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Hyperbolic PDE’s with an interface in 1D

Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))
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Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

Classical case (Kruzhkov, Lax. . . ):

fL ≡ fr and entropy inequality at x = 0
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Hyperbolic PDE’s with an interface in 1D

Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

Saturation in a porous medium with a discontinuous permeability k:

fL(u) = kLf(u) and fR(u) = kRf(u)
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Hyperbolic PDE’s with an interface in 1D

Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

Traffic flow with a tollgate:

fL(u) = fr(u) but with fL(u(t, 0−)) = fR(u(t, 0+)) 6 F (t)
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Hyperbolic PDE’s with an interface in 1D

Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

Shallow-water equations with a discontinuous bathymetry:

∂t

[
h
hu

]
+ ∂x

[
hu

hu2 + gh2/2

]
=

[
0

−gh(aR − aL)δ0(x)

]
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Hyperbolic PDE’s with an interface in 1D

Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

Gas dynamics in a discontinuous nozzle:

∂t

[
ρ
ρu

]
+ ∂x

[
ρu

ρu2 + P (ρ)

]
=

[−ρu SR−SL

(1−H(x))SL+H(x)SR
δ0(x)

0

]
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Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

Gas dynamics in a pipe with a grid (laminar friction):

∂t

[
ρ
ρu

]
+ ∂x

[
ρu

ρu2 + P (ρ)

]
=

[
0

−λρuδ0(x)
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Gas dynamics in a pipe with a grid (turbulent friction):

∂t
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ρ
ρu

]
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ρu

ρu2 + P (ρ)
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−λρu|u|δ0(x)

]

Nicolas Seguin (LJLL, UPMC) 2 / 19



Hyperbolic PDE’s with an interface in 1D

Two hyperbolic systems to couple through an interface x = 0:

∂tu+ ∂xfL(u) = 0 ∂tu+ ∂xfR(u) = 0

x < 0 x = 0 x > 0

Jump relations at the interface

Conservative case: fL(u(t, 0−)) = fR(u(t, 0+))
Nonconservative case: fL(u(t, 0−)) 6= fR(u(t, 0+))

and many other examples...
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General forms invovling a discontinuity

The conservative case

Equivalent form:

∂tu+ ∂xf(u, x) = 0 t > 0, x ∈ R

with f(u, x) = (1−H(x))fL(u) + H(x)fR(u) (H Heaviside function)

The nonconservative case

Equivalent form:

∂tu+ ∂xf(u, x) + g(u) δ0(x) = 0 t > 0, x ∈ R

with f(u, x) = (1−H(x))fL(u) + H(x)fR(u) (H Heaviside function)
and g(u) to encode the nonconservative contribution of the interface
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The conservative case

Equivalent form:

∂tu+ ∂xf(u, x) = 0 t > 0, x ∈ R

with f(u, x) = (1−H(x))fL(u) + H(x)fR(u) (H Heaviside function)

Use of an additional “unknown”

Equivalent form:
∂tu+ ∂xf(u, α) = 0

∂tα = 0

α(0, x) = H(x)

with f(u, α) = (1− α)fL(u) + αfR(u)
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The quasilinear form

The conservative case

∂t

[
u
α

]
+

[
∂uf(u, α) ∂αf(u, α)

0 0

]
∂x

[
u
α

]
=

[
0
0

]

The nonconservative case

∂t

[
u
α

]
+

[
∂uf(u, α) ∂αf(u, α) + g(u)

0 0

]
∂x

[
u
α

]
=

[
0
0

]

The system admits an additional eigenvalue: 0 (standing wave)

Since this eigenvalue is constant, it characteristic field is linearly degenerate

BUT some eigenvalues of ∂uf(u, α) may vanish
 interaction of waves with the standing wave

superposition of a shock wave on the interface wave

Nicolas Seguin (LJLL, UPMC) 4 / 19



The quasilinear form

The conservative case

∂t

[
u
α

]
+

[
∂uf(u, α) ∂αf(u, α)
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]
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The nonconservative case
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+
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∂uf(u, α) ∂αf(u, α) + g(u)

0 0

]
∂x

[
u
α

]
=

[
0
0

]

In most of cases, ∂uf(u, α) is R-diagonalizable
But in general, there is resonance, i.e. R := {ū s.t. 0 ∈ sp[∂uf(ū, α)]} 6= ∅:
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The nonconservative case
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∂uf(u, α) ∂αf(u, α) + g(u)
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]
∂x

[
u
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]
=

[
0
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]

In most of cases, ∂uf(u, α) is R-diagonalizable
But in general, there is resonance, i.e. R := {ū s.t. 0 ∈ sp[∂uf(ū, α)]} 6= ∅:

Coalescence of eigenvalues (loss of strict hyperbolicity)

What about the associated eigenvectors?

