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Singularities in fluid dynamics
Surface of discontinuity self-intersects
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Singularities in fluid dynamics
Breaking waves (Fiji Cloudbreak June 2012)
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3-D Euler free-surface equations

The system of PDE

(Momentum eqn) ut + Du · u + Dp = 0 in Ω(t)

divu = 0 in Ω(t)

(Boundary condition) p = 0 on Γ(t)

(Speed of free-boundary) V(Γ(t)) = u · n
u = u0 on Ω(0)

Ω(0) = Ω0 .

Moving Free-Boundary

Ω

n

Γ=∂Ω

Γ
t
(t) = u⋅ n

N η(t)
η(x,t)

Ω(t)=η(Ω,t)

Γ(t)=η(Γ,t)

x

Moving Free-Boundary Problem

Ω

n

Γ=∂Ω

Γ
t
(t) = u⋅ n

N η(t)
η(x,t)

Ω(t)=η(Ω,t)

Γ(t)=η(Γ,t)

x
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The splash and splat singularities

Definition

Splash Singularity – the Γ(t) self-intersects at a point x0.

t<T

Fluid

t=T

x0

Fluid

Figure: The splash singularity wherein the top of the crest touches the trough at a point
x0 in finite time T .

Definition

Splat Singularity – Γ(t)
self-intersects at on a surface Γ0.
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Justification of my cartoon picture:
Shipsterns Bluff, Tasmania
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A Brief History of the Free-Boundary Euler/WW Problem

Water-waves equation: Assume u = Dφ, where φ is the velocity potential.
Then curl u = 0 and φ is harmonic – problem reduces to the motion of the
free-surface (complex analysis in 2-D)

Key Observation: Problem is locally well-posed if Taylor Sign Condition
∂p/∂n < 0 on Γ(t) holds.
For W-W, Taylor Sign Condition always holds Wu (1997,1999).

Local well-posedness for water-waves:
Wu(1997,1999) (∞-depth)
Lannes(2005) (finite-depth, N-M)
Ambrose & Masmoudi (2005,2009) (limit zero-surface-tension)
Alazard,Burq,Zuily(2012) Hs surface, s > 2.5− 1

12

Local well-posedness for Euler:
Christodoulou& Lindblad(2000) (a priori est), Lindblad(2005) (unit-ball, N-M)
Coutand& Shkoller(2007) (unbounded curvature only H1)
Shatah& Zeng(2008)(A priori estimates – ∞-dim geometry)
Zhang& Zhang(2008) (Extension of Wu’s method)

Water-waves long-time existence for small data: Wu (2009,2011), Germain,
Masmoudi, & Shatah (2012)
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Outline of the talk

Convert to Lagrangian variables

Review energy estimates for regular solutions

Produce a finite-time singularity by solving Euler backwards-in-time from the
splash or splat domain with splash velocity

Approximate splash domain by a sequence of standard non self-intersecting
domains Ωε, and approximate splash velocity

Obtain solutions ηε defined on time-interval [−T ε, 0].

Prove that the time-interval T does not depend on ε > 0.

Prove that norms of ηε do not depend on ε > 0 on [−T , 0].

Take limit Ω0 = limε→0 η
ε(−T ,Ωε) and prove that Ω0 is connected, with

connected boundary, open, and smooth.

Run the problem forward-in-time from Ω0 as initial domain to find singularity
at t = T .
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Lagrangian variables (or coordinates)

Ω

n

Γ=∂Ω

Γ
t
(t) = u⋅ n

N η(t)
η(x,t)

Ω(t)=η(Ω,t)

Γ(t)=η(Γ,t)

x

Let η(·, t) : Ω→ Ω(t) be the solution of

ηt = u ◦ η, η(x , 0) = e

so locally η,1 (x , t) and η,2 (x , t) span Tη(x,t)Γ(t).
Set

v(x , t) := u(η(x , t), t), q(x , t) := p(η(x , t), t),

A(x , t) := [Dη(x , t)]−1 = inverse deformation , J = det Dη = 1 .
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The Euler equations in Lagrangian variables

