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Singularities in fluid dynamics

Surface of discontinuity self-intersects
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3-D Euler free-surface equations

The system of PDE

(Momentum eqn) wu;+Du-u+Dp=0 in Q(t)
divu=0 in Q(t)

(Boundary condition) p=0 on I(t)
(Speed of free-boundary) V([(t))=u-n
u=uy on £(0)

Q(0) = Q.
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The splash and splat singularities

Definition

Splash Singularity — the ['(t) self-intersects at a point xp.
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Figure: The splash singularity wherein the top of the crest touches the trough at a point
Xo in finite time T.
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Definition

Splat Singularity — '(t)
self-intersects at on a surface [g.




Justification of my cartoon picture:
Shipsterns Bluff, Tasmania
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free-surface (complex analysis in 2-D)

o Key Observation: Problem is locally well-posed if Taylor Sign Condition
Op/On < 0 on I(t) holds.
e For W-W, Taylor Sign Condition always holds Wu (1997,1999).

@ Local well-posedness for water-waves:

Wu(1997,1999) (co-depth)

o Lannes(2005) (finite-depth, N-M)

o Ambrose & Masmoudi (2005,2009) (limit zero-surface-tension)
o Alazard,Burq,Zuily(2012) H* surface, s > 2.5 — >

@ Local well-posedness for Euler:
o Christodoulou& Lindblad(2000) (a priori est), Lindblad(2005) (unit-ball, N-M)
o Coutand& Shkoller(2007) (unbounded curvature only H')
o Shatah& Zeng(2008)(A priori estimates — co-dim geometry)
o Zhang& Zhang(2008) (Extension of Wu's method)
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Then curl u = 0 and ¢ is harmonic — problem reduces to the motion of the
free-surface (complex analysis in 2-D)
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Local well-posedness for Euler:
o Christodoulou& Lindblad(2000) (a priori est), Lindblad(2005) (unit-ball, N-M)
o Coutand& Shkoller(2007) (unbounded curvature only H')
o Shatah& Zeng(2008)(A priori estimates — oco-dim geometry)
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Outline of the talk

o Convert to Lagrangian variables
@ Review energy estimates for regular solutions

@ Produce a finite-time singularity by solving Euler backwards-in-time from the
splash or splat domain with splash velocity

@ Approximate splash domain by a sequence of standard non self-intersecting
domains Q¢, and approximate splash velocity

Obtain solutions 7¢ defined on time-interval [—T¢, 0].
Prove that the time-interval T does not depend on € > 0.

Prove that norms of 1 do not depend on € > 0 on [—T,0].

Take limit Qo = lim_o (=T, Q¢) and prove that Qg is connected, with
connected boundary, open, and smooth.

@ Run the problem forward-in-time from Qg as initial domain to find singularity
att=T.



Lagrangian variables (or coordinates)

Q)=n(Q.1)

r=0Q
r®=n(.y

Ft(t) =ulh

Let n(-, t) : Q@ — Q(t) be the solution of

ne=uon, n(x,0)=e

so locally 7,1 (x,t) and 7,2 (x, t) span T, ' (t).
Set

v(x,t) == u(n(x, t),t), q(x,t):=p(n(x,t),t),
A(x, t) := [Dn(x, t)] "' = inverse deformation, J=detDn=1.
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The Euler equations in Lagrangian variables

Ov+ATDg=0 in Qx(0,T],
div, v = (Alv';) =0 in Q x (0, T],
qg=0 onT x (0,T],

(n,v) =(Id,up) on Qx {t =0},

Definition (Taylor Sign Condition)

—%"\7 > 0 Required for Well-Posedness (Always true for irrotational flows)
t=0

Theorem (Coutand-S (2007))
t

Simple: Local W-P with norm E(t) = ||n(t)||3 5 + [|v(t)||3.
Optimal: Local W-P with norm E(t) = ||In(t)||3s + |lv(¢)]3-

11



A standard domain and its norm

Cover I' with K open sets and Q with L open sets:
B=B(0,1), Bt=Bn{x3>0}, B°=Bn{x =0}
,: B— U, is an H*® diffeomorphism,
9,(B)=UnQ, 6(B°=unT.

