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Ideal compressible MHD

Consider the ideal compressible MHD equations:

∂tρ+∇ · (ρ v) = 0 ,
∂t(ρ v) +∇ · (ρ v ⊗ v −H ⊗H) +∇(p+ 1

2 |H|
2) = 0 ,

∂tH −∇× (v ×H) = 0 ,
∂t
(
ρe+ 1

2(ρ|v|2 + |H|2)
)

+∇ ·
(
ρv(e+ 1

2 |v|
2) + vp+H × (v ×H)

)
= 0 ,

∇ ·H = 0 ,

(1)

with
ρ density, S entropy, v velocity field, H magnetic field,
p = p(ρ, S) pressure (such that p′ρ > 0), e = e(ρ, S) internal energy.
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The total pressure is q = p+ 1
2 |H|

2.

In terms of U = (q, v,H, S)T system (1) admits the symmetrization0BB@
ρp/ρ 0T −(ρp/ρ)H 0

0 ρI3 03 0
−(ρp/ρ)H

T 03 I3 + (ρp/ρ)H ⊗H 0
0 0T 0T 1

1CCA ∂t

0BB@
q
v
H
S

1CCA +

0BB@
(ρp/ρ)v · ∇ ∇· −(ρp/ρ)Hv · ∇ 0

∇ ρv · ∇I3 −H · ∇I3 0
−(ρp/ρ)H

T v · ∇ −H · ∇I3 (I3 + (ρp/ρ)H ⊗H)v · ∇ 0
0 0T 0T v · ∇

1CCA
0BB@
q
v
H
S

1CCA = 0

(2)
where 0 = (0, 0, 0)T .
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We write system (2) as

A0(U)∂tU +
3∑
j=1

Aj(U)∂jU = 0, (3)

which is symmetric hyperbolic provided the hyperbolicity condition
A0 > 0 holds:

ρ > 0, ρp > 0.
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Given a smooth hypersurface

Γ(t) = {x3 = f(t, x′)} in [0, T ]× R3,

we denote Ω±(t) = R3 ∩ {x3 ≷ f(t, x′)} (here x′ = (x1, x2)).

The plasma is governed by equations (3) in the region
Ω+(t) = R3 ∩ {x3 > f(t, x′)}.
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x′

x3

x3 = f(t, x′)
Γ

Ω+(t)

Ω−(t)

plasma

vacuum
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The vacuum region is Ω−(t) = R3 ∩ {x3 < f(t, x′)}, where we assume
the so-called pre-Maxwell dynamics:

∇×H = 0, divH = 0, (4)

∇× E = −∂tH, divE = 0, (5)

H denotes the vacuum magnetic field and E the electric field.

As usual in nonrelativistic MHD, we neglect the displacement current
(1/c) ∂tE, where c is the speed of light.

From (5) the electric field E is a secondary variable that may be
computed from the magnetic field H. Hence, in the vacuum only one
basic variable is needed, viz. H, satisfying (4).
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On the moving interface Γ(t) the plasma and the vacuum magnetic
fields are related by:

∂tf = vN , [q] = 0, HN = 0, HN = 0 on Γ(t), (6)

where vN = v ·N , HN = H ·N , HN = H ·N , N = (−∂1f,−∂2f, 1),
and [q] = q|Γ − 1

2 |H|
2
|Γ.

The interface Γ(t) moves with the plasma. The total pressure is
continuous across Γ(t). The magnetic field on both sides is tangent to
Γ(t).

The function f describing the interface is one unknown of the
problem, i.e. this is a free boundary problem.
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System (4) for the vacuum magnetic field H,

∇×H = 0, divH = 0, (4)

is elliptic. Plasma-vacuum problem (3), (4) is a coupled
hyperbolic-elliptic system.
In (4) time t plays the role of a parameter. Time dependence of H
comes from the coupling with the plasma variables through the
boundary conditions (6) at the moving front Γ(t).
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System (3), (4), (6) is supplemented with initial conditions

U(0, x) = U0(x) , H(0, x) = H0(x) , x ∈ Ω±(0) ,
f(0, x′) = f0(x′) , x′ ∈ Γ(0),

(7)

where divH0 = 0 in Ω+(0), divH0 = 0 in Ω−(0).
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Motivation from astrophysics:

the study of stars or the solar corona

Image by Luc Viatour. From Yohkoh satellite (Courtesy by JAXA)
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Other motivation: the study of magnetic confinement

