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Introduction H := H(t, x, p) Convex case References

Hamilton-Jacobi equations

∂tu + H(t, x ,Dxu) = 0 in Ω ⊂ [0,T ]× Rn (1)

H : R× Rn × Rn is called Hamiltonian
Ω is an open domain in Rn+1

Definition (Crandall, Evans and Lions ∼ 1980)
A locally Lipschitz continuous function u : Ω→ R is called a viscosity
solution of (1) provided that
i) u is a viscosity subsolution of (1): for each v ∈ C∞(Ω) such that

u − v has a maximum at (t0, x0) ∈ Ω,

∂tv(t0, x0) + H(t0, x0,Dxv(t0, x0)) ≤ 0;

ii) u is a viscosity supersolution of (1): for each v ∈ C∞(Ω) such that
u − v has a minimum at (t0, x0) ∈ Ω,

∂tv(t0, x0) + H(t0, x0,Dxv(t0, x0)) ≥ 0.
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When H(t, x , p) is smooth in all variables and convex with respect to p

⇒ the viscosity solution of

∂tu + H(t, x ,Dxu) = 0 in Ω ⊂ [0,T ]× Rn

is the value function

u(t, x) := min

{
u0(ξ(0))+

∫ t

0
L(s, ξ(s), ξ̇(s))ds

∣∣∣∣∣ ξ(t) = x , ξ ∈ [C 2([0, t])]n

}

L, the Lagrangian, is the Legendre transform

L(t, x , v) = sup
v
{〈v , p〉 − H(t, x , p)}

u0 is the initial datum at time t = 0, u0 bounded Lipschitz
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Previous Results

The structure of the non differentiability set of viscosity solutions has
been studied by Fleming (1969), Cannarsa and Soner (1987), and others.

When the Hamiltonian is strictly convex

Hpp(t, x , p) is positive definite

⇒ u is locally semiconcave in both variables:

∀K ⊂⊂ Ω, ∃C > 0 s.t. (t, x) 7→ u(t, x)− C (t2 + |x |2) is concave on K

⇒ Du = (∂tu,Dxu) is BVloc , that is D2u is a matrix of measures with
locally bounded variation
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Given f ∈ BV (Rn), it is possible to decompose the distributional
derivative of f into three mutually singular measures:

Df = Daf + Dc f + Dj f .

Daf is the absolutely continuous part with respect to Hn

Dj f is the part of the measure which is concentrated on the
rectifiable (n − 1)-dimensional set J, where the function f has
“jump” discontinuities
Dc f is the singular part which satisfies Dc f (E ) = 0 for every Borel
set E with Hn−1(E ) <∞.

If Dc f = 0, we say that f ∈ SBV (Rn)

When f ∈ [BV (Rn)]k Df is a matrix of Radon measures and the
decomposition can be applied to every component of the matrix.
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Previous Results
Cannarsa, Mennucci and Sinestrari in ARMA 1997

∂tu + H(t, x ,Dxu) = 0 in Ω ⊂ [0,T ]× Rn,

H strictly convex in the last variable,
u(0, ·) = u0(·) ∈W 1,∞(Rn) ∩ CR+1(Rn), with R ≥ 1, then Du is
locally SBV
(n=1)Ambrosio and De Lellis in J. Hyperbolic Differ. Equ. 2004,
Bianchini, De Lellis and Robyr in ARMA 2011

∂tu + H(Dxu) = 0 in Ω ⊂ [0,T ]× Rn,

H belongs to C 2(Rn) and

c−1
H Idn(p) ≤ Hpp(p) ≤ cH Idn(p)

for some cH > 0. Then the set of times

S := {t| Dxu(t, ·) /∈ SBVloc(Ωt)}

is at most countable.
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Ideas and general strategy

Idea (Bressan)
If Dxu(t̄, ·) is not SBV for a certain time t̄, then at future times t̄ + δ the
Cantor part of D2

x u(t̄, ·) gets transformed into jump singularities

Strategy
Construct a bounded monotone functional F (t), whose jumps are related
to the presence of a Cantor part in |D2

x u(t, ·)|

F can have only a countable number of jumps ⇒ |D2
x u(t, ·)| can have

positive Cantor part for a countable number of t’s only
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In the case H = H(p), the viscosity solution is

u(t, x) = min
y∈Ω0

{
u(0, y) + tL

(
x − y
t

)}

u(t, ·) is differentiable iff y := x − tHp(Dxu(t, x)) is the only minimizer

y is the only minimizer for u(s, x − sHp(Dxu(t, x))) 0 ≤ s ≤ t

When u(t, ·) is differentiable the curve ξ(s) := x − sHp(Dxu(t, x)) is
called characteristic

Characteristics are straight lines
Characteristics do not cross (No-crossing property)
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What about points where u(t, x) is not differentiable in x?

