ ii) $H(t, x, 0) \le c$ iii) $|H_{px}(t, x, p)| \le a + b|p|$ (H2) $\exists c_{H} > 0 \text{ s.t. for any } t \in \mathbb{R}, x \in \mathbb{R}^{n}$ $c_{H}^{-1} ld_{n}(p) \le H_{pp}(t, x, p) \le c_{H} ld_{n}(p)$

Theorem (Bianchini and T. [2]) Let u be a viscosity solution of

 $\partial_t u + H(t, x, D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$,

assume (H1), (H2). Then the set of times

 $S := \{t \mid D_{x}u(t, \cdot) \notin [SBV_{loc}(\Omega_{t})]^{n}\}$

is at most countable. In particular $D_x u \in [SBV_{loc}(\Omega)]^n$, $\partial_t u \in SBV_{loc}(\Omega)$.

$$u(t,x) = \min\left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s))ds \ \middle| \ \xi(t) = x, \ \xi \in [C^2([0,t])]^n \right\}$$

i) $u(t,\cdot)$ is differentiable iff there is a unique minimizer ξ

- ii) for every $0 \le s < t$ a minimizer ξ is the unique minimizer for $u(s,\xi(s))$
- ii) for every minimizer ξ there exists a dual arc or co-state

$$p(s) := L_v(s,\xi(s),\dot{\xi}(s)) \qquad s \in [0,t],$$

s.t. ξ , *p* solve the following system

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$

$$\begin{cases} \xi(t) = x \\ p(t) \in D_x^+ u(t, x) \end{cases}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

$$u(t,x) = \min\left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s))ds \ \middle| \ \xi(t) = x, \ \xi \in [C^2([0,t])]^n \right\}$$

i) $u(t,\cdot)$ is differentiable iff there is a unique minimizer ξ

- ii) for every $0 \le s < t$ a minimizer ξ is the unique minimizer for $u(s,\xi(s))$
- ii) for every minimizer ξ there exists a dual arc or co-state

$$p(s) := L_v(s,\xi(s),\dot{\xi}(s)) \qquad s \in [0,t],$$

s.t. ξ , *p* solve the following system

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$

$$\begin{cases} \xi(t) = x \\ p(t) \in D_x^+ u(t, x) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$u(t,x) = \min\left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s))ds \ \middle| \ \xi(t) = x, \ \xi \in [C^2([0,t])]^n \right\}$$

- i) $u(t,\cdot)$ is differentiable iff there is a unique minimizer ξ
- ii) for every $0 \le s < t$ a minimizer ξ is the unique minimizer for $u(s, \xi(s))$
- ii) for every minimizer ξ there exists a dual arc or co-state

$$p(s) := L_v(s,\xi(s),\dot{\xi}(s)) \qquad s \in [0,t],$$

s.t. ξ , *p* solve the following system

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s)) \\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$

$$\begin{cases} \xi(t) = x\\ p(t) \in D_x^+ u(t, x) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The viscosity solution is

$$u(t,x) = \min\left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s))ds \ \middle| \ \xi(t) = x, \ \xi \in [C^2([0,t])]^n \right\}$$

- i) $u(t,\cdot)$ is differentiable iff there is a unique minimizer ξ
- ii) for every $0 \le s < t$ a minimizer ξ is the unique minimizer for $u(s, \xi(s))$
- ii) for every minimizer ξ there exists a dual arc or co-state

$$p(s) := L_v(s,\xi(s),\dot{\xi}(s)) \qquad s \in [0,t],$$

s.t. ξ , p solve the following system

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$

$$\begin{cases} \xi(t) = x \\ p(t) \in D_x^+ u(t, x) \end{cases}$$

$$u(t,x) = \min\left\{ u_0(\xi(0)) + \int_0^t L(s,\xi(s),\dot{\xi}(s))ds \ \middle| \ \xi(t) = x, \ \xi \in [C^2([0,t])]^n \right\}$$