Temple, Liu, Keyfitz, Shearer, LeFloch, Chen, Glimm, Isaacson, Marchesin...
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The quasilinear form

The conservative case

∂t

[
u
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]
+

[
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+
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]
∂x

[
u
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]
=

[
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]

In most of cases, ∂uf(u, α) is R-diagonalizable
But in general, there is resonance, i.e. R := {ū s.t. 0 ∈ sp[∂uf(ū, α)]} 6= ∅:

Conservative case: 0 double eigenvalue

Either R ⊂ Ker(∂αf(·, α))  still R-diagonalizable
Or R 6⊂ Ker(∂αf(·, α))  Jordan block

Rankine-Hugoniot relations still valid, but entropy conditions to be defined
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The quasilinear form

The conservative case
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The nonconservative case
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]
∂x

[
u
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]
=

[
0
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]

In most of cases, ∂uf(u, α) is R-diagonalizable
But in general, there is resonance, i.e. R := {ū s.t. 0 ∈ sp[∂uf(ū, α)]} 6= ∅:

Nonconservative case: 0 double eigenvalue

Either R ⊂ Ker(∂αf(·, α) + g)  still R-diagonalizable
Or R 6⊂ Ker(∂αf(·, α) + g)  Jordan block

No Rankine-Hugoniot jump relations available (neither entropy condition)
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The quasilinear form

The conservative case

∂t

[
u
α

]
+

[
∂uf(u, α) ∂αf(u, α)

0 0

]
∂x

[
u
α

]
=

[
0
0

]

The nonconservative case

∂t

[
u
α

]
+

[
∂uf(u, α) ∂αf(u, α) + g(u)

0 0

]
∂x

[
u
α

]
=

[
0
0

]

In most of cases, ∂uf(u, α) is R-diagonalizable
The nonconservative and non-resonant case, i.e.

R := {ū s.t. 0 ∈ sp[∂uf(ū, α)]} = ∅,

has been extensively study by Gosse and co-workers
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Examples

The scalar case

The conservative case [Andreianov, Karlsen, Risebro ’11]...
Tollgate in traffic flow

The nonconservative case

R-diagonalizable case: Burgers equation with pointwise friction
Resonant case: [Isaacson, Temple ’95]  ∃ 1 to 3 solutions to the RP

The system case

The conservative case: [Isaacson, Temple ’92]...
Gas dynamics with pointwise linear friction [Aguillon ’12]

The nonconservative case

R-diagonalizable case (R ⊂ Ker(∂αf(·, α) + g)): probably meaningless...
Resonant case: gas dynamics in a nozzle, shallow water equations with
bathymetry... [Chen, Glimm ’95], [Goatin, LeFloch ’04]...
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The scalar case

The conservative case

∂tu+ ∂xf(u, α) = 0

α(t, x) = H(x)

The Rankine-Hugoniot jump relations are valid:

f(u(t, 0−), 0) = f(u(t, 0+), 1)

Entropy condition at x = 0?

∂αf ≡ 0 and classical condition (Lax, Oleinik, Kruzhkov, Liu...):
 recover the classical entropy solution

f(·, 0) 6≡ f(·, 1): need to provide an adapted entropy condition
Risebro, Karlsen, Adimurthi, Mishra, Gowda, S., Vovelle, Andreianov,
Bachmann, Audusse, Perthame...

∂αf ≡ 0 but with “pointwise effects”
Ex.: Traffic flow with a tollgate or thin layer in a porous medium
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The scalar case

The nonconservative case

(NC)
∂tu+ ∂xf(u, α) + g(u)∂xα = 0

α(t, x) = H(x)

The standing wave corresponds to a LD field if there is no resonance

Proposition (jump relations by Riemann invariants)

If there is no resonance and if smooth solutions of (NC) satisfy an additional
conservation law

∂tw(u, α) + ∂xϕ(u, α) = 0,

then weak solutions of (NC) satisfy ϕ(u(t, 0+), 1) = ϕ(u(t, 0−), 0).