USSR stamp 1987 Tunnel at Monte Carlo (Courtesy by JET)
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A toroidal plasma configuration: (a) surrounded by a perfectly conducting wall;
(b) isolated from a wall by a vacuum region.
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The stability condition

Our goal is to prove the solvability of (3), (4), (6), (7) under the
stability condition

|H ×H| > 0 on [0, T ]× Γ, (8)

i.e. the magnetic fields on the two sides of the free-boundary are
not collinear.

x2

x3

x1

H

H

θ 0 < θ < π

plasma

vacuum
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Reduction to the fixed domain

x′

x3

Φ̃−1(t, ·)Γ(t)

Ω+(t)

Ω−(t) y′

y3

Γ = {y3 = 0}

Ω+

Ω−

Change of variables

Φ̃(t, ·) : y = (y′, y3)→ x = (x′, x3)

such that

x′ = y′, x3 = Φ̃(t, y),

Φ̃(t, y′, 0) = f(t, x′), ∂y3Φ̃(t, y) > 0.

Paolo Secchi Plasma-vacuum interface



Plasma-vacuum interface problem
Analysis of linearized stability

Nonlinear stability

Formulation of the problem
Reduction to the fixed domain

We write again x instead of y.

Possible choice:
Φ̃(t, x′, x3) = x3 + f(t, x′)

[Majda, Proc. AMS 1983], [Métivier, 2003] for uniformly stable
shocks.

We consider a different change of variables, inspired from [Lannes,
JAMS 2005].

Paolo Secchi Plasma-vacuum interface



Plasma-vacuum interface problem
Analysis of linearized stability

Nonlinear stability

Formulation of the problem
Reduction to the fixed domain

Lemma

Let m ≥ 3 be an integer. For all T > 0, and for all
f ∈ ∩m−1

j=0 Cj([0, T ];Hm−j−0.5(R2)), satisfying without loss of
generality ‖f‖C([0,T ];H2(R2)) ≤ 1, there exists a function

Ψ ∈ ∩m−1
j=0 Cj([0, T ];Hm−j(R3)) such that the function

Φ(t, x) :=
(
x′, x3 + Ψ(t, x)

)
, (t, x) ∈ [0, T ]× R3 , (9)

defines an Hm-diffeomorphism of R3 for all t ∈ [0, T ]. Moreover, there
holds ∂jtΦ ∈ C([0, T ];Hm−j(R3)) for j = 0, . . . ,m− 1,
Φ(t, x′, 0) = (x′, f(t, x′)), ∂3Φ(t, x′, 0) = (0, 0, 1).
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We set
Ω± := R3 ∩ {x3 ≷ 0} ,Γ := R3 ∩ {x3 = 0},

and introduce the change of independent variables defined by (9)

Ũ(t, x) := U(t,Φ(t, x)), H̃(t, x) := H(t,Φ(t, x)).

Dropping for convenience tildes in Ũ and H̃, problem (3), (4), (6), (7)
can be reformulated on the fixed reference domains Ω± as

P(U,Ψ) = 0 in [0, T ]× Ω+, V(H,Ψ) = 0 in [0, T ]× Ω−, (10)

B(U,H, f) = 0 on [0, T ]× Γ, (11)

(U,H)|t=0 = (U0,H0) in Ω+ × Ω−, f |t=0 = f0 on Γ, (12)
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where P(U,Ψ) = P (U,Ψ)U ,

P (U,Ψ) = A0(U)∂t +A1(U)∂1 +A2(U)∂2 + Ã3(U,Ψ)∂3,

Ã3(U,Ψ) =
1

∂3Φ3

(
A3(U)−A0(U)∂tΨ−

2∑
k=1

Ak(U)∂kΨ
)
,

V(H,Ψ) =
(
∇× H

div h

)
,

H = (Hτ1 ,Hτ2 ,H3∂3Φ), h = (H1∂3Φ3,H2∂3Φ3,HN ),

HN = H3 −H1∂1Ψ−H2∂2Ψ, Hτi = H3∂iΨ +Hi, i = 1, 2,

B(U,H, ϕ) =

 ∂tf − vN |x3=0

[q]
HN |x3=0

 , [q] = q|x3=0 −
1
2
|H|2x3=0,

vN = v3 − v1∂1Ψ− v2∂2Ψ.
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In the previous system we don’t include the equation

div h = 0 in [0, T ]× Ω+,

and the boundary condition

HN = 0 on [0, T ]× Γ,

where h = (H1∂3Φ3, H2∂3Φ3, HN ), HN = H3 −H1∂1Ψ−H2∂2Ψ,
because they are just restrictions on the initial data.
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Linearization. The basic state

Let us denote

Q±T :=]−∞, T ]× Ω±, ωT :=]−∞, T ]× Γ.