- i) $u(t,\cdot)$ is differentiable iff there is a unique minimizer ξ
- ii) for every $0 \le s < t$ a minimizer ξ is the unique minimizer for $u(s, \xi(s))$
- ii) for every minimizer ξ there exists a dual arc or co-state

$$p(s) := L_v(s,\xi(s),\dot{\xi}(s)) \qquad s \in [0,t],$$

s.t. ξ , p solve the following system

$$\left\{ egin{array}{l} \dot{\xi}(s) = H_p(s,\xi(s),p(s)) \ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{array}
ight. \ \left. \left\{ egin{array}{l} \xi(t) = x \ p(t) \in D_x^+ u(t,x) \end{array}
ight.
ight.
ight.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Characteristics are no more straight lines
- Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C^2 curves such that they and their dual arc p are solutions of

$$\begin{cases} \dot{\xi}(s) = H_p(s, \xi(s), p(s))\\ \dot{p}(s) = -H_x(s, \xi(s), p(s)) \end{cases}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Generalized characteristics are no more straight lines
- Generalized characteristics can cross

- Characteristics are no more straight lines
- Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C^2 curves such that they and their dual arc p are solutions of

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Generalized characteristics are no more straight lines
- Generalized characteristics can cross

- Characteristics are no more straight lines
- Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C^2 curves such that they and their dual arc p are solutions of

$$\begin{cases} \dot{\xi}(s) = H_p(s, \xi(s), p(s))\\ \dot{p}(s) = -H_x(s, \xi(s), p(s)) \end{cases}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Generalized characteristics are no more straight lines
- Generalized characteristics can cross

- Characteristics are no more straight lines
- Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C^2 curves such that they and their dual arc p are solutions of

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$
(2)

ション ふゆ アメリア メリア しょうくしゃ

- Generalized characteristics are no more straight lines
- Generalized characteristics can cross

- Characteristics are no more straight lines
- Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C^2 curves such that they and their dual arc p are solutions of

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$
(2)

ション ふゆ アメリア メリア しょうくしゃ

- Generalized characteristics are no more straight lines
- Generalized characteristics can cross

- Characteristics are no more straight lines
- Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C^2 curves such that they and their dual arc p are solutions of

$$\begin{cases} \dot{\xi}(s) = H_p(s,\xi(s),p(s))\\ \dot{p}(s) = -H_x(s,\xi(s),p(s)) \end{cases}$$
(2)

ション ふゆ アメリア メリア しょうくしゃ

- Generalized characteristics are no more straight lines
- Generalized characteristics can cross

- Generalized characteristics can be approximated with straight lines
- Generalized characteristics do not cross in (τ, t) (No-crossing property)

For $\tau > 0$

$$\begin{split} X_{t,\tau}(x) &:= \{\xi(\tau) | \quad \xi \text{ is a solution of } (2) \text{ with } \xi(t) = x, p(t) = p, \\ & \text{where } p \in D_x^+ u(t,x) \} \quad \forall x \in \Omega_t, \end{split}$$

$$\chi_{t,\tau}(x) := X_{t,\tau}(x) \quad \forall x \in U_t$$

$$F(t) := \mathcal{H}^n(\chi_{t,\tau}(U_t)).$$

- Generalized characteristics can be approximated with straight lines
- Generalized characteristics do not cross in (τ, t) (No-crossing property)

For $\tau > 0$

$$\begin{split} X_{t,\tau}(x) &:= \{\xi(\tau) | \quad \xi \text{ is a solution of } (2) \text{ with } \xi(t) = x, p(t) = p, \\ & \text{where } p \in D_x^+ u(t,x) \} \quad \forall x \in \Omega_t, \end{split}$$

$$\chi_{t,\tau}(x) := X_{t,\tau}(x) \quad \forall x \in U_t,$$

$$F(t) := \mathcal{H}^n(\chi_{t,\tau}(U_t)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Generalized characteristics can be approximated with straight lines
- Generalized characteristics do not cross in (τ, t) (No-crossing property)

For $\tau > 0$

$$\begin{split} X_{t,\tau}(x) &:= \{\xi(\tau) | \quad \xi \text{ is a solution of } (2) \text{ with } \xi(t) = x, p(t) = p, \\ & \text{where } p \in D_x^+ u(t,x) \} \quad \forall x \in \Omega_t, \end{split}$$

 $\chi_{t,\tau}(x) := X_{t,\tau}(x) \quad \forall x \in U_t$

 $F(t) := \mathcal{H}^n(\chi_{t,\tau}(U_t)).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Generalized characteristics can be approximated with straight lines
- Generalized characteristics do not cross in (τ, t) (No-crossing property)