12



A standard domain and its norm

Cover I' with K open sets and Q with L open sets:
B=B(0,1), B"=Bn{x3>0}, B°=Bn{x =0}
,: B— U, is an H*® diffeomorphism,
9,(B)=UnQ, 6(B°=unT.

[ Uy

Definition

A domain € is of class H*5 if

2
(Z 101113.5,5+ + Z ||91||455> o0

I=K+1 .




A priori estimates: control for the free-boundary

o Higher-order energy or norm for incompressible problem:

E(t) = [n(t)ll2s + V(). £(T) = Sup E(t)

o Notation. 0 = tangential derivative near boundary I

o Energy estimates using tangential derivatives.

-
/ / I*vi+ akqu ) 0*v dxdt =0
o Ja

SO

-

1d, = = za = 4

/ 7—||84v(t)||3+/84a,’-‘ q,k84v’dx+/a,’-‘84q,k o*v'dxdt = l.o.t.
o 2dt Q Q

o First two terms contribute two the energy E(t) while the last term is an error
term controlled using a techinical lemma.

13



A priori estimates: control for the free-boundary

e Cofactor identities AX = a:

dalf = —akdn" s af and af(t)N, = /gn(t)

@ Sinceon T g, = aN 1 Ny (since g=0onT),

/34 g, OV dx = —/ ako*n" s af g, OV dx
Q
= / k8477 *Ns q.1 d*v' dS + errors
.
=— / ﬁé“n’af Ny a? Ns d*v' dS + errors
dq =4
\f (0* - n) (0*v - n)dS + errors
r ON
=-— /(—8q/8N)|5417- N|? dS + errors
.
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A priori estimates: control for the free-boundary

e Elliptic equation for q(t) :

— O [AALD, q(t)] = D,V ALOVAT in Q,
g(t)=0 on T.

o Elliptic estimate for g(t): (Sobolev-class coefficients)
la(t)las < CE(t)

@ Lemma. For f € H1/2(Q), ||5f||[H1/2(Q)]’ S CHf”Hl/?(Q)

@ Analysis of error term fOT Jqak0*qd*vidxdt: Integrate by parts

T T
_ / / g 2530 dxdt = / / F4qiak vy dxdt + Lot
0 Q 0 Q
T

S/ lgllasllallzslVv|iedt < CTP( sup E(t)).
0 te[0,T]
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Splash and splat domains: Main orems

Theorem (2-D, Cordoba, Fefferman et al.)

Finite-time splash singularity for irrotational 2-D water waves equations using complex analysis,
analytic functions, and conformal transformations
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Splash and splat domai

Theorem (2-D, Cordoba, Fefferman et al.)

Finite-time splash singularity for irrotational 2-D water waves equations using complex analysis,
analytic functions, and conformal transformations

Theorem (3-D, Coutand-S)

There exist initial domains Qo of class H*> and initial velocity fields uy € H*(Q), which satisfy
the Taylor sign condition, such that after a finite time T > 0, the solution to the Euler equation
n(t) (with such data) maps Qg onto the splash domain Qs, with final velocity us. This final
velocity us satisfies the local Taylor sign condition on the splash domain Qs. The splash velocity
us has a specified relative velocity on the boundary of the splash domain.
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Splash and splat domains: Main Theore

Theorem (2-D, Cordoba, Fefferman et al.)

Finite-time splash singularity for irrotational 2-D water waves equations using complex analysis,
analytic functions, and conformal transformations

Theorem (3-D, Coutand-S)

There exist initial domains Qo of class H*> and initial velocity fields uy € H*(Q), which satisfy
the Taylor sign condition, such that after a finite time T > 0, the solution to the Euler equation
n(t) (with such data) maps Qg onto the splash domain Qs, with final velocity us. This final
velocity us satisfies the local Taylor sign condition on the splash domain Qs. The splash velocity
us has a specified relative velocity on the boundary of the splash domain.