Let
(Û(t, x), Ĥ(t, x), f̂(t, x′)) (13)

be a given sufficiently smooth vector-function, respectively defined on
Q+
T , Q

−
T , ωT , with Û = (q̂, v̂, Ĥ, Ŝ).

Corresponding to the given f̂ we construct Ψ̂, Φ̂ as in Lemma 1 such
that

∂3Φ̂3 ≥ 1/2

(Φ̂ is a diffeomorphism).
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Assume the basic state (13) satisfies

ρ(p̂, Ŝ) > 0, ρp(p̂, Ŝ) > 0 in Q
+
T ,

∂tĤ +
1

∂3Φ̂3

{
(ŵ · ∇)Ĥ − (ĥ · ∇)v̂ + Ĥdiv û

}
= 0 in Q+

T ,

div ĥ = 0 in Q−T ,

∂tϕ̂− v̂N = 0, ĤN = 0 on ωT ,

(all the “hat” functions are determined like corresponding ones for
(U,H, ϕ)), where

û = (v̂1∂3Φ̂3, v̂2∂3Φ̂3, v̂N ), ŵ = û− (0, 0, ∂tΨ̂).
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Linearizing about the basic state (13) leads to the hyperbolic-elliptic
boundary value problem

Â0∂tU +
∑3

j=1 Âj∂jU + ĈU = F in Q+
T ,

∇× H = 0, div h = 0 in Q−T ,

∂tf = vN − v̂1∂1f − v̂2∂2f + f ∂3v̂N + g1,

q = Ĥ · H − [∂3q̂]f + g2,

HN = ∂1

(
Ĥ1f

)
+ ∂2

(
Ĥ2f

)
on ωT ,

(U,H, f) = 0 for t < 0,

(14)

for data F and g = (g1, g2) vanishing in the past, where . . .
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Âα =: Aα(Û), α = 0, 1, 2,

Â3 =: Ã3(Û , Ψ̂), Ĉ := C(Û , Ψ̂),

H = (Hτ1 ,Hτ2 ,H3∂3Φ̂3), h = (H1∂3Φ̂3,H2∂3Φ̂3,HN ),

HN = H3 −H1∂1Ψ̂−H2∂2Ψ̂, Hτi = H3∂iΨ̂ +Hi, i = 1, 2.
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Stability result in H1

Theorem (S. & Trakhinin, 2011)

Let T > 0. Assume the basic state (13) satisfies

|Ĥ × Ĥ| ≥ δ > 0 on ωT , (15)

where δ is a fixed constant. For all (F, g) ∈ H1
tan(Q+

T )×H1.5(ωT )
vanishing in the past, problem (14) has a unique solution
(U,H, f) ∈ H1

tan(Q+
T )×H1(Q−T )×H1.5(ωT ) such that

‖U‖H1
tan(Q+

T ) + ‖H‖H1(Q−T ) + ‖(q, vN , HN )|ωT ‖H0.5(ωT )

+ ‖f‖H1.5(ωT ) ≤ C
(
‖F‖H1

tan(Q+
T ) + ‖g‖H1.5(ωT )

)
where C = C(δ, T ) > 0 is a constant independent of the data (F, g).

Similar a priori estimate in [Trakhinin, JDE 2010].
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Two main ideas for the proof:

1. Hyperbolic regularization

2. Secondary symmetrization
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1. Hyperbolic regularization

We re-introduce the displacement current ∂tE and accordingly modify
the boundary conditions:

Â0∂tU
ε +

∑3
j=1 Âj∂jU

ε + ĈU ε = F in Q+
T ,

ε ∂te
ε −∇× Hε = 0, ε ∂th

ε +∇× Eε = 0 in Q−T ,

∂tf
ε + v̂1∂1f

ε + v̂2∂2f
ε − f ε∂3v̂N − vεN = g1,

qε + [∂3q̂]f ε − ĥ · Hε + ε ê · Eε = g2,

Eε1 − ε ∂t(Ĥ2f
ε) + ε ∂1(Ê3f

ε) = 0,
Eε2 + ε ∂t(Ĥ1f

ε) + ε ∂2(Ê3f
ε) = 0 on ωT ,

(U ε,Hε,Eε, fε) = 0 for t < 0,

(16)

where ε > 0 is a parameter that will converge to zero and where . . .
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Eε = (Eε1, E
ε
2, E

ε
3), Ê = (Ê1, Ê2, Ê3),

Eε = (Eετ1 , E
ε
τ2 , E

ε
3∂3Φ̂3), eε = (Eε1∂3Φ̂3, E

ε
2∂3Φ̂3, E

ε
N ),

Eετk = Eε3∂kΨ̂ + Eεk, k = 1, 2, EεN = Eε3 − Eε1∂1Ψ̂− Eε2∂2Ψ̂.