For $\tau > 0$

$$\begin{split} X_{t,\tau}(x) &:= \{\xi(\tau) | \quad \xi \text{ is a solution of } (2) \text{ with } \xi(t) = x, p(t) = p, \\ & \text{where } p \in D_x^+ u(t,x) \} \quad \forall x \in \Omega_t, \end{split}$$

 $\chi_{t,\tau}(x) := X_{t,\tau}(x) \quad \forall x \in U_t$

$$F(t) := \mathcal{H}^n(\chi_{t,\tau}(U_t)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ション ふゆ アメリア メリア しょうくしゃ

For t in $[\tau, \tau + \varepsilon] \varepsilon > 0$ small enough

- Generalized characteristics can be approximated with straight lines
- Generalized characteristics do not cross in (τ, t) (No-crossing property)

For $\tau > 0$

$$\begin{split} X_{t,\tau}(x) &:= \{\xi(\tau) | \quad \xi \text{ is a solution of } (2) \text{ with } \xi(t) = x, p(t) = p, \\ & \text{where } p \in D_x^+ u(t,x) \} \quad \forall x \in \Omega_t, \\ \chi_{t,\tau}(x) &:= X_{t,\tau}(x) \quad \forall x \in U_t, \\ \hline F(t) &:= \mathcal{H}^n(\chi_{t,\tau}(U_t)). \end{split}$$

ション ふゆ アメリア メリア しょうくしゃ

For t in $[\tau, \tau + \varepsilon] \varepsilon > 0$ small enough

- Generalized characteristics can be approximated with straight lines
- Generalized characteristics do not cross in (τ, t) (No-crossing property)

For $\tau > 0$

$$\begin{split} X_{t,\tau}(x) &:= \{\xi(\tau) | \quad \xi \text{ is a solution of } (2) \text{ with } \xi(t) = x, p(t) = p, \\ & \text{where } p \in D_x^+ u(t,x) \} \quad \forall x \in \Omega_t, \\ & \chi_{t,\tau}(x) := X_{t,\tau}(x) \quad \forall x \in U_t, \\ & \boxed{F(t) := \mathcal{H}^n(\chi_{t,\tau}(U_t)).} \end{split}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

References

Kind of SBV regularity in the convex case

$\partial_t u + H(D_x u) = 0$ in $\Omega \subset [0, T] \times \mathbb{R}^n$

- *H* is $C^2(\mathbb{R}^n)$, convex
- $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$

\Rightarrow *L* is strictly convex but no more regular

 $\Rightarrow u(t, \cdot)$ is no more semiconcave, it is only locally Lipschitz, and $D_x u(t, \cdot)$ looses its BV regularity

IDEA

$$d(t,x) := H_p(D_x u(t,x))$$

イロト 不得下 イヨト イヨト

3

Kind of SBV regularity in the convex case

$$\partial_t u + H(D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- *H* is $C^2(\mathbb{R}^n)$, convex
- $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$

 \Rightarrow *L* is strictly convex but no more regular

 $\Rightarrow u(t, \cdot)$ is no more semiconcave, it is only locally Lipschitz, and $D_x u(t, \cdot)$ looses its BV regularity

IDEA

$$d(t,x) := H_p(D_x u(t,x))$$

イロト イポト イヨト イヨト

э

References

Kind of SBV regularity in the convex case

$$\partial_t u + H(D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- *H* is $C^2(\mathbb{R}^n)$, convex
- $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$

\Rightarrow *L* is strictly convex but no more regular

 $\Rightarrow u(t, \cdot)$ is no more semiconcave, it is only locally Lipschitz, and $D_x u(t, \cdot)$ looses its BV regularity

IDEA

$$d(t,x) := H_p(D_x u(t,x))$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

References

Kind of SBV regularity in the convex case

$$\partial_t u + H(D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- *H* is $C^2(\mathbb{R}^n)$, convex
- $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$
- \Rightarrow *L* is strictly convex but no more regular

 $\Rightarrow u(t, \cdot)$ is no more semiconcave, it is only locally Lipschitz, and $D_x u(t, \cdot)$ looses its BV regularity