No need of defining nonconservative products using additional informations
[DalMaso, LeFloch, Murat ’95], [LeFloch, Tzavaras ’99]
What happens when resonance occurs?
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The scalar case

The nonconservative case

(NC)
∂tu+ ∂xf(u, α) + g(u)∂xα = 0

α(t, x) = H(x)

The standing wave corresponds to a LD field if there is no resonance

What happens when resonance occurs

The above jump relation fails: ϕ(u(t, 0+), 1) 6= ϕ(u(t, 0−), 0)

A shock wave can be superposed on the standing wave

Additional informations must be used:
1 Definition as the limit of regularization processes

Diffusion [Sainsaulieu ’96], kinetic relations [Abeyaratne, Knowles ’91]...
2 The inner structure must be studied: [Isaacson, Temple ’95],

[Dalmaso, LeFloch, Murat ’95], [Lefloch, Tzavaras ’99]. . .
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A ROUGH review of the theory of conservation laws

Analysis and approximation of the Cauchy problem{
∂tu+ ∂xf(u) = 0

u|t=0 = u0

Definition ([Kruzhkov ’70])

A function u ∈ L∞(R+ × R) is a weak entropy solution if ∀κ ∈ R

∂t|u− κ|+ ∂xΦ(u, κ) 6 0 (in D ′)

where Φ(a, b) = sgn(a− b)(f(a)− f(b)).

Constant κ are solutions as soon as u0 = κ

Entropies |u− κ| measure the dissipation with respect to constant solutions
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A ROUGH review of the theory of conservation laws

Analysis and approximation of the Cauchy problem{
∂tu+ ∂xf(u) = 0

u|t=0 = u0

Theorem ([Kruzhkov ’70])

The weak entropy solution is unique.

Comparison of two solutions u and û (Kato inequality)

∂t|u− û|+ ∂xΦ(u, û) 6 0

Continuous dependence can be deduced

(Existence can be proved by convergence of approximate solutions.)
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A ROUGH review of the theory of conservation laws

Analysis and approximation of the Cauchy problem{
∂tu+ ∂xf(u) = 0

u|t=0 = u0

Monotone numerical schemes ([Crandall, Majda ’80])

un+1
i = uni −

∆t

∆x
(gni+1/2 − gni−1/2)

where gni+1/2 = g(uni , u
n
i+1) such that g(↗,↘), g(a, a) = f(a) + CFL condition

The numerical scheme preserves constant solutions

un+1
i is a non-decreasing function of uni−1, uni and uni+1

Theorem ([Crandall, Majda ’80])

A monotone numerical scheme converges to the weak entropy solution.
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Scalar equations with pointwise contributions

The Cauchy problem with a contribution at x = 0

Conservation laws for x 6= 0 Coupling conditions at x = 0
∂tu+ ∂xf(u) = 0 x < 0

∂tu+ ∂xf(u) = 0 x > 0

u|t=0 = u0 x ∈ R
(u(t, 0−), u(t, 0+)) ∈ G

The germ G ∈ R2 is the set of admissible traces

Let us define κ(x) =

{
κL if x < 0

κR if x > 0
where (κL, κR) ∈ G

Proposition

If u0(x) = κ(x) then u(t, x) = κ(x) is a solution.

(The germ depends on the problem under study.)
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Scalar equations with pointwise contributions

The Cauchy problem with a contribution at x = 0

Conservation laws for x 6= 0 Coupling conditions at x = 0
∂tu+ ∂xf(u) = 0 x < 0

∂tu+ ∂xf(u) = 0 x > 0

u|t=0 = u0 x ∈ R
(u(t, 0−), u(t, 0+)) ∈ G

Definition ([Baiti, Jenssen ’97] [Audusse, Perthame ’05])

A function u ∈ L∞(R+ × R) is a weak entropy solution if ∀κ(x) defined as above

∂t|u− κ(x)|+ ∂xΦ(u, κ(x)) 6 0 (in D ′)

Functions κ are solutions as soon as u0 = κ

Entropies |u− κ(x)| measure the dissipation with respect to solutions κ(x)

Theory in [Andreianov, Karlsen, Risebro ’11]: a subset G0 ⊂ G can be sufficient
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Scalar equations with pointwise contributions

The Cauchy problem with a contribution at x = 0

Conservation laws for x 6= 0 Coupling conditions at x = 0
∂tu+ ∂xf(u) = 0 x < 0

∂tu+ ∂xf(u) = 0 x > 0

u|t=0 = u0 x ∈ R
(u(t, 0−), u(t, 0+)) ∈ G

Theorem

If the germ is dissipative: ∀(u−, u+), (û−, û+) ∈ G

Φ(u+, û+)− Φ(u−, û−) 6 0

then the weak entropy solution is unique.