The coefficients Êj will be chosen later on.

All the other notations for U ε and Hε (e.g., vεN , hε, ĥ, etc.) are
analogous to those for U and H.
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Solutions to problem (16) satisfy

div hε = 0 in Q+
T ,

div hε = 0, div eε = 0 in Q−T ,

Hε
N = Ĥ1∂1f

ε + Ĥ2∂2f
ε − f ε∂3ĤN ,

HεN = ∂1

(
Ĥ1f

ε
)

+ ∂2

(
Ĥ2f

ε
)

on ωT ,

(17)

(as restrictions on the initial data).

If Ψ = 0,Φ3 = x3, then hε = Hε = Hε , eε = Eε = Eε; when ε = 1
(16)2 is nothing else than the usual Maxwell equations.
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Under the boundary conditions in (16), (17), the boundary ωT is

characteristic for the plasma equations (size N = 8,
rank(Â3) = 2); we expect a loss of regularity in the normal
direction to the boundary. We are forced to study the system in
weighted anisotropic Sobolev spaces Hm

∗ ;

characteristic for the vacuum equations (size N = 6, rank=4).
Full regularity in standard Sobolev spaces Hm is expected thanks
to the constraints (17).
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Proof
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If we look for a standard L2 energy estimate we get the boundary
integral ∫

ωT

(
−qεvεN +

1
ε

(Hε
1E

ε
2 − Hε

2E
ε
1)
)
dx′ dt.

We don’t know how to control it.

As regards existence of solutions, main difficulties are:

the coupling with the front f ε (UKL doesn’t hold)

the so-called non-reflexivity [Ohkubo, Hokkaido MJ 1981]:

ker

(
−Â3|x3=0 0

0 Bε
3

)
︸ ︷︷ ︸ * N

↑ ↑
boundary matrix boundary space (for f ε = 0)

(Bε
3 denotes the boundary matrix in the Maxwell equations)
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Proof
High-order energy estimate

In fact, at {x3 = 0}∣∣∣∣(−Â3 0
0 Bε

3

)(
U ε

V ε

)∣∣∣∣ � C(|Hε3|+ |Eε3|)

(where V ε = (Hε, Eε)),
so that the boundary conditions (involving Hε3, Eε3) do not have (weak
H−1/2) sense in a weak formulation.

Thus we consider the following secondary symmetrization for the
modified Maxwell equations obtained from a linear combination of
(16)2 and the restrictions (17)2.
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

2. Secondary symmetrization

Let us define the matrix

η̂ =

 ∂3Φ̂3 0 0
0 ∂3Φ̂3 0

−∂1Ψ̂ −∂2Ψ̂ 1

 .

For every choice of vector functions ~ν 6= 0, consider the system,
obtained from (16)2, (17)2,

(∂thε +
1
ε
∇× Eε)− η̂

(
~ν × η̂−1(ε∂teε −∇× Hε)

)
+

η̂ ~ν

∂3Φ̂3

div hε = 0,

(∂teε −
1
ε
∇× Hε) + η̂

(
~ν × η̂−1(ε∂thε +∇× Eε)

)
+

η̂ ~ν

∂3Φ̂3

div eε = 0.

(18)
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

(18) is symmetric hyperbolic provided

ε|~ν| < 1,

and equivalent to (16)2 on solutions with initial data satisfying the
constraints

div hε = 0, div eε = 0 for t = 0.

