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Introduction
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Mass flow ( > 0)
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For small k (near continuum limit)
  Sone (1969, 2007) 
    (structure of the Knudsen layer 
     in the generalized slip-flow theory; BKW or BGK)
For large k (near free molecular limit)
  Chen-Liu-T. (preprint)
    (math. proof for the hard-sphere gas)

cf) Lilly & Sader (2007, 2008) 
     empirical arguments by a power-law 
     fitting to numerical data

Logarithmic divergence is expected, 
irrespective of the Knudsen number
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Purpose of research 
to confirm

● the same logarithmic gradient divergence occurs irrespective of 
the Knudsen number

to show
● the above spatial singularity of weighted average of VDF 

induces another logarithmic gradient divergence in molecular 
velocity on the boundary

to identify
● the origin of the above singularities, proposing a simple 

damping model

Method: analysis + numerics
These features should be observed generally on a planar boundary, though we 
deal with only the thermal transpiration here.
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Setting of a specific problem 
(Thermal transpiration)
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Assumptions

● Boltzmann equation (hard-sphere gas)
● diffuse reflection boundary condition
● |C| << 1 

      Linearization around a reference 
         absolute Maxwellian

Then formulate the problem for 
the perturbation from a local 
Maxwellain with the wall 
temperature and the uniform 
reference pressure
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Hard-sphere gas
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: normalized reference absolute Maxwellian
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Gradient divergence of u
2
: Basic structure
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Gradient divergence of u
2
: Basic structure



 20

Gradient divergence of u
2
: Basic structure

Since the structure is the same, the same singular nature is expected from 
the K part (as far as the K behaves well).
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Mass flow profile near the boundary
Mass flow ( > 0)
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Velocity distribution function 
on the boundary for

Mass flow ( > 0)
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Common feature for impinging molecules
to the boundary, almost parallel to it
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BGK (or BKW) model: 

We expect the same property 
for the Boltzmann collision kernel
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Evidence



 27

Mass flow ( > 0)

k = 10
k = 6

k = 2
k = 1

k = 0.6

heat flowheat flow

w
al

l



 28

Numerical validation

This part is missing in Method 1

Two methods have been tested for numerical integration

  Method 1. Piecewise quadratic interpolation in s

  Method 2. Piecewise quadratic +             interpolation in s 

for           from its discretized data
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Evidence

grid Note

coarse intermediate fine

Method 1 C1 I1 F1  Slow convergence

Method 2 C2 - F2  Satisfactory convergence

Validate the logarithmic singularity of VDF on the boundary
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Contribution to macroscopic singularity
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Keeping in mind the item 2 in the previous slide, we define

Note:

Note:

What does it mean physically?
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What is it?

I

Origin of the spatial singularity

Let us go back to the original problem...

Impinging side limit
[note: reflected side =0]
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Discontinuity of VDF on the boundary at
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Comparison of the coefficient b of  x ln x 
Original problem vs. Dumping model

Numerically validated
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Conclusion
● The logarithmic gradient divergence of 

macroscopic quantity is confirmed irrespective 
of the Knudsen number.

● The spatial singularity of weighted average of 
VDF induces another logarithmic gradient 
divergence in molecular velocity on the 
boundary.

● The origin of the above singularities are the 
discontinuity of VDF on the boundary and can 
be expressed by its damping through the 
collision frequency
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Conclusion (# comments)
Our argument applies to

● Cut-off potential models, for which the splitting 
of the collision integral can be made

● More general boundary condition such as the 
Maxwell boundary condition (specular+diffuse) 
and other non-diffuse conditions
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