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PLASMA-VACUUM INTERFACE PROBLEM
R N FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

IDEAL COMPRESSIBLE MHD

Consider the ideal compressible MHD equations:

dp+V-(pv) =0,
O (pv) + V- (pv@v—H®H)+V(p+3|H?) =0,
OH -V x(vx H)=0,
d;(pe + 3 (plv® + |H|?))

+V - (pv(e + 3[v?) +vp+ H x (v x H)) =0,
V-H=0,

(1)

with
p density, S entropy, v velocity field, H magnetic field,
p = p(p, S) pressure (such that pj, > 0), e = e(p, S) internal energy.
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

The total pressure is ¢ = p + 3| H|?.

In terms of U = (q,v, H, S)T system (1) admits the symmetrization

Pp/p 0" —(pp/P)H 0 q
0 pls 03 0 al? |+
~(pp/P)HT 03 Is+(pp/p)HOH 0 H
0 o7 o7 1 S
(pp/P)v -V V- —(pp/p)Hv -V 0 q
\Y% pv - Vi3 —H VI3 0 v -0
—(pp/p)H v -V —H-VIz I3+ (pp/p)HR Hv-V 0 H|
0 o” o7 v-V/) \S
()

where 0 = (0,0,0)7.
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

We write system (2) as

3
A(U)aU + Y Aj(U)9;U =0, (3)
j=1

which is symmetric hyperbolic provided the hyperbolicity condition
Ay > 0 holds:

p>0, pp,>0.
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

Given a smooth hypersurface
I'(t) = {z3 = f(t,2)}  in[0,T] x R,
we denote QF(¢) = R3N {x3 = f(t,2')} (here 2’ = (z1,72)).

The plasma is governed by equations (3) in the region
QF(t) =R3N {x3 > f(t,2)}.
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PLASMA-VZ UM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

T3

()

plasma

vacuum




PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

The vacuum region is Q= (t) = R3 N {x3 < f(t,2')}, where we assume
the so-called pre-Maxwell dynamics:

V x 'H =0, divH = 0, (4)

VxE=-0H, divE=0, (5)

‘H denotes the vacuum magnetic field and E the electric field.

As usual in nonrelativistic MHD, we neglect the displacement current
(1/c) O,E, where ¢ is the speed of light.

From (5) the electric field E is a secondary variable that may be
computed from the magnetic field H. Hence, in the vacuum only one
basic variable is needed, viz. H, satisfying (4).
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

On the moving interface I'(¢) the plasma and the vacuum magnetic
fields are related by:

Ohf=wvn, [¢J=0, Hyx=0, Hyxy=0 onT(¢), (6)

where vy =v-N, Hy=H -N, Hy=H-N, N = (=01 f, —0af, 1),
and [q] = q|r — 3| [}

The interface I'(¢) moves with the plasma. The total pressure is
continuous across I'(t). The magnetic field on both sides is tangent to
I'(t).

The function f describing the interface is one unknown of the
problem, i.e. this is a free boundary problem.
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FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

System (4) for the vacuum magnetic field 7,
V xH=0, divH =0,

is elliptic. Plasma-vacuum problem (3), (4) is a coupled
hyperbolic-elliptic system.
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

System (4) for the vacuum magnetic field 7,
VxH=0  divH=0, (4)

is elliptic. Plasma-vacuum problem (3), (4) is a coupled
hyperbolic-elliptic system.

In (4) time ¢ plays the role of a parameter. Time dependence of H
comes from the coupling with the plasma variables through the
boundary conditions (6) at the moving front I'(¢).
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

System (3), (4), (6) is supplemented with initial conditions

U(0,2) = Up(x), H(0,z)=Ho(z), =z e Q*(0), (7)
f(O, x/) = fo(%‘l) ) Tl F(O)v

where div Hy = 0 in Q7 (0), divHo = 0 in Q(0).
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FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

Motivation from astrophysics:

the study of stars or the solar corona

Image by Luc Viatour.
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

Other motivation: the study of magnetic confinement

USSR stamp 1987 Tunnel at Monte Carlo (Courtesy by JET)
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PLASMA-VACUUM INTERFACE PROBLEM

FORMULATION OF THE PROBLEM
REDUCTION TO THE FIXED DOMAIN

PLASMA’ WALL

(a) (b)

A toroidal plasma configuration: (a) surrounded by a perfectly conducting wall;
(b) isolated from a wall by a vacuum region.




PLASMA-VACUUM INTERFACE PROBLEM
. N FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

THE STABILITY CONDITION

Our goal is to prove the solvability of (3), (4), (6), (7) under the
stability condition

|H x H| >0 on [0,7] x T, (8)

i.e. the magnetic fields on the two sides of the free-boundary are
not collinear.

x3
plasma
x2
vacuum
1
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PLASMA-VACUUM INTERFACE PROBLEM .
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

REDUCTION TO THE FIXED DOMAIN

Change of variables

Ot,-):y=(v,y3) = = (2, 23)

such that
ZL‘/ = y/7 xr3 = q)(tay)a

B(t,y,0) = f(t,2'), 0y, ®(t,y) > 0.