Thus we may deal with (18) instead of (16)2.
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Proof
High-order energy estimate

Lemma

Let T > 0. Assume the basic state (13) satisfies |Ĥ × Ĥ| ≥ δ > 0 on
ωT , where δ is a fixed constant.
Then for all ε > 0 sufficiently small and all F ∈ H1

tan(Q+
T ),

g ∈ H1.5(ωT ), vanishing in the past, problem (16) has a unique
solution
(U ε,Hε,Eε, fε) ∈ H1

tan(Q+
T )×H1(Q−T )×H1(Q−T )×H1.5(ωT ) such

that

‖U ε‖H1
tan(Q+

T ) + ‖Hε,Eε‖H1(Q−T ) + ‖(qε, vεN , Hε
N )|ωT ‖H0.5(ωT )

+ ‖f ε‖H1.5(ωT ) ≤ C
(
‖F‖H1

tan(Q+
T ) + ‖g‖H1.5(ωT )

)
(19)

where C = C(δ, T ) > 0 is a constant independent of ε and the data
(F, g).
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Linearized stability in H1

Proof
High-order energy estimate

Proof of the Lemma. Control of the front

The boundary condition (16)3

∂tf
ε + v̂1∂1f

ε + v̂2∂2f
ε = g1 + f ε∂3v̂N + vεN (20)

is a linear transport equation. Solving it, f ε gets the regularity of vεN .
On the other hand, the boundary constraints (17) yield{

Ĥ1∂1f
ε + Ĥ2∂2f

ε = Hε
N + f ε∂3ĤN ,

Ĥ1∂1f
ε + Ĥ2∂2f

ε = HεN −
(
∂1Ĥ1 + ∂2Ĥ2

)
f ε on ωT ,

(21)

Under the stability condition (15) we have

Ĥ1Ĥ2 − Ĥ2Ĥ1 6= 0,

and we may solve the above linear system (21) and (20) for ∇t,x′f ε.
Thus ∇t,x′f ε has the regularity of vεN , H

ε
N ,HεN at Γ, i.e. f ε

gains one derivative. N −M
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Linearized stability in H1

Proof
High-order energy estimate

Proof of the Lemma. Analysis of boundary
terms

Write the secondary symmetrization (18) as

M ε
0∂tW

ε +
3∑
j=1

M ε
j ∂jW

ε +M ε
4W

ε = 0, (22)

where W ε = (Hε,Eε).
Look for a L2 energy estimate for system (16)1, (22), where we choose

ν1 = v̂1, ν2 = v̂2, ν3 = v̂1∂1f̂ + v̂2∂2f̂ .

Under this choice the boundary is characteristic for (22).
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Linearized stability in H1

Proof
High-order energy estimate

We get the boundary integral

A := −1
2

∫
ωT

(Â1U
ε, U ε)− (M ε

1W
ε,W ε)dx′ dt =

=
∫
ωT

(
− qεvεN +

1
ε

(Hε
1E

ε
2 − Hε

2E
ε
1)

+ (v̂1H
ε
1 + v̂2H

ε
2)HεN + (v̂1E

ε
1 + v̂2E

ε
2)EεN

)
dx′ dt.

Inserting the boundary conditions of (16) (where Eε1,E
ε
2 are chosen

proportional to ε) gives
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Linearized stability in H1

Proof
High-order energy estimate

A :=
∫
ωT

(
Ê3 + v̂1Ĥ2 − v̂2Ĥ1

)(
εEεN∂tf

ε + Hε
1∂2f

ε − Hε
2∂1f

ε
)

+ ε
(
Êτ1E

ε
1 + Êτ2E

ε
2

)(
∂tf

ε + v̂1∂1f
ε + v̂2∂2f

ε
)

+ f ε
{

[∂3q̂] vεN − ∂3v̂N (qε + [∂3q̂]f ε) + (∂tĤ2 − ∂1Ê3)(Hε
2 + εv̂1E

ε
N )

+ (∂tĤ1 + ∂2Ê3)(Hε
1 − εv̂2E

ε
N ) + (∂1Ĥ1 + ∂2Ĥ2)(v̂1H

ε
1 + v̂2H

ε
2)
}
.

We choose
Ê = −~ν × Ĥ,

so that
Ê3 + v̂1Ĥ2 − v̂2Ĥ1 = 0, Êτ1 = 0, Êτ2 = 0.

The choice is related to Ohm’s law.
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ε
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+ ε
(
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ε
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ε
2

)(
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ε + v̂1∂1f
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ε
)
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ε
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+ (∂tĤ1 + ∂2Ê3)(Hε
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ε
N ) + (∂1Ĥ1 + ∂2Ĥ2)(v̂1H

ε
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ε
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Ê = −~ν × Ĥ,

so that
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

We are left with no derivatives of f ε :

A :=
∫
ωT

f ε
{

[∂3q̂] vεN − ∂3v̂N (qε + [∂3q̂]f ε)

+ (∂tĤ2 − ∂1Ê3)(Hε
2 + εv̂1E

ε
N )

+ (∂tĤ1 + ∂2Ê3)(Hε
1 − εv̂2E

ε
N )

+ (∂1Ĥ1 + ∂2Ĥ2)(v̂1H
ε
1 + v̂2H

ε
2)
}
.