IDEA

$$d(t,x) := H_p(D_x u(t,x))$$

Kind of SBV regularity in the convex case

$$\partial_t u + H(D_x u) = 0$$
 in $\Omega \subset [0, T] \times \mathbb{R}^n$

- *H* is $C^2(\mathbb{R}^n)$, convex
- $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$

\Rightarrow *L* is strictly convex but no more regular

 $\Rightarrow u(t, \cdot)$ is no more semiconcave, it is only locally Lipschitz, and $D_x u(t, \cdot)$ looses its BV regularity

IDEA

$$d(t,x) := H_p(D_x u(t,x))$$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

d(t, x) is defined only on the set of points (t, x) where u(t, x) is differentiable in x

 $\operatorname{div} d(t, \cdot)$ is a locally finite Radon measure

 \Rightarrow in the one-d case $d(t,x) = H_p(D_x u(t,x))$ is BV

Theorem (Bianchini and T. [1])

In the one-d case the vector field $d(t, \cdot)$ belongs to $SBV(\Omega_t)$, out of a countable number of $t \in [0, T]$.

This fact does not necessarily implies that the same applies to $D_{x}u(t,x)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

d(t, x) is defined only on the set of points (t, x) where u(t, x) is differentiable in x

 $\operatorname{div} d(t, \cdot)$ is a locally finite Radon measure

 \Rightarrow in the one-d case $d(t,x) = H_p(D_x u(t,x))$ is BV

Theorem (Bianchini and T. [1])

In the one-d case the vector field $d(t, \cdot)$ belongs to $SBV(\Omega_t)$, out of a countable number of $t \in [0, T]$.

This fact does not necessarily implies that the same applies to $D_x u(t,x)$

d(t, x) is defined only on the set of points (t, x) where u(t, x) is differentiable in x

 $\operatorname{div} d(t, \cdot)$ is a locally finite Radon measure

 \Rightarrow in the one-d case $d(t,x) = H_p(D_x u(t,x))$ is BV

Theorem (Bianchini and T. [1])

In the one-d case the vector field $d(t, \cdot)$ belongs to $SBV(\Omega_t)$, out of a countable number of $t \in [0, T]$.

This fact does not necessarily implies that the same applies to $D_{x}u(t,x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

d(t, x) is defined only on the set of points (t, x) where u(t, x) is differentiable in x

 $\operatorname{div} d(t, \cdot)$ is a locally finite Radon measure

 \Rightarrow in the one-d case $d(t,x) = H_p(D_x u(t,x))$ is BV

Theorem (Bianchini and T. [1])

In the one-d case the vector field $d(t, \cdot)$ belongs to $SBV(\Omega_t)$, out of a countable number of $t \in [0, T]$.

This fact does not necessarily implies that the same applies to $D_{\! imes} u(t,x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

d(t, x) is defined only on the set of points (t, x) where u(t, x) is differentiable in x

 $\operatorname{div} d(t, \cdot)$ is a locally finite Radon measure

 \Rightarrow in the one-d case $d(t,x) = H_p(D_x u(t,x))$ is BV

Theorem (Bianchini and T. [1])

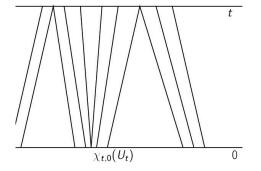
In the one-d case the vector field $d(t, \cdot)$ belongs to $SBV(\Omega_t)$, out of a countable number of $t \in [0, T]$.

This fact does not necessarily implies that the same applies to $D_x u(t, x)$

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

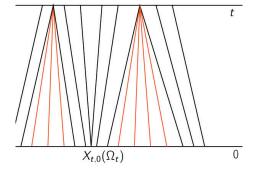
d(t,x) can be extended to a semiconcave function $\mathcal{D}(t,x)$ defined on Ω



 \Rightarrow The general strategy applies.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

d(t,x) can be extended to a semiconcave function $\mathcal{D}(t,x)$ defined on Ω



 \Rightarrow The general strategy applies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall t \in [0, T]$

We can reduce to the set

 $U := \{(t, x) | u(t, x) \text{ is differentiable in } x\}.$

IDEA

- Where L(d(t,x)) is C^2 we can reduce locally to the uniformly convex case \Rightarrow SBV-regularity holds
- Where L(d(t, x)) is not twice differentiable we can reduce step by step to dimension one.