∂tv + AT Dq = 0 in Ω× (0,T ] ,

divη v = (Aj
i v

i ,j ) = 0 in Ω× (0,T ] ,

q = 0 on Γ× (0,T ] ,

(η, v) = (Id, u0) on Ω× {t = 0} ,

Definition (Taylor Sign Condition)

− ∂q
∂N

∣∣∣
t=0

> 0 Required for Well-Posedness (Always true for irrotational flows)

Theorem (Coutand-S (2007))

Simple: Local W-P with norm E (t) = ‖η(t)‖2
4.5 + ‖v(t)‖2

4.
Optimal: Local W-P with norm E (t) = ‖η(t)‖2

3.5 + ‖v(t)‖2
3.
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A standard domain and its norm

Cover Γ with K open sets and Ω with L open sets:

B = B(0, 1), B+ = B ∩ {x3 > 0}, B0 = B ∩ {x3 = 0}
θl : B → Ul is an H4.5 diffeomorphism,

θl (B+) = Ul ∩ Ω, θl (B0) = Ul ∩ Γ .

UK

UK−1

U1

U2 . . .

UK+1 . . .

Ω

Γ

Definition

A domain Ω is of class H4.5 if(
K∑

l=1

‖θl‖2
4.5,B+ +

L∑
l=K+1

‖θl‖2
4.5,B

)2

<∞ .
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A priori estimates: control for the free-boundary

Higher-order energy or norm for incompressible problem:

E (t) = ‖η(t)‖2
4.5 + ‖v(t)‖2

4, f (T ) = sup
t∈[0,T ]

E (t)

Notation. ∂̄ = tangential derivative near boundary Γ

Energy estimates using tangential derivatives.∫ T

0

∫
Ω

∂̄4(v i
t + ak

i q,k ) ∂̄4v i dxdt = 0

so∫ T

0

1

2

d

dt
‖∂̄4v(t)‖2

0 +

∫
Ω

∂̄4ak
i q,k ∂̄

4v i dx +

∫
Ω

ak
i ∂̄

4q,k ∂̄
4v i dxdt = l .o.t.

First two terms contribute two the energy E (t) while the last term is an error
term controlled using a techinical lemma.
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A priori estimates: control for the free-boundary

Cofactor identities Ak
i = ak

i :

∂̄ak
i = −ak

r ∂̄η
r ,s as

i and ak
i (t)Nk =

√
gni (t)

Since on Γ q,k = ∂q
∂N Nk (since q = 0 on Γ),

∫
Ω

∂̄4ak
i q,k ∂̄

4v i dx = −
∫

Ω

ak
r ∂̄

4ηr ,s as
i q,k ∂̄

4v i dx

= −
∫

Γ

ak
r ∂̄

4ηr as
i Ns q,k ∂̄

4v i dS + errors

= −
∫

Γ

∂q

∂N
∂̄4ηr ak

r Nk as
i Ns ∂̄

4v i dS + errors

= −
∫

Γ

∂q

∂N

√
g

2
(∂̄4η · n) (∂̄4v · n)dS + errors

=
1

2

d

dt

∫
Γ

(−∂q/∂N)|∂̄4η · N|2 dS + errors

14



A priori estimates: control for the free-boundary

Elliptic equation for q(t) :

−∂xj [A
j
i A

k
i ∂xk

q(t)] = ∂xj v
i Aj

r ∂xs v r As
i in Ω ,

q(t) = 0 on Γ .

Elliptic estimate for q(t): (Sobolev-class coefficients)

‖q(t)‖2
4.5 ≤ CE (t)

Lemma. For f ∈ H1/2(Ω), ‖∂̄f ‖[H1/2(Ω)]′ ≤ C‖f ‖H1/2(Ω)

Analysis of error term
∫ T

0

∫
Ω

ak
i ∂̄

4q ∂̄4v i dxdt: Integrate by parts

−
∫ T

0

∫
Ω

∂̄4q ak
i ∂̄

4v i ,k dxdt =

∫ T

0

∫
Ω

∂̄4q∂̄4ak
i v i ,k dxdt + l.o.t.

