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Physical model

Injection of gaseous volatile oil into a cylindrical horizontal core,
following Bruining and Marchesin (2007).

The rock is filled with a mixture of oil so and gas sg, i.e.:

sg + so = 1.



Qualitative behavior

Simplifications:

I Physical quantities evaluated at a representative pressure;

I No thermal expansion for liquids;

I Darcy law for two-phase flow;

I No gravitational segregation.

The oil consists of a mixture of dead and volatile oil.



Mass balance equations

Balance of volatile alkane in oil:

ϕ
∂

∂t
(ρovso) +

∂

∂x
(ρovufo) = +qg→o,v.

Balance of volatile alkane in gas:

ϕ
∂

∂t
(ρgV sg) +

∂

∂x
(ρgV ufg) = −qg→o,v.

Balance of dead oil:

ϕ
∂

∂t
(ρodso) +

∂

∂x
(ρodufo) = 0.

Volatile vapor condensation rate qg→o,v, denotes mass transfer
from the gaseous to the liquid phase.



Fundamentals of T. Equilibrium in the two-phase region

Gibb’s phase rule gives two degrees of freedom:

temperature T , and pressure P .

Recall that P is fixed!

Clausius-Clapeyron and Raoult’s laws:

Volatile oil concentration is a function of temperature, ρov(T ).

Ideal mixing:

We disregard any volume contraction due to mixing.

ρov
ρV

+
ρod
ρD

= 1.



Conservation laws in TP

Mass and energy conservation.



ϕ
∂

∂t
(ρgV sg + ρovso) +

∂

∂x
u (ρgV fg + ρovfo) = 0,

ϕ
∂

∂t
(ρodso) +

∂

∂x
u(ρodfo) = 0,

ϕ
∂

∂t

(
Ĥr + soHo + sgHg

)
+

∂

∂x
u (foHo + fgHg) = 0,

(so, T, ρod(T ), u) ∈ ΩTP × R+,

where:

ΩTP = { (so, T, ρod(T )) | 0 ≤ so ≤ 1, T > TbV }.



The Riemann problem

Self-similar weak solutions of

∂

∂t
G(w) +

∂

∂x
uF (w) = 0,

for

w(x, 0) =

{
wL, if x < 0,
wR, if x > 0,

and
u(x, 0) = uL, if x < 0,

where wR,wL ∈ Ω and uL ∈ R+ are constants.

Works of Lax (1957) and Glimm (1965) main hypotheses: strict
hyperbolicity and genuine nonlinearity.



Riemann solutions

Built by concatenations of fundamental waves (and constant
states):

I Smooth rarefaction waves;

I Discontinuous shock solutions.

Selection of admissible shocks is a delicate issue.



Wave curve method

Strict hyperbolicity and genuine nonlinearity typically are violated
in multiphase flow systems of conservation laws.

Structures that introduce bifurcations in Riemann solutions:

I Coincidences;

I Inflections;

I Self-intersections;

I Double contacts;

I etc.

The wave curve method was developed as a systematic way to
solve Riemann problems.

Remarkable work of Liu (1974) and many others...



Singular points

In our case the coincidence locus of characteristic speeds is a pair
of curves.

Generically, the eigenspace associated to points inside the
coincidence locus is one dimensional. Except:

Definition
The singular points inside the coincidence curves are the points
where the eigenspace of the characteristic equation:(

uDF (w)− λDG(w), F (w)
)
r(w, u) = 0.

is two dimensional.

Similar to Keyfitz, Kranzer, Isaacson, Temple; de Souza and
Marchesin (1998).



A Riemann solution near the singular point

“Generically” systems of conservation laws with two distinct
families possess solutions with two distinct wave groups.

But this class of models allows the generic existence of Riemann
solutions with a single wave group.

Example (In a neighborhood of S)

The wR state is above the singular point, on the right side of the
coincidence locus. The wL state is below the singular point in a
“suitable” chosen open set.



Elementary waves near the singular point

Two families:
Pure saturation transport SAT and thermal transport E.

Rarefaction curves Shock branches



A Riemann solution without intermediate states

Rarefaction curves near the singular point:



A Riemann solution without intermediate states

State R:



A Riemann solution without intermediate states

Fast wave curve reaching state R:



A Riemann solution without intermediate states

Fast wave curve reaching state R:



A Riemann solution without intermediate states

State L:



A Riemann solution without intermediate states

Slow wave curve emanating from state L:



A Riemann solution without intermediate states

Characteristic extension of RE:



A Riemann solution without intermediate states

SAT doubly characteristic shock:



A Riemann solution without intermediate states

Riemann solution:

L
RE·S

d
SAT·RE·RSAT−−−−−−−−−−−→ R.



Bifurcation structure near the singular point

The R. solution for L ∈ Yellow, R possesses a single wave group.



Open double contact locus I

The secondary bifurcation set:

States w+ 6= w−, such that w+ is contained in the Hugoniot
locus of w− and the Jacobian of the Hugoniot function:

dHw−(w+, u+, σ) =
(
u+DF (w+)− σDG(w+)

)
dw+

+ F (w+) du+ −
(
G(w+)−G(w−)

)
dσ

is singular.

To this end the following identities must hold:

σ = λ(w+, u+) and ~l(w+)(G(w+)−G(w−)) = 0.



Open double contact locus II

Lemma
Away from the coincidence locus, the E family eigenvector can be
written as a function of the temperature alone: ~le = ~le(T ).

Lemma
In a isotherm, if σ(P−;P+) = λe(w

+, u+) holds then
σ(P−;P+) = λe(w

−, u−).

Theorem
Assume that the Hugoniot locus in TP only bifurcates at
intersections of the SAT branch with the E branch. Then the E
self-intersection locus is a two dimensional manifold.



Conclusion

The underlying structure:

I The “singular point family” E is genuinely nonlinear almost
everywhere.

I The projection of the E-double contact manifold in state
space is open.

The previous results are a direct consequence of the form of
equations:

∂

∂t

(
α(T )so + β(T )

)
+

∂

∂x

[
u
(
α(T )fo(so, T ) + γ(T )

)]
= 0.

dictated by physical principles!



Thank you!



Adjacent Riemann problem I

Riemann solution:

L
Rs

e−−→M
Rf

b−−→ R.



Adjacent Riemann problem II

Riemann solution:

L
Ss
b−−→M

Rf
e−−→ Ô

Rf
b−−→ R.
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