ション ふゆ アメリア メリア しょうくしゃ

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall t \in [0, T]$

We can reduce to the set

 $U := \{(t, x) | u(t, x) \text{ is differentiable in } x\}.$

IDEA

- Where L(d(t,x)) is C^2 we can reduce locally to the uniformly convex case \Rightarrow SBV-regularity holds
- Where L(d(t, x)) is not twice differentiable we can reduce step by step to dimension one.

ション ふゆ アメリア メリア しょうくしゃ

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall t \in [0, T]$

We can reduce to the set

 $U := \{(t, x) | u(t, x) \text{ is differentiable in } x\}.$

IDEA

- Where L(d(t,x)) is C² we can reduce locally to the uniformly convex case ⇒ SBV-regularity holds
- Where L(d(t, x)) is not twice differentiable we can reduce step by step to dimension one.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall t \in [0, T]$

We can reduce to the set

 $U := \{(t, x) | u(t, x) \text{ is differentiable in } x\}.$

IDEA

- Where L(d(t,x)) is C² we can reduce locally to the uniformly convex case ⇒ SBV-regularity holds
- Where L(d(t, x)) is not twice differentiable we can reduce step by step to dimension one.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall t \in [0, T]$

We can reduce to the set

 $U := \{(t, x) | u(t, x) \text{ is differentiable in } x\}.$

IDEA

- Where L(d(t,x)) is C² we can reduce locally to the uniformly convex case ⇒ SBV-regularity holds
- Where L(d(t, x)) is not twice differentiable we can reduce step by step to dimension one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let *H* be $C^2(\mathbb{R}^n)$, convex and s.t. $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$.

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall \ t \in [0, T]$

 $V_{\pi_n} := \{ v \in \mathbb{R}^n | L(\cdot) \text{ is not twice differentiable in } v \},$ (HYP(n)) We suppose V_{π_n} to be contained in a finite union of hyperplanes Π_{π_n} .

 $\Sigma_{\pi_n} := \{(t, x) \in U | d(t, x) \in V_{\pi_n}\}$ and $\Sigma_{\pi_n}^c := U \setminus \Sigma_{\pi_n}$.

Let *H* be $C^2(\mathbb{R}^n)$, convex and s.t. $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$.

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall \ t \in [0, T]$

 $V_{\pi_n} := \{ v \in \mathbb{R}^n | L(\cdot) \text{ is not twice differentiable in } v \},$ (HYP(n)) We suppose V_{π_n} to be contained in a finite union of hyperplanes Π_{π_n} .

 $\Sigma_{\pi_n} := \{(t,x) \in U | \ d(t,x) \in V_{\pi_n}\} \text{ and } \Sigma_{\pi_n}^c := U \setminus \Sigma_{\pi_n}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let *H* be
$$C^2(\mathbb{R}^n)$$
, convex and s.t. $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$.

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall \ t \in [0, T]$

 $V_{\pi_n} := \{ v \in \mathbb{R}^n | L(\cdot) \text{ is not twice differentiable in } v \},$ (HYP(n)) We suppose V_{π_n} to be contained in a finite union of

hyperplanes Π_{π_n} .

 $\Sigma_{\pi_n} := \{(t,x) \in U | \ d(t,x) \in V_{\pi_n}\} \text{ and } \Sigma_{\pi_n}^c := U \setminus \Sigma_{\pi_n}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let *H* be
$$C^2(\mathbb{R}^n)$$
, convex and s.t. $\lim_{|p|\to\infty} \frac{H(p)}{|p|} = +\infty$.