≤
∫ T

0

‖q‖4.5‖a‖3.5‖∇v‖L∞dt ≤ CTP( sup
t∈[0,T ]

E (t)) .
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Splash and splat domains: Main Theorems

Theorem (2-D, Cordoba, Fefferman et al.)
Finite-time splash singularity for irrotational 2-D water waves equations using complex analysis,
analytic functions, and conformal transformations

Theorem (3-D, Coutand-S)

There exist initial domains Ω0 of class H4.5 and initial velocity fields u0 ∈ H4(Ω0), which satisfy
the Taylor sign condition, such that after a finite time T > 0, the solution to the Euler equation
η(t) (with such data) maps Ω0 onto the splash domain Ωs , with final velocity us . This final
velocity us satisfies the local Taylor sign condition on the splash domain Ωs . The splash velocity
us has a specified relative velocity on the boundary of the splash domain.

Applications. Water-waves, incompressible Euler, compressible Euler in vacuum,
incompressible and compressible MHD, surface tension, fluid-structure interaction,
etc.
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Splash Domain Ωs

u

x
o

o

ω 

u1

u2

u4 u3

Ω u6

u5

s

u

x
o
x

ouu

ω

Ωs

u4uu u3uu

u1

u2uu

u6uu

u5uu

Figure: Splash domain is a generalized
H4.5-class domain

x0 is unique self-intersection point with
tangent plane, the horizontal plane
x3 − (x0)3 = 0

U0 is open set about x0

Define two H4.5-class diffeomorphisms
θ+ and θ− of B onto U0 with the
following properties:

θ+(B+)= U+
0 , θ−(B+) = U−0 ,

θ+(B0)= U+
0 ∩ Γs , θ−(B0) = U−0 ∩ Γs ,

{x0} = θ+(B0) ∩ θ−(B0) ,

θ+(0) = θ−(0) = x0 .

{Ul}L
l=0 cover Ωs with charts θ± and

θl , l = 1, .., L
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The splash velocity us : Ωs → R3

Definition (Splash velocity us)

A velocity field us on an H4.5-class splash domain Ωs is called a splash velocity if it satisfies the
following properties:

1 ζus ◦ θ± ∈ H4.5(B+), ζus ◦ θl ∈ H4.5(B+) for each 1 ≤ l ≤ K and us ∈ H4.5(ω) for each
ω ⊂ Ωs ;

2 u3
s ◦ θ− > C− , −u3

s ◦ θ+ > C+ in B+ and C− + C+ > 0

Definition (Splash pressure ps)

ps is called a splash pressure if it satisfies the following properties:

1 ps ∈ H4.5(Ωs ) is the unique solution of

−∆ps = −
∂ui

s

∂xj

∂uj
s

∂xi
in Ωs ,

ζps ◦ θ± = 0 ζps ◦ θl = 0 on B0 for l = 1, ...,K ;

2 ps satisfies the local version of the Taylor sign condition:

∂

∂x3
(ζps ◦ θ±) > 0 and

∂

∂x3
(ζps ◦ θl ) > 0 on B0 for l = 1, ...,K .
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Approximation of Ωs by standard domains Ωε

For ε > 0, approximate θ± by θε± such that

θε− → θ− and θε+ → θ+ as ε→ 0 .