Dissipativity of G: comparison of two solutions u and û (Kato inequality)

∂t|u− û|+ ∂xΦ(u, û) 6 0

Lipshitz-continuous dependence can be deduced
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Scalar equations with pointwise contributions

The Cauchy problem with a contribution at x = 0

Conservation laws for x 6= 0 Coupling conditions at x = 0
∂tu+ ∂xf(u) = 0 x < 0

∂tu+ ∂xf(u) = 0 x > 0

u|t=0 = u0 x ∈ R
(u(t, 0−), u(t, 0+)) ∈ G

Design of adapted numerical schemes (well-balanced schemes for G0)

un+1
i = uni − ∆t

∆x (gni+1/2 − gni−1/2)

where gni+1/2 = g(uni , u
n
i+1) except at the interface x1/2 = 0

The numerical scheme must preserve solutions κ(x) with (κL, κR) ∈ G0

un+1
i must be a non-decreasing function of uni−1, uni and uni+1

An monotone adapted numerical scheme converges to the weak entropy solution.

Nicolas Seguin (LJLL, UPMC) 10 / 19



Conservation law with a constrained flux

The formal problem{
∂tu+ ∂xf(u) = 0 t > 0, x ∈ R
f(u(t, 0−)) = f(u(t, 0+)) 6 F t > 0

where f(a) = a(1− a) and F 6 maxa∈[0,1] f(a)

How to contruct solutions to this problem?

Break the classical entropy condition at x = 0 (u(t, 0−) 6 u(t, 0+))

u|x 6=0 is a classical entropy solution

u(t, 0−) is an admissible boundary trace for the left-hand half-problem

u(t, 0+) is an admissible boundary trace for the right-hand half-problem

constraint: f(u(t, 0−)) = f(u(t, 0+)) 6 F

Such solutions do not enter in the Kruzhkov frame. . . But we have well-posedness !
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f(u(t, 0−)) = f(u(t, 0+)) 6 F t > 0

where f(a) = a(1− a) and F 6 maxa∈[0,1] f(a)

How to contruct solutions to this problem?

Break the classical entropy condition at x = 0 (u(t, 0−) 6 u(t, 0+))

u|x 6=0 is a classical entropy solution

u(t, 0−) is an admissible boundary trace for the left-hand half-problem

u(t, 0+) is an admissible boundary trace for the right-hand half-problem
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Conservation law with a constrained flux

The formal problem{
∂tu+ ∂xf(u) = 0 t > 0, x ∈ R
f(u(t, 0−)) = f(u(t, 0+)) 6 F t > 0

where f(a) = a(1− a) and F 6 maxa∈[0,1] f(a)

[Colombo, Goatin ’07] [Andreianov, Goatin, S. ’10] [Cancès, S. ’12]

Construct the set of admissible traces (u(t, 0−), u(t, 0+)):

G ={(a, b) | f(a) = f(b) = F, a > b}
∪ {(a, a) | f(a) 6 F} ∪ {(a, b) | f(a) = f(b) 6 F , a < b}

Dissipative property:

∀(u−, u+), (û−, û+) ∈ G Φ(u+, û+)− Φ(u−, û−) 6 0

=⇒ Uniqueness + Lipshitz-continuous dependence
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Conservation law with a constrained flux

The formal problem{
∂tu+ ∂xf(u) = 0 t > 0, x ∈ R
f(u(t, 0−)) = f(u(t, 0+)) 6 F t > 0

where f(a) = a(1− a) and F 6 maxa∈[0,1] f(a)

[Colombo, Goatin ’07] [Andreianov, Goatin, S. ’10] [Cancès, S. ’12]

A sufficient dissipative germ

G0 = {(a, b) | f(a) = f(b) = F, a > b} ∪ {(a, a) | f(a) 6 F}
Adapted numerical schemes
At the interface x1/2 = 0, take the numerical flux gn1/2 = min(g(un0 , u

n
1 ), F )

It exactly preserves solutions of G0
The constrained numerical scheme is monotone (CFL condition)
If g is the Godunov numerical flux, L∞ ∩ BV bounds