Applications. Water-waves, incompressible Euler, compressible Euler in vacuum,
incompressible and compressible MHD, surface tension, fluid-structure interaction,
etc.
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Splash Domain €,

Figure: Splash domain is a generalized
H*5_class domain
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Splash Domain €,

@ Xxp is unique self-intersection point with
tangent plane, the horizontal plane

/ \ X~ (x0)s = 0
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Figure: Splash domain is a generalized
H*5_class domain
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Figure: Splash domain is a generalized
H*5_class domain

@ Xxp is unique self-intersection point with
tangent plane, the horizontal plane
x3— (x0)3 =0

@ Up is open set about xp
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Figure: Splash domain is a generalized
H*5_class domain

@ Xxp is unique self-intersection point with
tangent plane, the horizontal plane
— (Xo)3 =0
@ Up is open set about xp

@ Define two H*°-class diffeomorphisms
0+ and 6_ of B onto Uy with the
following properties:

9+(B+): Ug—7 9—(B+) = U0_7
0. (B%=U; NTs, 6_(B°)=U; NT.,

{xo} = 6.(B")N6-(B°),
0,(0) = 6_(0) = xo.
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Figure: Splash domain is a generalized
H*5_class domain

@ Xxp is unique self-intersection point with
tangent plane, the horizontal plane
— (Xo)3 =0
@ Up is open set about xp

@ Define two H*°-class diffeomorphisms

0+ and 6_ of B onto Uy with the
following properties:

9+(B+): Ug—7 9—(B+) = U0_7
0. (B%=U; NTs, 6_(B°)=U; NT.,

{xo} = 6.(B")N6-(B°),
0,(0) = 6_(0) = xo.

@ {Uj}l, cover Q with charts 6+ and
0,1=1,..,L
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splash velocity u; : Qs — R?

Definition (Splash velocity us)

A velocity field us on an H*5-class splash domain € is called a splash velocity if it satisfies the
following properties:

Q Cuso0y € H*3(B1), Cus 06 € H*5(BT) for each 1 < / < K and us € H*>(w) for each
w C Qs;

Q wobh_>C_, —ulohi>Cy inBtand C_+Cy >0

18



The splash velocity us : Q, — R3

Definition (Splash velocity ws)

A velocity field us on an H*-3_class splash domain Qs is called a splash velocity if it satisfies the
following properties:

Q Cuso0y € H*3(B1), Cus 06 € H*5(BT) for each 1 < / < K and us € H*>(w) for each
w C Qs;

Q wobh_>C_, —ulohi>Cy inBtand C_+Cy >0

Definition (Splash pressure ps)

ps is called a splash pressure if it satisfies the following properties:
@ ps € H*>(Qs) is the unique solution of
dul oul
8)(1 BX,'

CpsobB+ =0 (psoB =0 on B® for I=1,....K;

—Aps =

in Qs

@ ps satisfies the local version of the Taylor sign condition:

) )
— (¢psofi)>0and — (Cps06,)>0 on B® for I=1,.. K.
0x3 O0x3




Approximation of {2, by standard domains Q¢

For € > 0, approximate 61 by 65 such that

0 —6_ and 05 — 0, as €—0.
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For € > 0, approximate 61 by 65 such that
0 —6_ and 05 — 0, as €—0.
Let 0 <1 € D(B(0,t)) with ¢(0) =1 (v > 0 taken sufficiently small)
0 (x) = 0_(x) — € ¥(x)es,
05.(x) = 0.4.(x) + € ¢(x) es,
o

N T

3

Figure: Perform surgery: [0 (x) — 0" (y)| > ¢ forall x,y € B
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For € > 0, approximate 61 by 65 such that
0 —6_ and 05 — 0, as €—0.
Let 0 <1 € D(B(0,t)) with ¢(0) =1 (v > 0 taken sufficiently small)
0 (x) = 0_(x) — € ¥(x)es,
05.(x) = 0.4.(x) + € ¢(x) es,
o