Let 0 ≤ ψ ∈ D(B(0, r)) with ψ(0) = 1 (r > 0 taken sufficiently small)

θε−(x) = θ−(x)− ε ψ(x) e3 ,

θε+(x) = θ+(x) + ε ψ(x) e3 ,

θ
ε

+

θ+

θ-

θ
ε

-

B+

Figure: Perform surgery: |θε+(x)− θε−(y)| > ε for all x , y ∈ B+

Then, θε−(B+) ∩ θε+(B+) = ∅ and

θε±(B+ ∩ B(0, 1/2)) ∩ θl (B+) = ∅ for l = 1, ...,K
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Approximate splash velocity uεs : Ωε → R3

uεs is modified on the charts θε±:

uεs ◦ θl = us ◦ θl , in B+ , for l = 1, ...,K ;

uεs ◦ θl = us ◦ θl , in B , for l = K + 1, ..., L ;

uεs ◦ θε−= us ◦ θ− , and , uεs ◦ θε+ = us ◦ θ+ , in B+ .

We then have the existence of constants A > 0, B > 0 such that

‖uεs‖4.5,Ωε ≤ A
(
‖ζuεs ◦ θε−‖4,B+ + ‖ζuεs ◦ θε+‖4,B+

+
K∑

l=1

‖ζuεs ◦ θεl ‖4.5,B+ +
L∑

l=K+1

‖ζuεs ◦ θεl ‖4.5,B

)
≤ B‖us‖4.5,Ωs .
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Approximate splash pressure pεs : Ωε → R

pεs ∈ H4.5(Ωε) is the unique solution of

−∆pεs =
∂uεs

i

∂xj

∂uεs
j

∂xi
in Ωε ,

pεs = 0 on ∂Ωε .

θε± → θ± and θεl → θl in H4.5(B+)

uεs only modified on charts θε±
Then ζpεs ◦ θε± → ζp ◦ θ± and ζpεs ◦ θεl → ζp ◦ θl in H4.5(B+)

Conclusion: uniformly for ε > 0 small enough, local TSC satisfied:

∂

∂x3
(ζpεs ◦ θε±) > 0 and

∂

∂x3
(ζpεs ◦ θεl ) > 0 , on B0 for each 1 ≤ l ≤ K .
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Reminder: approximate domain Ωε in chart U0

θ
ε

+

θ+

θ-

θ
ε

-

B+

Figure: U+
0 and U−0 are approximated by non self-intersecting charts
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Solving the Euler equations backwards-in-time from the
final states Ωε and uεs

from Ωε and uεs solve backward-in-time:

ηε(t) = e +

∫ t

0
vε in Ωε × [−T ε, 0] ,

vεt + [Aε]T Dqε = 0 in Ωε × [−T ε, 0) ,

divηε vε = 0 in Ωε × [−T ε, 0] ,

qε = 0 on Γε × [−T ε, 0] ,

(ηε, vε) = (e, uεs ) in Ωε × {t = 0} ,

where Aε(x , t) = [Dηε(x , t)]−1.

By local well-posedness theorem, ∃Tε > 0 and a unique solution on [−T ε, 0]
with

E ε(t) = ‖ηε(t)‖2
4.5 + ‖v ε(t)‖2

4 ≤ 2M0 .

GOAL: show T ε is independent of ε > 0
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Time of existence −T is independent of ε > 0

fundamental theorem of calculus: with x = θε−(X ), y = θε+(Y ),

ηε(x , t)− ηε(y , t) = x − y +

∫ t

0

[v ε(x , s)− v ε(y , s)]ds .

if we do not have at the same time x ∈ θε−(B+) and y ∈ θε+(B+), then
independently of ε > 0,

|ηε(x , t)− ηε(y , t)− (x − y)| ≤ C1|t| sup
[−T ε,0]

E ε(t) |x − y | ,

For x ∈ θε−(B+) and y ∈ θε+(B+),

|ηε(x , t)− ηε(y , t)|≥ |(ηε(x , t)− ηε(y , t)) · e3|
≥ ε+ (C− + C+)|t| − t2P1( sup

[−T ε,0]

E ε)

A priori estimate: on [−T ε, 0],

sup
t∈[−T ε,0]

E ε(t) ≤ Mε
0 + tP2( sup

[−T ε,0]

E ε(t))

where the constant Mε
0 = P(E ε(0)), where Mε

0 < M0, independent of ε.
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−T is independent of ε > 0 (Continued)

θε−1 = θε− and θε0 = θε+.