To exploit the diminished order we pass to an energy estimate in H1
tan

(instead of L2), take tangential derivatives, perform some integration
by parts, use the higher regularity at the boundary of the
noncharacteristic part of the vector solution, etc etc . . .
In the end we get the (uniform in ε) a priori estimate (19).
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Analysis of linearized stability

Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

Proof of Theorem 1

Given the uniform (in ε) a priori estimate (19), we may
pass to the limit in the hyperbolic regularizing system (16) as ε→ 0
and find the solution (U,H, f) ∈ H1

tan(Q+
T )×H1(Q−T )×H1(ωT ) of

the linearized problem (14):

Â0∂tU +
∑3

j=1 Âj∂jU + ĈU = F in Q+
T ,

∇× H = 0, div h = 0 in Q−T ,

∂tf = vN − v̂1∂1f − v̂2∂2f + f ∂3v̂N + g1,

q = Ĥ · H − [∂3q̂]f + g2,

HN = ∂1

(
Ĥ1f

)
+ ∂2

(
Ĥ2f

)
on ωT ,

(U,H, f) = 0 for t < 0.
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

High-order energy estimate

As we want to work with functions in Sobolev spaces (vanishing at
infinity), in contradiction with a uniform stability condition

|H ×H| ≥ δ > 0 on [0, T ]× Γ,

we make a shift by a constant solution.
Let us consider constant solutions Ū and H̄ (with f = 0), where

Ū = (q̄, 0, 0, 0, H̄, 0), H̄ = (H̄1, H̄2, 0), H̄ = (H̄1, H̄2, 0), (23)

q̄ = p̄+ H̄2
1+H̄2

2
2 = H̄2

1+H̄2
2

2 , p̄ > 0,
ρ(p̄, 0) > 0, ρp(p̄, 0) > 0 (hyperbolicity condition),
H̄1H̄2 − H̄2H̄1 6= 0 (stability condition).

(24)
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Analysis of linearized stability

Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

Make a shift by the change of unknowns

Ŭ = U − Ū , H̆ = H− H̄, (25)

then write again U,H instead of Ŭ , H̆.
We reformulate the problem in terms of the new unknowns as:

P(U,Ψ) = 0 in [0, T ]× Ω+, (26)

V(H,Ψ) = 0 in [0, T ]× Ω−, (27)

B(U,H, ϕ) = 0 on [0, T ]× Γ, (28)

lim
|x|→∞

(U,H, ϕ) = 0, (29)

(U,H)|t=0 = (U0,H0) in Ω+ × Ω−, ϕ|t=0 = ϕ0 on Γ, (30)
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

where now P(U,Ψ) = P (U,Ψ)U ,

P (U,Ψ) = A0(U+Ū)∂t+A1(U+Ū)∂1+A2(U+Ū)∂2+Ã3(U+Ū ,Ψ)∂3,

B(U,H, ϕ) =

 ∂tϕ− vN |x3=0

[q]
HN |x3=0 − ∂1(H̄1ϕ)− ∂2(H̄2ϕ)

 ,

[q] = q|x3=0 −
1
2
|H|2x3=0 − H̄ · H|x3=0.

As for the constraints, we have the new one

HN = ∂1(H̄1ϕ) + ∂2(H̄2ϕ) on [0, T ]× Γ,

instead of HN = 0.
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

Now linearize about the basic state

(Û(t, x) + Ū , Ĥ(t, x) + H̄, f̂(t, x′)). (31)

Assume the basic state (31) satisfies

ρ(p̂+ p̄, Ŝ) > 0, ρp(p̂+ p̄, Ŝ) > 0 in Q
+
T ,

∂tĤ+
1

∂3Φ̂3

{
(ŵ · ∇)Ĥ − ((ĥ+ h̄) · ∇)v̂ + (Ĥ + H̄)div û

}
= 0 inQ+

T ,

div ĥ = 0 in Q−T ,

∂tϕ̂− v̂N = 0, ĤN = ∂1(H̄1ϕ) + ∂2(H̄2ϕ) on ωT ,

(all the “hat” and “bar” functions are determined like corresponding
ones for (U,H, ϕ)).
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Linearized stability in H1

Proof
High-order energy estimate

Linearization leads to the nonhomogeneous hyperbolic-elliptic
boundary value problem