N T

3

Figure: Perform surgery: [0 (x) — 0" (y)| > ¢ forall x,y € B

Then, 6<(B+) N 65 (BT) =0 and
0. (BT NB(0,1/2))NG(BT)=0for I =1,...K 1



Approximate splash velocity u¢ : Q¢ — R3

ug is modified on the charts 6.:

uSoby=us00,in Bt forl=1,..,K;
uioby=us06;,in B, forI=K+1,...,L;

utof =us06_, and, uiofl =us0f,, in BT.
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Approximate splash velocity u¢ : Q¢ — R3

ug is modified on the charts 6.:
uSoby=us00,in Bt forl=1,..,K;
uioby=us06;,in B, forI=K+1,...,L;

utof =us06_, and, uiofl =us0f,, in BT.
We then have the existence of constants A > 0, B > 0 such that

lugllas.oe < A(lICus 0 0% [lap+ + [ICug © 0% [la,5+
K L

+> lCus 0 b5 lasmr + > lICus 097|4‘5,B> < Bl|usllas,q, -

=1 I=K+1

20



Approximate splash pressure pS : Q¢ — R

e pS € H*5(Q°) is the unique solution of
ou’ dug
_Apf = s s Q¢
= oy M
ps=0 on 0Q°.

05 — 64 and 65 — 6, in H**(B™)
u¢ only modified on charts 65
Then (pS o5 — Cpobi and (pSobf — (pob in H5(BT)

Conclusion: uniformly for € > 0 small enough, local TSC satisfied:

8 (CpSOGi)>Oand 0 (§p509,)>0 on B% foreach 1</<K.

21



Reminder: approximate domain €2 in chart U

£ o ew
B \¥/ /W\

Figure: Uy and U, are approximated by non self-intersecting charts
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Solving the Euler equations backwards-in-time from

final states €2 and u

e from Q¢ and ug solve backward-in-time:

t
ne(t):eJr/ ve in Q° x [-T¢,0],
0

vi +[A1 Dg" =0 in Q° x [~T*,0),
divye v€ =0 in Q° x [-T*<,0],
qg°=0 on € x[-T¢50],

(n°,ve) = (e, ug) in Q° x {t =0},

where A¢(x,t) = [Dn¢(x, t)] L.
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Solving the Euler equations backwards-in-time from the

final states €2 and u

e from Q¢ and ug solve backward-in-time:

t
ne(t):eJr/ ve in Q° x [-T¢,0],
0

vi +[A1 Dg" =0 in Q° x [~T*,0),
divye v€ =0 in Q° x [-T*<,0],
qg°=0 on € x[-T¢50],

(n°,ve) = (e, ug) in Q° x {t =0},

where A¢(x,t) = [Dn¢(x, t)] L.

@ By local well-posedness theorem, 3T, > 0 and a unique solution on [—T¢, 0]
with
E(t) = [n°(t)lzs + V()& < 2Mo .

@ GOAL: show T¢€ is independent of ¢ > 0
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Time of existence — T is independent of € > 0

o fundamental theorem of calculus: with x = 6 (X), y = 65(Y),

G ) — (s ) = x — y + / [ve(x,5) — v¥(y.5)|ds

24



Time of existence — T is independent of € > 0

o fundamental theorem of calculus: with x = 6 (X), y = 65(Y),
t
10 t) =) = x -yt [ [ (s) = vy sles.
0

o if we do not have at the same time x € 6 (B™) and y € 65 (B*), then
independently of € > 0,

n°(x,t) = n(y,t) = (x —y)| < Git] [ S;JPO] E<(t) |x —yl,
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t
10 t) =) = x -yt [ [ (s) = vy sles.
0

o if we do not have at the same time x € 6 (B™) and y € 65 (B*), then
independently of € > 0,

n°(x,t) = n(y,t) = (x —y)| < Git] [ S;JPO] E<(t) |x —yl,

e For x € 0<(B*) and y € 65 (B"),

In°(x, t) = n°(y, )= [(n“(x, t) = n°(y, 1)) - e3]