(HYP(0)) Suppose $d(t, \cdot) \in [BV(\Omega_t)]^n \ \forall \ t \in [0, T]$

 $V_{\pi_n} := \{ v \in \mathbb{R}^n | L(\cdot) \text{ is not twice differentiable in } v \},$

(HYP(n)) We suppose V_{π_n} to be contained in a finite union of hyperplanes Π_{π_n} .

$$\Sigma_{\pi_n} := \{(t,x) \in U | \ d(t,x) \in V_{\pi_n}\} \text{ and } \Sigma_{\pi_n}^c := U \setminus \Sigma_{\pi_n}.$$

For $j = n, \ldots, 3$

 $\forall (j-1)$ -dimensional plane π_{j-1} in Π_{π_j} , let $L_{\pi_{j-1}} : \pi_{j-1} \to \mathbb{R}$ be the (j-1)-dimensional restriction of L to π_{j-1}

 $V_{\pi_{j-1}} := \{ v \in \pi_{j-1} | L_{\pi_{j-1}}(\cdot) \text{ is not twice differentiable in } v \}.$

(HYP(j-1)) We suppose $V_{\pi_{j-1}}$ is contained in a finite union of (j-2)-dimensional planes $\Pi_{\pi_{j-1}}$, $\forall \pi_{j-1} \in \Pi_{\pi_j}$.

Theorem (Bianchini and T. [1])

Under the above assumptions (HYP(0)), (HYP(n)), ..., (HYP(2)), the Radon measure $divd(t, \cdot)$ has Cantor part on Ω_t only for a countable number of t's in [0, T].

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

For j = n, ..., 3

 $\forall (j-1)$ -dimensional plane π_{j-1} in Π_{π_j} , let $L_{\pi_{j-1}} : \pi_{j-1} \to \mathbb{R}$ be the (j-1)-dimensional restriction of L to π_{j-1}

 $V_{\pi_{j-1}} := \{ v \in \pi_{j-1} | L_{\pi_{j-1}}(\cdot) \text{ is not twice differentiable in } v \}.$

(HYP(j-1)) We suppose $V_{\pi_{j-1}}$ is contained in a finite union of (j-2)-dimensional planes $\Pi_{\pi_{j-1}}$, $\forall \pi_{j-1} \in \Pi_{\pi_j}$.

Theorem (Bianchini and T. [1])

Under the above assumptions (HYP(0)), (HYP(n)), ..., (HYP(2)), the Radon measure $divd(t, \cdot)$ has Cantor part on Ω_t only for a countable number of t's in [0, T].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

For j = n, ..., 3

 $\forall (j-1)$ -dimensional plane π_{j-1} in Π_{π_j} , let $L_{\pi_{j-1}} : \pi_{j-1} \to \mathbb{R}$ be the (j-1)-dimensional restriction of L to π_{j-1}

 $V_{\pi_{j-1}} := \{ v \in \pi_{j-1} | \ L_{\pi_{j-1}}(\cdot) \text{ is not twice differentiable in } v \}.$

(HYP(j-1)) We suppose $V_{\pi_{j-1}}$ is contained in a finite union of (j-2)-dimensional planes $\Pi_{\pi_{j-1}}$, $\forall \pi_{j-1} \in \Pi_{\pi_j}$.

Theorem (Bianchini and T. [1])

Under the above assumptions (HYP(0)), (HYP(n)), ..., (HYP(2)), the Radon measure $divd(t, \cdot)$ has Cantor part on Ω_t only for a countable number of t's in [0, T].

For j = n, ..., 3

 $\forall (j-1)$ -dimensional plane π_{j-1} in Π_{π_j} , let $L_{\pi_{j-1}} : \pi_{j-1} \to \mathbb{R}$ be the (j-1)-dimensional restriction of L to π_{j-1}

 $V_{\pi_{j-1}} := \{ v \in \pi_{j-1} | \ L_{\pi_{j-1}}(\cdot) \text{ is not twice differentiable in } v \}.$

(HYP(j-1)) We suppose $V_{\pi_{j-1}}$ is contained in a finite union of (j-2)-dimensional planes $\Pi_{\pi_{j-1}}$, $\forall \pi_{j-1} \in \Pi_{\pi_j}$.

Theorem (Bianchini and T. [1])

Under the above assumptions (HYP(0)), (HYP(n)), ..., (HYP(2)), the Radon measure $\operatorname{div} d(t, \cdot)$ has Cantor part on Ω_t only for a countable number of t's in [0, T].

Introduction

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- S. Bianchini and D. Tonon. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. J. Math. Anal. Appl., 391:190–208, 2012.
- [2] S. Bianchini and D. Tonon. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t, x). To appear in SIAM Journal on Mathematical Analysis, 2012.