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Motivation

Observation of
Coronal mass ejection (CME)

Ball mapping

taken
[Calhoun et al

taken from [SOHO,2002]

2008]

from
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The ideal MHD equations
in conservation form
[Brackbill & Barnes, 1980]
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@ the thermal pressure is related via the ideal gas law:
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Problems due to insufficient control of V - B

Thermal pressure at time t = 0.633 Thermal pressure at time t = 0.633
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Figure: taken from [Rossmanith, 2006].
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Approaches to control V - B

Numerical methods for ideal MHD must in general satisfy (or at least
control) some discrete version of the divergence free condition on the
magnetic field.

Some known methods to control V - B on the discrete level:
@ projection methods, e.g. [Téth, 2000]
@ 8-wave-formulation, [Powell, 1994]
e divergence cleaning, [Dedner et al.,2002]
o flux-distribution methods, [Torrilhon,2003],[Mishra & Tadmor, 2012]
°

contrained transport (CT) methods, e.g. [Evans and Hawley, 1988,
Rossmanith, 2006]
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The idea of CT in 3D
Consider the induction equation
B;+Vx(Bxu)=0

and assume that u is a given vector valued function.
Set B =V X A to obtain

Vx(Ar+(VXxA)xu)=0

= A+ (VXA)xu=-V¢

1 is an arbitrary scalar function taken to be ¢» = 0 (Weyl gauge) in the
following.

Different choices of ¢ represent different gauge conditions.
See e.g. [C.Helzel, J.A.Rossmanith & B.Taetz, 2011] for discussions on
different choices.
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The evolution of the magnetic potential

A+ Nl(u) A, + Ng(u) Ay + Ng(u) A, = 0,

—u? —ud w2 0 0 ud
ul 0 |,No=|—-u! 0 —u?|,Ng=1| 0
0 ul 0 0 u? —ul
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The evolution of the magnetic potential

At -+ Nl(u) Am + Ng(u) Ay + Ng(u) Az = 0,

with
0 —u?2 —u wr 0 0 ud 0O O
Ni= 1|0 u! 0 |, No=|—-u! 0 =3, Ns=| 0 «* 0
0 0 ul 0 0 wu? —ul —u? 0

This system is weakly hyperbolic, which means that we do not have a
full set of linearly independent eigenvectors in all directions.



Weak hyperbolicity of the system matrix

@ The system matrix in an arbitrary direction n € S? is

n2u? + niu?
n' Ny +n2N, +n3N3 = —nZuyl
—n3u!

—n1u2

ntul + n3u?

—n3u2

—n1u3

—n2u3

nlul + n2u?
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Weak hyperbolicity of the system matrix

@ The system matrix in an arbitrary direction n € S? is

n2u? + niu?
n' Ny +n2N, +n3N3 = —nZuyl
—n3u!

o the eigenvalues are

—n1u2

ntul + n3u?

—7’LSU2

A= {O,n-u,n-u};

—n1u3

—n2u3

nlul + n2u?
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Weak hyperbolicity of the system matrix

@ The system matrix in an arbitrary direction n € S? is

n?u? + ndu? —nlu? —nly?
n' Ny +n2N, +n3N3 = —nZuyl nlul + n3ud —n2u3
—n3ul —n3u? nlul + n2u?

o the eigenvalues are
A= {O,n-u,n-u};

@ the eigenvectors read

n! n?u® —n3u?  ul(u-n) —ntul?
R=|n ndut —ntud  w?(u-n) —n?ul?|;
n3 nlu? — n2y! u3 (u-n) —n3lul?



Weak hyperbolicity of the system matrix

The system matrix in an arbitrary direction n € S? is

n?u? + ndu? —nlu? —nly?
n' Ny +n2N, +n3N3 = —nZuyl nlul + n3ud —n2u3
—n3ul —n3u? nlul + n2u?

the eigenvalues are
A= {O,n-u,n-u};

the eigenvectors read

n! n?u® —n3u?  ul(u-n) —ntul?
R= |n? ndul—nlv?® w2 (u-n)—n?ul?|;
n? nlu? — n2y! u3 (u-n) —n3lul?

the determinant of R can be written as
det(R) = —|Ju||® cos(a) sin*(a),
« is the angle between n and u.