> e+ (C_+ Cy)|t| — t2Py( sup E°)
[77—610]

24



Time of existence — T is independent of € > 0

o fundamental theorem of calculus: with x = 6 (X), y = 65(Y),
t
10 t) =) = x -yt [ [ (s) = vy sles.
0

o if we do not have at the same time x € 6 (B™) and y € 65 (B*), then
independently of € > 0,

n°(x,t) = n(y,t) = (x —y)| < Git] [ S;JPO] E<(t) |x —yl,

e For x € 0<(B*) and y € 65 (B"),

n°(x, 1) =0y, 1) = |(n°(x, 1) =0y, 1)) - e3]
> e+ (C_+ Cy)|t| — t2Py( sup E°)
[77—610]
@ A priori estimate: on [—T¥¢, 0],

sup  E(t) < MS + tPy( sup E°(t))
te[—T<,0] [~ Te,0]

where the constant M§ = P(E€(0)), where M§ < My, independent of e.
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—T is independent of € > 0 (Continued)

e 05, =6 and 05 = 65

o We set
T =min 1 € +Cy Mo
N 4C My’ 2P1(2My)’ 2P>(2Mg) )
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e 05, =6 and 05 = 65

o We set
T =min 1 € +Cy Mo
N 4C My’ 2P1(2My)’ 2P>(2Mg) )

o We see that on [—T,0],
€ € 1
‘77 (X7t)_n (y7t)|2 §|X_y|

for (X’y) € 0/6(3) X HE(B) ) (/7 k) §é {(_170)7 (_170)}

@ and

In°(x,t) —n(y,t)| > e+ (C_ + CQ% for all (x,y) € 0<(B) x 05.(B).

@ thus, the domain 7°(t, Q) does not self-intersect for each t € [T, 0]
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Technical Lemma

@ Smooth cut-off function: 0 < ¢ € D(B(0,1)) is a smooth cut-off function on
B = B* or B, with {(0) =1 and spt(¢) C B(0,¢)

@ ( replaces a partition-of-unity

Lemma (Equivalence-of-norms lemma)

With the smooth cut-off function 0 < ( € D(B), there exist constants C; > 0 and
C; > 0 such that for any e > 0 and f € H*(Q2) with 0 < s < 4.5,

L L
G Y lcroblis < IflZa <G ) lIcFobjllis. (4)
I=—1 I=—1




Asymptotics as € — 0 on the time-interval [— T, 0]

e From our a priori estimate, we have that ||n°(—T)||2 5 is bounded, so that

L
€ € 2

Z 1C (= T,67)755 < EMO-

=1
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Asymptotics as € — 0 on the time-interval [— T, 0]

e From our a priori estimate, we have that ||n°(—T)||2 5 is bounded, so that

L
€ € 2

Z 1C (= T,67)755 < EMO-

=1

@ By compactness, for / = —1,0,1,2, ..., L, there exists limits ©, such that
nel(—T, Yo NCY ,as€ =0, in H°(B,),
n (=T, )08 — O, ase =0, in H°(B.),

@ The set € is the union of the sets ©,(B;) (-1 < /<L)
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Asymptotics as € — 0 on the time-interval [— T, 0]

e From our a priori estimate, we have that ||n°(—T)||2 5 is bounded, so that

L
€ € 2

Z 1C (= T,67)755 < EMO-

=1

@ By compactness, for / = —1,0,1,2, ..., L, there exists limits ©, such that
0 (=T, )00 —©, ase =0, in H*3(B.),
N (=T,) o6 —©, as€ =0, in H*(B),

@ The set € is the union of the sets ©,(B;) (-1 < /<L)

o For (x,y) € B x B, ((1, k) ¢ {(—1,0),(0,-1)})