=⇒ Strong convergence + Existence + Error estimates

Nicolas Seguin (LJLL, UPMC) 12 / 19
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Burgers equation with pointwise friction

The formal problem

∂tu+ ∂x(u2/2) + λu∂xα = 0

α(t, x) = H(x)

where λ > 0 is the drag coefficient

Regularization of the interface

∂tu+ ∂x(u2/2) + λu∂xα = 0

α(t, x) = Hε(x)

where H is replaced by Hε ∈ C 1(R), a nondecreasing function such that

∀|x| > ε Hε(x) = H(x)

−ε ε

1

We first seek stationary solutions U(x) for |x| > ε
Nicolas Seguin (LJLL, UPMC) 14 / 19



Burgers equation with pointwise friction

Find all the pairs (κ−, κ+) ∈ R2 such that it exists U verifying
(U2/2)′(x) + λ U(x)H′ε(x) = 0, x ∈ (−ε, ε)
U(−ε) = κ−

U(ε) = κ+

(?)

in the entropy weak sense

Smooth parts: (?) becomes U(x)(U + λHε)
′(x) = 0

Either U(x) = 0
Or U(x) + λHε(x) = Cst

Shock waves at x0 ∈ (−ε, ε): (U(x−0 ) + U(x+
0 ))/2 = 0 and U(x−0 ) > U(x+

0 )

Nicolas Seguin (LJLL, UPMC) 15 / 19



Burgers equation with pointwise friction

Find all the pairs (κ−, κ+) ∈ R2 such that it exists U verifying
(U2/2)′(x) + λ U(x)H′ε(x) = 0, x ∈ (−ε, ε)
U(−ε) = κ−

U(ε) = κ+

(?)

in the entropy weak sense

The set Gλ ⊂ R2 of admissible pairs is the union Gλ = G1
λ ∪ G2

λ ∪ G3
λ, where

G1
λ = {(a, a− λ), a ∈ R}. (classical Riemann invariant)

G2
λ = [0, λ]× [−λ, 0] (with shock wave)

G3
λ = {(a, b) ∈ (R+ × R−) \ G2

λ, −λ 6 a+ b 6 λ} (with shock wave)

Nicolas Seguin (LJLL, UPMC) 15 / 19



Burgers equation with pointwise friction

Proposition (Stability of the definition of the “nonconservative product”)

For all nondecreasing Hε ∈ C 1(R) such that Hε(x) = H(x) if |x| > ε,
it exists a weak entropy U to

(U2/2)′(x) + λ U(x)H′ε(x) = 0

U(−ε) = κ−

U(ε) = κ+

if and only if (κ−, κ+) ∈ Gλ.

The germ Gλ is dissipative
=⇒ Uniqueness + Lipshitz-continuous dependence

Construction of monotone numerical schemes preserving G1
λ

=⇒ Strong convergence + Existence

Nicolas Seguin (LJLL, UPMC) 16 / 19



Interaction between a particle and a Burgers fluid
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∂tu+ ∂x(u2/2) = λ (h′(t)− u) δ0(x− h(t))

m h′′(t) = λ (u(t, h(t))− h′(t))

[Lagoutière, Seguin, Takahashi ’08], [Andreianov, Lagoutière, Seguin, Takahashi ’10]

See also [Borsche, Colombo, Gravello ’10 & ’12]
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Burgers equation with pointwise friction

The formal problem

∂tu+ ∂x(u2/2) + λu|u|β∂xα = 0

α(t, x) = H(x)

with β ∈ [0, 1]

Same theory (existence, uniqueness, convergence of adapted schemes)
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Burgers equation with pointwise friction

The formal problem

∂tu+ ∂x(u2/2) + λu|u|β∂xα = 0

α(t, x) = H(x)

with β ∈ [0, 1]

Same theory (existence, uniqueness, convergence of adapted schemes)

BUT, if λ < 0

the case β = 0 is ill-posed (non-uniqueness)
the case β = 1 is well-posed (L1-contraction becomes Lipschitz-continuous
semi-group)

Nicolas Seguin (LJLL, UPMC) 18 / 19



Conclusion

Classical theory of Kruzhkov can be adapted in some scalar cases

conservative equations
nonconvervative equations in some cases
if not, no chance to select a “good” solution (continuous dependence fails)

Systems of singular balance laws

Mainly, available results only on the Riemann problem
Well-posedness in the conservative case
Extension of the notion of dissipative germs to systems?

Nicolas Seguin (LJLL, UPMC) 19 / 19