Â0∂tU +
∑3

j=1 Âj∂jU + ĈU = F in Q+
T ,

∇× H = χ, div h = Ξ in Q−T ,

∂tf = vN − v̂1∂1f − v̂2∂2f + f ∂3v̂N + g1,

q = (Ĥ+ H̄) · H − [∂3q̂]f + g2,

HN = ∂1

(
(Ĥ1 + H̄1)f

)
+ ∂2

(
(Ĥ2 + H̄2)f

)
+ g3 on ωT ,

(U,H, f) = 0 for t < 0,

(32)

Paolo Secchi Plasma-vacuum interface



Plasma-vacuum interface problem
Analysis of linearized stability
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Linearized stability in H1

Proof
High-order energy estimate

where
Âα =: Aα(Û + Ū), α = 0, 1, 2,

Â3 =: Ã3(Û + Ū , Ψ̂), Ĉ := C(Û , Ψ̂),

for data (F, χ,Ξ) and g = (g1, g2, g3) vanishing in the past, and
satisfying the compatibility conditions

divχ = 0,
∫

Ω− Ξ dx =
∫

Γ g3 dx
′,
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Nonlinear stability

Linearized stability in H1

Proof
High-order energy estimate

Assumptions:

Let T > 0, m ∈ N,m ≥ 1, s = max{m, 7}. Assume the basic state
(31) satisfies the stability condition

|(Ĥ + H̄)× (Ĥ+ H̄)| ≥ δ > 0 on ωT ,

where δ is a fixed constant.

Û ∈ Hs+1
∗ (Q+

T ), Ĥ ∈ Hs(Q−T ), ∇Ψ̂ ∈ Hs+1(QT ),
F ∈ Hm+1

∗ (Q+
T ), (χ,Ξ) ∈ Hm−1(Q−T ) ∩L6/5(Q−T ),

g ∈ Hm+1/2(ωT ) with g3 ∈ L4/3(ωT ), all functions vanishing in the
past. Hm

∗
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Proof
High-order energy estimate

Theorem (S. & Trakhinin, 2012)

Under the previous assumptions, problem (32) has a unique solution
(U,H, f) ∈ Hm

∗ (Q+
T )×Hm(Q−T )×Hm+1/2(ωT ).

For m ≥ 7 the solution obeys the tame estimate

‖U‖2
Hm
∗ (Q+

T )
+ ‖H‖2

Hm(Q−T )
+ ‖(q, vN , HN )|ωT ‖Hm−1/2(ωT )

+ ‖f‖2
Hm+1/2(ωT )

≤ C
{(
‖f̃‖2H8

∗(QT ) + ‖χ,Ξ‖2
H7(Q−T )

+ ‖g‖2H7.5(ωT )

+ ‖χ,Ξ‖2
L2(0,T ;L6/5(Ω−))

+ ‖g3‖2L2(0,T ;L4/3(Γ))

)
×

×
(
‖Û‖2

Hm+1
∗ (Q+

T )
+ ‖Ĥ‖2

Hm(Q−T )
+ ‖∇Ψ̂‖2Hm+1(QT )

)
+ ‖F‖2

Hm+1
∗ (QT )

+ ‖χ,Ξ‖2
Hm−1(Q−T )

+ ‖g‖2
Hm+1/2(ωT )

+ ‖χ,Ξ‖2
L2(0,T ;L6/5(Ω−))

+ ‖g3‖2L2(0,T ;L4/3(Γ))

}
. (33)
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Linearized stability in H1

Proof
High-order energy estimate

Proof of Theorem 2

It follows from Theorem 1 and estimates of commutators.
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Nonlinear stability

Nash-Moser technique
Main result

Summarizing:

1st step:
Linearized stability in H1.

2nd step:
Higher-order tame estimate.

3rd step:
Solve the original nonlinear problem (10), (11), (12) by a Nash-Moser
iteration.
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Nash-Moser technique

Given F : X 7→ X, with X a Banach space (the same space for the
sake of simplicity), we want to solve the nonlinear equation

F(u) = w, (34)

where we may assume F(0) = 0.
1) Assume F is continuously differentiable and the linear application
F ′(·) is invertible in a neighborhood of u = 0. Then F is locally
invertible.
By Newton’s method we may solve (34) by the approximating
sequence

u0 = 0,
uk+1 = uk + (F ′(uk))−1(w −F(uk)), k ≥ 1.