01(x) ~ ©(Y)| > 3161(x) — 6u()]
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Asymptotics as € — 0 on the time-interval [— T, 0]

e From our a priori estimate, we have that ||n°(—T)||2 5 is bounded, so that

L
€ € 2

Z 1C (= T,67)755 < EMO-

=1

@ By compactness, for / = —1,0,1,2, ..., L, there exists limits ©, such that
0 (=T, )00 —©, ase =0, in H*3(B.),
n (=T, )08 — O, ase =0, in H°(B.),

The set Qg is the union of the sets ©;(5;) (—1 <[/ <L)

For (x,y) € B x B, ((1, k) ¢ {(~1,0),(0,-1)})

01(x) ~ ©(Y)| > 3161(x) — 6u()]

and V(x,y) € Bc x B

0 ()~ 0. () > (C_+C)L
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Asymptotics as € — 0 on the time-interval [— T, 0]

e From our a priori estimate, we have that ||n°(—T)||2 5 is bounded, so that

L
€ € 2

Z 1C (= T,67)755 < EMO-

=1

@ By compactness, for / = —1,0,1,2, ..., L, there exists limits ©, such that
0 (=T, )00 —©, ase =0, in H*3(B.),
n (=T, )08 — O, ase =0, in H°(B.),

The set Qg is the union of the sets ©;(5;) (—1 <[/ <L)

For (x,y) € B x B, ((1, k) ¢ {(~1,0),(0,-1)})

01(x) ~ ©(Y)| > 3161(x) — 6u()]

and V(x,y) € Bc x B

0 ()~ 0. () > (C_+C)L

@ Qg is a connected, H*5-class domain, which is locally on one side of its boundary.
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Asymptotics as € — 0 (Continued)

@ From our a priori estimate, we have that ||v¢(—T)||7 is bounded, so that

L
€ € 2

Z ICv(=T, 035 < EMO-

=1
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Asymptotics as € — 0 (Continued)

@ From our a priori estimate, we have that ||v¢(—T)||7 is bounded, so that

L

€ € 2
Z ICv(=T, 035 < EMO-
=1

@ By compactness, for / = —1,0,1,2, ..., L, there exists limits V; such that

v (=T, )obf = Vi, as¢ =0, in H(B.),
v (=T, )08 — Vi, as€ =0, in H¥(B.),
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Asymptotics as € — 0 (Continued)

@ From our a priori estimate, we have that ||v¢(—T)||7 is bounded, so that

L
€ € 2

Z ICv(=T, 035 < EMO-

=1

@ By compactness, for / = —1,0,1,2, ..., L, there exists limits V; such that

v (=T, )obf = Vi, as¢ =0, in H(B.),
v (=T, )08 — Vi, as€ =0, in H¥(B.),

@ We now define initial velocity ug on g as follows:
vIie{-1,0,1,2,...,L}, up(©;) =V, on B..

o Check that if ©/(x) = ©j(y), for x and y in B, then Vi(x) = V/(y). YES.
@ We now have good data (g, up) at time t = —T.
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Asymptotic Euler equations

@ It remains for us to prove that
ur(t,x)=u(t—T,x), 0<t<T
is indeed a solution of the free-surface Euler equations on the moving domain
Qe(t) =Q(t-T),

which evolves the initial velocity ug and initial domain £ onto the final data
at time t = T given by us and ;.
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Asymptotic Euler equations

@ It remains for us to prove that
ur(t,x)=u(t—T,x), 0<t<T
is indeed a solution of the free-surface Euler equations on the moving domain
Qe(t) =Q(t-T),

which evolves the initial velocity ug and initial domain £ onto the final data
at time t = T given by us and ;.

@ This will, in turn, establish the fact that after a finite time T, the
free-surface of the 3-D Euler equations develops a splash singularity.
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Asymptotic Euler equations

@ It remains for us to prove that
ur(t,x)=u(t—T,x), 0<t<T
is indeed a solution of the free-surface Euler equations on the moving domain
Qe(t) =Q(t-T),

which evolves the initial velocity ug and initial domain £ onto the final data
at time t = T given by us and ;.