— Thus we do not have a full set of linearly independent eigenvectors
in all directions n.



An operator splitting approach (dimensional splitting)

Sub-problem 1:  A; —u?AZ —w3A3 =0,
A? +ulA2 =0,
Al +u'Ad =0,

Sub-problem 2: A} + u2A?1/ =0,
A7 —u'Al —uPAd =0,
A} +uA) =0,

Sub-problem 3: A} +u3Al =0,
A? +uPA? =0,
A} —u'Al —wPAZ =0

o developed for Cartesian grids to 2" order of accuracy using Strang
splitting.
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A high-order unsplit spatial discretization
for weakly hyperbolic systems

Consider the integral form of a weakly hyperbolic system:

q: + N(z)q, = 0.
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A high-order unsplit spatial discretization
for weakly hyperbolic systems

Consider the integral form of a weakly hyperbolic system:
q: + N(z)qz = 0.

We write the semi-discrete form for the cell-averages Q;(t) as:

1
0Qi(t) = —E(AJFAQZ;UQ + ATAQjq1/2 + AAQ;)
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A high-order unsplit spatial discretization
for weakly hyperbolic systems

Consider the integral form of a weakly hyperbolic system:
q: + N(z)qz = 0.

We write the semi-discrete form for the cell-averages Q;(t) as:

1
0Qi(t) = —E(AJFAQZ;UQ + ATAQjq1/2 + AAQ;)

with
Tl o ~
ANQ; = / Ni(x) G0 d,
Tr. 1
=3
N xi_%+e ~
— _ . €
ATAQuy T ATAQy = limy [ TP N (QFyte), da
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Definition of fluctuations

Use regularization Q¢ (t,z) with a straight-line path

1
2

1
v 2
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Definition of fluctuations

Use regularization Q¢ (t,z) with a straight-line path

1
2
\Ili_l:Qfl—i_l <Q—'F1_Qo_ 1)7 0<I<1
2 i—3 i—3 i—3
to derive

A_AQi—% + A+AQ1'—% - N|\I:
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Definition of fluctuations

Use regularization Q¢ (t,z) with a straight-line path

1
2

\Ili_l :Q'__l +l <Q+_1 —Q_
2 2 =3

(2

to derive

A_AQi—% + A+AQ1_% =

] 1) , 0<I<1
=3
+ —_
N——
%(Ni:1/2+Nit1/2)

Use generalized Rusanov-flux similar to [Castro et al., 2010]:

1

ATAQi 12 = B N

ATAQ; 1y =

N —

Qi—1/2 Id] (Q:1 - Qi—1>,
—— 2 2

=AY ol VP

Uy 10

+ —
N Wi71/2 + 0%—1/2 Id] (Qz_é — Ql_é) .
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A numerical example
Consider the weakly hyperbolic system:

1 1
ol o 1) o)
n —0
[QQL [0 1) 1¢%],
——
N

with initial data: ,
0 (2,0) = (,0) = "1,

Current time = 0.200000 Current time = 0.500000
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High-order 3D extension for mapped grids
The semi-discrete form reads

atQi,j,k(t) ( AAQ@ g,k
—_———

inner integral

|CZ]]€|

3
+ D I(AATAQ))L, + (JAI(A”AQ))1,1e,))-
n=1
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High-order 3D extension for mapped grids
The semi-discrete form reads

01Qi.j.k(t) (AAQ; jk
———

inner integral

|CZ]]€|

+ Y [(AIATAQ))L, + (JAI(A~AQ))T, +e,))-

Mw

1

3
I

E.g. on the x-lower face with index I} = (i — 1/2, 4, k), we have:

v 1 1 v
(AIA=AQ), = /0 [ QU X010 ) Vel O, dudg

0

local trilinear map area element
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High-order 3D extension for mapped grids

The semi-discrete form reads:
Qi gk (t) (AAQi jk
—

inner integral

Ci ok

3
+ D l(AIATAQ)), + (|AI(A”AQ))1, ve,))-
n=1

E.g. on the x-lower face with index I} = (i — 1/2, 4, k), we have:

(1AL AQ), / / AEAQ( X(0,0,€) ) /a(n, Ol dndg
local trilinear map area element

On a Gaussian point Ii’m with corresponding n, Q™, Q™ the fluctuations
are:

AFAQT 0 = SN, () +a(@F, QI)QF ~ @)

1
A AQZ 1/2,5,k = §(N|\I/(n)l7m - a(QJraQi)Id)(QJr - Qi)
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The discretization of V x A
to high-order and on mapped grids

1
/// BdC = 1 /// V x AdC
|Csj.kl Cijn |Cij .k Cijn
= # // v X AdA.
ICijxl JJoc

4,4,k

@ Conservative computation of B:
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Temporal discretization of the CT method
using a SSP Runge Kutta method

Stage 1. IE/}:I‘])) = 71\}1HD + At Ly (QﬁHD) )
QY = Q& + At Ly (Q4, Q)
Replace B®) with ¥ x Qf,i) — QI%D.
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Temporal discretization of the CT method
using a SSP Runge Kutta method

Stage 1. Ql(v};])) = 71\}1HD + At Ly (QS{HD) )
1 n n n
QE;) = QA + At Ly (QA? MHD)
Replace B(l*) with V x Q( — QMHD

* 1
Stage 2. 1(\12HD = QMHD + 7Q1(V3})ID + 7At El( l(wl})ID)

QP = 20k + 100 + A1 £2QY, Q).
Replace B with V x Q(Q) — QMHD
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Temporal discretization of the CT method
using a SSP Runge Kutta method

Stage 1. Ql(v};])) = 71\}IHD + At Ly (QS{HD) )
1 n n n
QE;) = QA + At Ly (QA? MHD)
Replace B(l*) with V x Q( — QMHD
. 1
Stage 2 1(\12HD = QMHD + 7Q1(\r3})ID + 7At Cl( l(wl})ID)
QY = fQA + QA - Atﬁ QY. Qlim),
Replace B®) with V x Q(Q) — QMHD
0 1. 2
Stage 3. Ql(vn)ID = *QMHD + *Ql(v[Q})ID + §At El(QMHD)u
Qxt = 5@h + 300 + 2 A LR, Q).

Replace B W|th V X QKH — Quil.

16 /24



Limiting with respect to the derivative
Consider the 1D scalar advection equation:

QG+ 4z = 0
Gt + qz = 6(93)(1m

@ Here e(x) is chosen with respect to steep gradients in the derivative.
(diffusive limiter inspired by [Persson et al., 2006])

WENO limiter on Diffusive limiter w.r.t. ~ TVD limiting of
solution: derivative: [Rossmanith, 2006]:

il e
Lo
(1)l HRTh
ro T 003
ey
o)
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2.5-dimensional accuracy test on mapped grid

=1.0

B at time t

Scaled version of [Collela et al., 2011]




2.5-dimensional accuracy test on mapped grid

=1.0

B at time t

Scaled version of [Collela et al., 2011]

@ 37 order of accuracy can be confirmed on mapped gr




2.5-dimensional cloud-shock interaction problem

B2 at time t=0.06 B3 at time t=0.06

Scaled version of [Collela et al., 2011]
Inclusion grid [Calhoun et al

008]
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Numerical experiments in 2.5-dimensions

B at time 1=0.06 B at time 1=0.06
1

5 s
4 0g 4
3 08 3
> 07 H
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0 =05 0

g s
0 0z 04 06 0.8 1 0 02 04 06

@ The 2.5-dimensional cloud-shock interaction problem.
@ Mesh: 512x512

o (Left hand side) scheme of [Rossmanith, 2006] that only uses A3
(scalar equation)

o (Right hand side) the unsplit scheme using 2-step SSP-RK time
stepping and diffusive limiting on derivative on full vector potential A.
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Numerical experiments 3D (Orzag-Tang vortex)

Pressure at time 3.50 Pressure at time 3.50

21 /24



Conclusions

@ unsplit and unstaggered CT method
— suitable for high-order on smooth solutions and high-resolution in
the presence of shocks

@ the scheme works on general (possibly non-smoothly varying) mapped
grids in 2D and 3D

@ scheme should be suitable for adaptive mesh refinement and parallel
computing due to unstaggered and hyperbolic nature.



Outlook

@ application using 3D spherical grids of [Calhoun et al., 2008]
@ extension to high-order one-step schemes (ADER schemes)

@ extension to more general MHD models (two-fluid MHD)
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