(35)

Newton’s method has a fast convergence rate:

‖uk+1 − uk‖X ≤ C‖uk − uk−1‖2X .
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2) Instead of one single space X, we are given a scale of Banach
spaces X0 ⊃ X1 ⊃ · · · ⊃ Xm ⊃ . . . with norms ‖ · ‖m, m ≥ 0, and
∩m≥0Xm = C∞.
For instance Xm = Hm (Sobolev spaces), Xs = Cs (Hölder spaces).

It may happen that F : Xm 7→ Xm, but F ′(·) is only invertible
between Xm and Xm−r, with a loss of regularity of order r.

Trying to solve (34) again by Newton’s method (35) we get

‖uk+1 − uk‖m−r ≤ C‖uk − uk−1‖2m,

with a finite loss of regularity at each step. Iteration is impossible!
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The idea is to compensate the loss of regularity with the fast
convergence rate.
To do so we introduce a family of smoothing operators {Sθ}θ≥1

Sθ : ∪m≥0Xm 7→ ∩m≥0Xm

with the following properties (α and β in a bounded interval):

i) ‖Sθu‖α ≤ C ‖u‖β α ≤ β,
ii) ‖Sθu‖α ≤ C θα−β‖u‖β β ≤ α,
iii) ‖Sθu− u‖α ≤ C θα−β‖u‖β α ≤ β,
iv) ‖ ddθSθu‖α ≤ C θα−β−1‖u‖β ∀α, β.
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We modify (35) by considering the approximating sequence

u0 = 0,
uk+1 = uk + (F ′(Sθk

uk))−1(w −F(uk)),
(36)

where θk →∞ as k →∞.

Balancing in appropriate way the fast convergence rate of Newton’s
scheme and loss of regularity gives the convergence of the
approximating sequence.
Since formally Sθk

→ I as k →∞ (in low norm), the sequence {uk} is
expected to converge to a solution u of (34).

By adapting the Nash-Moser technique to our problem, we get our
main result:
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Theorem (S. & Trakhinin, 2012)

Let m ≥ 13. Consider the constant solution (23) (Ū , H̄, 0), satisfying
(24). Consider initial data (U0,H0, f0) that are compactly supported
perturbations in Hm+9.5(Ω+)×Hm+9.5(Ω−)× Hm+10(Γ) of the
constant solution (23), and that satisfy the hyperbolicity condition
together with suitable compatibility conditions. The initial magnetic
fields satisfy the necessary initial constraints and the stability condition

|H0 ×H0| ≥ δ > 0 on Γ,

where δ is a fixed constant.

If T > 0 is sufficiently small, then there exists a unique solution
(U,H, f) on [0, T ] of (26)–(30) with initial data (U0,H0, f0). The
solution is such that (U − Ū ,H− H̄, f) ∈ Hm

∗ (]0, T [×Ω+)×
Hm(]0, T [×Ω−)× Hm+0.5(]0, T [×Γ).
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Conclusion

Under the stability condition

|H ×H| ≥ δ > 0 on [0, T ]× Γ,

we have shown the well-posedness of the nonlinear plasma-vacuum
interface problem (10), (11), (12).

x2

x3

x1

H

H

θ 0 < θ < π

plasma

vacuum
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Thank you for your attention!
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The plasma variables U = (q, v,H, S) solve an IBVP with
characteristic boundary. The natural function space is the
anisotropic weighted Sobolev space Hm

∗ (Ω) where the trace operator

γ0 : U 7→ U|Γ, γ0 : Hm
∗ (Ω+) 7→ Hm−1(Γ).

Then for every fixed t

U ∈ Hm
∗ (Ω+),H ∈ Hm(Ω−)

⇒ (v,H,H)|Γ ∈ Hm−1(Γ)
⇒ ∇t,x′f ∈ Hm−1(Γ)⇒ f ∈ Hm(Γ)⇒ Φ ∈ Hm+0.5(R3)
⇒ U ∈ Hm−1

∗ (Ω+),H ∈ Hm−1(Ω−).

We lose one derivative!
The loss of regularity forces the use of a Nash-Moser iteration.
This fact justifies the study of the linearized problem. back
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For characteristic boundaries, the natural function space is the
weighted anisotropic Sobolev space

Hm
∗ (Ω) := {u ∈ L2(Ω) : Zα∂kxn

u ∈ L2(Ω), |α|+ 2k ≤ m},

where

Zα := Zα1
1 . . . Zαn

n , α = (α1, . . . , αn) ,
Zj = ∂xj for j = 1, . . . , n− 1 and Zn = xn∂xn ,

if Ω = {xn > 0}.

Generally speaking, one normal derivative (w.r.t. ∂Ω) is controlled by
two tangential derivatives. back2
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