@ This will, in turn, establish the fact that after a finite time T, the
free-surface of the 3-D Euler equations develops a splash singularity.

@ To this end, we first define the forward in time quantities for 0 <t < T by

Qi(t) = (e - T),

up(- t) = u (-, t = T) in Qf(t),
ni(,t) =n"(t=T)on(,=T)""  inQF(0),
VE(,t) = v(t—=T)on(,—T)"  in Q(0),
pi(t) =p°(t—T) in Q(t),
G (,t)=q°(nt—T)on(,—T)"  in Q(0).
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Asymptotic Euler equations (Continued)

o It follows that
divug =0 in Q¢(t),
V= ufong =i in Q3(0),
n7(+,0) = e in ¢(0).
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Asymptotic Euler equations (Continued)

o It follows that

divug =0 in Q¢(t),
Vi =ufong=0m;  in Qy0),
ns(-,0) =e in Q(0).

@ (ug, p§) is a solution of Euler on [0, T] with initial domain Q¢(0) and initial
velocity u£(0), with the domain and velocity at time t = T equal to Q¢ and

ug, respectively.
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Asymptotic Euler equations (Continued)

o It follows that

divug =0 in Q¢(t),
Vi =ufong=0m;  in Qy0),
ns(-,0) =e in Q(0).

@ (ug, p§) is a solution of Euler on [0, T] with initial domain Q¢(0) and initial
velocity u£(0), with the domain and velocity at time t = T equal to Q¢ and
ug, respectively.

@ In order to pass to limit € — 0, we consider Euler in each local chart: We set
0f =n(—T,60;) and bf = [V(nf 0 8;)] " for 1=-1,0,1,2,...,L.
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Asymptotic Euler equations (Continued)

o It follows that

divug =0 in Q¢(t),
Vi =ufong=0m;  in Qy0),
ns(-,0) =e in Q(0).

@ (ug, p§) is a solution of Euler on [0, T] with initial domain Q¢(0) and initial
velocity u£(0), with the domain and velocity at time t = T equal to Q¢ and

ug, respectively.
@ In order to pass to limit € — 0, we consider Euler in each local chart: We set

0f =n(—T,60;) and bf = [V(nf 0 8;)] " for 1=-1,0,1,2,...,L.
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Asymptotic Euler equations (Continued)

@ QOur a priori estimate shows that for each | = —1,0,1,2,..., L
sup (I (8) o i, + 147 (8) o B s, + i (e) o s, ) = 208,
te(o,

where M; is a constant that depends on the H**-norms of #¢ and the

H*-norm of u£(0). Our construction shows that Mg is bounded by a constant
which is independent of e.

@ As such, we have the following convergence in two weak topologies and one
strong topology:

violf — veo®;, in L2(0, T; H*(B.))
n§ o (5,6 —nFo©y, in LQ(O, T; H3(B§)) ,
qi o5 — qr0©y, in L2(0, T; H*5(B.)),

and we have our previous bound

,,75(__]—7.) 097 — 6/7 as € — O, in H3.5(B§)’



Asymptotic Euler equations (Continued)

@ For | =-1,0,1,2,..., K, the limit as ¢ — 0 of this sequence of solutions is
indeed a solution of

t
’qfoe/:e/—F/ vF0o©; in ng(O,T],
0

Oive 0 ©) + [b/]TV(qf 0©))=0 in Bo x(0,T),
divy00, Vi 0 ©; =0 in B. x(0,T),
gro©, =0 on By x (0, T),
(nf,ve) 0 ©) = (e, up) 0 O on B¢ x {t =0},
ne(T,0) = Qs,

where b = [V(nr 0 ©,)]7%, and where v, gr and 7 are the forward in time
velocity, pressure and displacement fields.
@ For details see the paper:
http://arxiv.org/abs/1201.4919
OR
http://www.math.ucdavis.edu/~shkoller
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