Definition
Let u : Ω→ R, for any (t, x) ∈ Ω the set

D+
x u(t, x) =

{
p ∈ Rn| lim sup

y→x

u(t, y)− u(t, x)− 〈p, y − x〉
|y − x |

≤ 0
}
,

is called the spatial superdifferential of u at (t, x).
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The curve ξ(s) := x − sHp(p) for p ∈ D+
x u(t, x) is called generalized

characteristic

Generalized characteristics are straight lines
If we reduce to a sufficiently small time interval generalized
characteristics do not cross (No-crossing property)

Xt,0(x) := x − tHp(D+
x u(t, x)) ∀x ∈ Ωt

χt,0(x) := x−tHp(Dxu(t, x)) ∀x ∈ Ut := {x | D+
x u(t, x) is single-valued}

F (t) := Hn(χt,0(Ut)).
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If |(D2
x u(t, ·))c |(Ωt) > 0 ⇒ ∃A ⊂ Ut s.t.
Hn(A) = 0
A is the set where the Cantor part is concentrated

χt,0(A) ∩ χt+δ,0(Ut+δ) = ∅ ∀δ > 0.
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SBV Regularity when H := H(t, x , p)
(H1) H ∈ C 3([0,T ]× Rn × Rn) with bounded second derivatives

∃a, b, c > 0 s.t.
i) H(t, x , p) ≥ −c
ii) H(t, x , 0) ≤ c
iii) |Hpx(t, x , p)| ≤ a + b|p|

(H2) ∃cH > 0 s.t. for any t ∈ R, x ∈ Rn

c−1
H Idn(p) ≤ Hpp(t, x , p) ≤ cH Idn(p)

Theorem (Bianchini and T. [2])
Let u be a viscosity solution of

∂tu + H(t, x ,Dxu) = 0 in Ω ⊂ [0,T ]× Rn,

assume (H1), (H2). Then the set of times

S := {t | Dxu(t, ·) 6∈ [SBVloc(Ωt)]n}

is at most countable. In particular Dxu ∈ [SBVloc(Ω)]n, ∂tu ∈ SBVloc(Ω).
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The viscosity solution is

u(t, x) = min

{
u0(ξ(0))+

∫ t

0
L(s, ξ(s), ξ̇(s))ds

∣∣∣∣∣ ξ(t) = x , ξ ∈ [C 2([0, t])]n

}

i) u(t, ·) is differentiable iff there is a unique minimizer ξ
ii) for every 0 ≤ s < t a minimizer ξ is the unique minimizer for

u(s, ξ(s))

ii) for every minimizer ξ there exists a dual arc or co-state

p(s) := Lv (s, ξ(s), ξ̇(s)) s ∈ [0, t],

s.t. ξ, p solve the following system{
ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s)){

ξ(t) = x
p(t) ∈ D+

x u(t, x)
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Characteristics are no more straight lines
Characteristics do not cross (No-crossing property)

Generalized characteristics are defined as C 2 curves such that they and
their dual arc p are solutions of{

ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s))

(2)

ξ(t) = x , p(t) = p, where p ∈ D+
x u(t, x)

Generalized characteristics are no more straight lines
Generalized characteristics can cross
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For t in [τ, τ + ε] ε > 0 small enough
Generalized characteristics can be approximated with straight lines
Generalized characteristics do not cross in (τ, t) (No-crossing
property)

For τ > 0

Xt,τ (x) := {ξ(τ)| ξ is a solution of (2) with ξ(t) = x , p(t) = p,
where p ∈ D+

x u(t, x) } ∀x ∈ Ωt ,

χt,τ (x) := Xt,τ (x) ∀x ∈ Ut ,

F (t) := Hn(χt,τ (Ut)).
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Kind of SBV regularity in the convex case

∂tu + H(Dxu) = 0 in Ω ⊂ [0,T ]× Rn

H is C 2(Rn), convex

lim|p|→∞
H(p)
|p| = +∞

⇒ L is strictly convex but no more regular

⇒ u(t, ·) is no more semiconcave, it is only locally Lipschitz, and
Dxu(t, ·) looses its BV regularity

IDEA
Study the vector field

d(t, x) := Hp(Dxu(t, x))
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d(t, x) is defined only on the set of points (t, x) where u(t, x) is
differentiable in x

divd(t, ·) is a locally finite Radon measure

⇒ in the one-d case d(t, x) = Hp(Dxu(t, x)) is BV

Theorem (Bianchini and T. [1])
In the one-d case the vector field d(t, ·) belongs to SBV (Ωt), out of a
countable number of t ∈ [0,T ].

This fact does not necessarily implies that the same applies to Dxu(t, x)
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d(t, x) can be extended to a semiconcave function D(t, x) defined on Ω

⇒ The general strategy applies.
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(HYP(0)) Suppose d(t, ·) ∈ [BV (Ωt)]n ∀t ∈ [0,T ]

We can reduce to the set

U := {(t, x)| u(t, x) is differentiable in x}.

IDEA
Add some hypotheses so that

Where L(d(t, x)) is C 2 we can reduce locally to the uniformly
convex case ⇒ SBV-regularity holds
Where L(d(t, x)) is not twice differentiable we can reduce step by
step to dimension one.
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Let H be C 2(Rn), convex and s.t. lim|p|→∞
H(p)
|p| = +∞.

(HYP(0)) Suppose d(t, ·) ∈ [BV (Ωt)]n ∀ t ∈ [0,T ]

Vπn := {v ∈ Rn| L(·) is not twice differentiable in v},

(HYP(n)) We suppose Vπn to be contained in a finite union of
hyperplanes Ππn .

Σπn := {(t, x) ∈ U| d(t, x) ∈ Vπn} and Σc
πn

:= U \ Σπn .
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For j = n, . . . , 3

∀(j − 1)-dimensional plane πj−1 in Ππj , let Lπj−1 : πj−1 → R be the
(j − 1)-dimensional restriction of L to πj−1

Vπj−1 := {v ∈ πj−1| Lπj−1(·) is not twice differentiable in v}.

(HYP(j-1)) We suppose Vπj−1 is contained in a finite union of
(j − 2)-dimensional planes Ππj−1 , ∀πj−1 ∈ Ππj .

Theorem (Bianchini and T. [1])
Under the above assumptions (HYP(0)),(HYP(n)),...,(HYP(2)), the
Radon measure divd(t, ·) has Cantor part on Ωt only for a countable
number of t’s in [0,T ].
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