We set

T = min

(
1

4C1M0
,

C− + C+

2P1(2M0)
,

M0

2P2(2M0)

)
,

We see that on [−T , 0],

|ηε(x , t)− ηε(y , t)|≥ 1

2
|x − y |

for (x , y) ∈ θεl (B)× θεk (B) , (l , k) /∈ {(−1, 0), (−1, 0)}

and

|ηε(x , t)− ηε(y , t)| ≥ ε+ (C− + C+)
|t|
2

for all (x , y) ∈ θε−(B)× θε+(B) .

thus, the domain ηε(t,Ωε) does not self-intersect for each t ∈ [−T , 0]
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Technical Lemma

Smooth cut-off function: 0 ≤ ζ ∈ D(B(0, 1)) is a smooth cut-off function on
B = B+ or B, with ζ(0) = 1 and spt(ζ) ⊂ B(0, ς)

ζ replaces a partition-of-unity

Lemma (Equivalence-of-norms lemma)

With the smooth cut-off function 0 ≤ ζ ∈ D(B), there exist constants C̃1 > 0 and
C̃2 > 0 such that for any ε > 0 and f ∈ Hs(Ω) with 0 ≤ s ≤ 4.5,

C̃1

L∑
l=−1

‖ζf ◦ θεl ‖2
s,B ≤ ‖f ‖2

s,Ωε ≤ C̃2

L∑
l=−1

‖ζf ◦ θεl ‖2
s,B . (4)
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Asymptotics as ε→ 0 on the time-interval [−T , 0]

From our a priori estimate, we have that ‖ηε(−T )‖2
4.5 is bounded, so that

L∑
l=−1

‖ζ ηε(−T , θεl )‖2
4.5,B ≤

2

C
M0 .

By compactness, for l = −1, 0, 1, 2, ..., L, there exists limits Θl such that

ηε
′
(−T , ·) ◦ θε

′
l ⇀ Θl , as ε′ → 0 , in H4.5(Bς) ,

ηε
′
(−T , ·) ◦ θε

′
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Asymptotics as ε→ 0 (Continued)

From our a priori estimate, we have that ‖v ε(−T )‖2
4 is bounded, so that

L∑
l=−1

‖ζ v ε(−T , θεl )‖2
4,B ≤

2

C
M0 .

By compactness, for l = −1, 0, 1, 2, ..., L, there exists limits Vl such that

v ε
′
(−T , ·) ◦ θε

′
l ⇀ Vl , as ε′ → 0 , in H4(Bς) ,

v ε
′
(−T , ·) ◦ θε

′
l → Vl , as ε′ → 0 , in H3(Bς) ,

We now define initial velocity u0 on Ω0 as follows:

∀l ∈ {−1, 0, 1, 2, ..., L} , u0(Θl ) = Vl on Bς .

Check that if Θl (x) = Θj (y), for x and y in Bς , then Vl (x) = Vl (y). YES.

We now have good data (Ω0, u0) at time t = −T .
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Asymptotic Euler equations

It remains for us to prove that

uf (t, x) = u(t − T , x) , 0 ≤ t ≤ T

is indeed a solution of the free-surface Euler equations on the moving domain

Ωf (t) = Ω(t − T ) ,

which evolves the initial velocity u0 and initial domain Ω0 onto the final data
at time t = T given by us and Ωs .

This will, in turn, establish the fact that after a finite time T , the
free-surface of the 3-D Euler equations develops a splash singularity.
To this end, we first define the forward in time quantities for 0 ≤ t ≤ T by

Ωεf (t) = Ωε(t − T ) ,

uεf (·, t) = uε(·, t − T ) in Ωεf (t) ,

ηεf (·, t) = ηε(·, t − T ) ◦ ηε(·,−T )−1 in Ωεf (0) ,

v εf (·, t) = v ε(·, t − T ) ◦ ηε(·,−T )−1 in Ωεf (0) ,

pεf (·, t) = pε(·, t − T ) in Ωεf (t) ,

qεf (·, t) = qε(·, t − T ) ◦ ηε(·,−T )−1 in Ωεf (0) .
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Asymptotic Euler equations (Continued)

It follows that

div uεf = 0 in Ωε
f (t) ,

v εf = uεf ◦ ηεf = ∂tη
ε
f in Ωε

f (0) ,

ηεf (·, 0) = e in Ωε
f (0) .

(uεf , p
ε
f ) is a solution of Euler on [0,T ] with initial domain Ωε

f (0) and initial
velocity uεf (0), with the domain and velocity at time t = T equal to Ωε and
uεs , respectively.
In order to pass to limit ε→ 0, we consider Euler in each local chart: We set

θ̃εl = ηε(−T , θεl ) and b̃εl = [∇(ηεf ◦ θ̃εl )]−1 for l = −1, 0, 1, 2, ..., L .

η
ε
f ◦ θ̃

ε
l = θ̃

ε
l +

∫ t

0
vεf ◦ θ̃

ε
l in Bς × (0, T ] ,

∂t vεf ◦ θ̃
ε
l + [b̃εl ]T ∇(qεf ◦ θ̃

ε
l ) = 0 in Bς × (0, T ) ,

div
ηε

f
◦θ̃ε

l
vεf ◦ θ̃

ε
l = 0 in Bς × (0, T ) ,

qεf ◦ θ̃
ε
l = 0 on B0 × (0, T ) ,

(ηεf , vεf ) ◦ θ̃εl = (e, uεf (0)) ◦ θ̃εl on Bς × {t = 0} ,

η
ε
f (T, Ωεf (0)) = Ωε .
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Asymptotic Euler equations (Continued)
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Asymptotic Euler equations (Continued)
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Asymptotic Euler equations (Continued)
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Asymptotic Euler equations (Continued)

Our a priori estimate shows that for each l = −1, 0, 1, 2, ..., L

sup
t∈[0,T ]

(
‖ηεf (t) ◦ θ̃εl ‖2

4.5,Bς + ‖v εf (t) ◦ θ̃εl ‖2
4,Bς + ‖qεf (t) ◦ θ̃εl ‖2

4.5,Bς

)
≤ 2M̃ε

0 ,

where M̃ε
0 is a constant that depends on the H4.5-norms of θ̃εl and the

H4-norm of uεf (0). Our construction shows that M̃ε
0 is bounded by a constant

which is independent of ε.

As such, we have the following convergence in two weak topologies and one
strong topology:

v εf ◦ θ̃εl ⇀ vf ◦Θl , in L2(0,T ; H4(Bς)) ,

ηεf ◦ θ̃εl → ηf ◦Θl , in L2(0,T ; H3(Bς)) ,

qεf ◦ θ̃εl ⇀ qf ◦Θl , in L2(0,T ; H4.5(Bς)) ,

and we have our previous bound

ηε(−T , ·) ◦ θεl → Θl , as ε→ 0 , in H3.5(Bς) ,
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Asymptotic Euler equations (Continued)

For l = −1, 0, 1, 2, ...,K , the limit as ε→ 0 of this sequence of solutions is
indeed a solution of

ηf ◦Θl = Θl +

∫ t

0

vf ◦Θl in Bς × (0,T ] ,

∂tvf ◦Θl + [bl ]
T ∇(qf ◦Θl ) = 0 in Bς × (0,T ) ,

divηf ◦Θl
vf ◦Θl = 0 in Bς × (0,T ) ,

qf ◦Θl = 0 on B0 × (0,T ) ,

(ηf , vf ) ◦Θl = (e, u0) ◦Θl on Bς × {t = 0} ,
ηf (T ,Ω0) = Ωs ,

where bl = [∇(ηf ◦Θl )]−1, and where vf , qf and ηf are the forward in time
velocity, pressure and displacement fields.

For details see the paper:
http://arxiv.org/abs/1201.4919

OR
http://www.math.ucdavis.edu/~shkoller
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