PaoLo SEccHI PLASMA-VACUUM INTERFACE



PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

We write again x instead of y.

Possible choice:

O(t, 2, x3) = z3 + f(t,2)

[Majda, Proc. AMS 1983], [Métivier, 2003] for uniformly stable
shocks.

We consider a different change of variables, inspired from [Lannes,
JAMS 2005].
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PLASMA-VACUUM INTERFACE PROBLEM . -
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

LEMMA

Let m > 3 be an integer. For all T > 0, and for all

fe ﬂg’“:_Ole([O, T); H™7=95(R?)), satisfying without loss of
generality || fllc(jo.r1;m2(r2)) < 1, there exists a function

U e NGMCI([0, T); H™ I (R®)) such that the function

®(t,z) := (¢, z3 + ¥(t,2)), (t,z) €[0,T] x R?, (9)
defines an H™-diffeomorphism of R3 for all t € [0, T]. Moreover, there

holds & ® € C([0,T]; H™9(R3)) for j = 0,...,m — 1,
O(t,2',0) = (2, f(t,2)), 03®(t,2',0) = (0,0,1).
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PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

We set
O :=R°N{z3 20} ,I:=R°nN{z3=0},

and introduce the change of independent variables defined by (9)

Ut,z) =U(t,®(t,x)), H(t x):=H(t, Ot z)).
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PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

We set
O :=R°N{z3 20} ,I:=R°nN{z3=0},

and introduce the change of independent variables defined by (9)

Ut,z) =U(t,®(t,x)), H(t x):=H(t, Ot z)).

Dropping for convenience tildes in U and H, problem (3), (4), (6), (7)
can be reformulated on the fixed reference domains Q= as

P(U,¥)=0 in[0,T] xQ", V(H,¥)=0 in[0,7]xQ", (10)

B(U,H,f)=0 on[0,T] xT, (11)
(U7 H)’t:[) = (UOJHO) in Q+ X Qia f’t:[) = fO on F7 (12)
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PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

where P(U, V) = P(U,¥)U,

P(U,¥) = Ag(U)0; + A1(U)d1 + As(U)ds + A3(U, ¥)0s,

As(U, ) =

2
031@3 (A5(0) — Ao()aT — 3 Au(U)3kT),
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PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

where P(U, V) = P(U,¥)U,

P(U,¥) = Ag(U)0; + A1(U)d1 + As(U)ds + A3(U, ¥)0s,

As(U, ) =

2
(45(U) = A @)A1 = Y~ Ap(U)BR),

1
05®3 k=1

V(H, ) = ( ope )

9= (Hr, Hry, H303®), b= (H103P3, H203P3, Hy),
Hy = Hz — H101¥ — H202V, H. =Hz0¥ +H;, i=1,2,
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PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

where P(U, V) = P(U,¥)U,

P(U,¥) = Ag(U)0; + A1(U)d1 + As(U)ds + A3(U, ¥)0s,

2
(U, 9) = 5= (Aa(U) ~ Aa(0)01¥ - > A
wow=(52)

9= (Hr, Hry, H303®), b= (H103P3, H203P3, Hy),
Hy = Hz — H101¥ — H202V, H. =Hz0¥ +H;, i=1,2,

atf — UN|z3=0 1 )
]B(UuHu 90) = [Q] ) [q] = q|$3=0 - §|H‘x3207
HN|z3=0

vN = v3 — 0101V — 1205V,
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PLASMA-VACUUM INTERFACE PROBLEM . 8
FORMULATION OF THE PROBLEM

REDUCTION TO THE FIXED DOMAIN

In the previous system we don't include the equation
divh=0 in[0,T] x QF,
and the boundary condition
Hy=0 on[0,7] xT,

where h = (H183<I>3, H283<I>3, HN), HN = H3 — H181\If — HQ@Q\I/,
because they are just restrictions on the initial data.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY PROOF
HIGH-ORDER ENERGY ESTIMATE

LINEARIZATION. THE BASIC STATE

Let us denote
QF :=] — 00, T] x OF, wp :=] —00,T] xT.
Let R R X
U(t,x), H(t, ), f(t,2")) (13)
be a given sufficiently smooth vector-function, respectively defined on
Q;,Q;,UJT, with U = (¢,v,H, S).
Corresponding to the given f we construct ¥, ® as in Lemma 1 such

that R
03P3 > 1/2

(® is a diffeomorphism).
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY PROOF

HIGH-ORDER ENERGY ESTIMATE

Assume the basic state (13) satisfies

p(p,S) >0, pp(58)>0 inQp,

P,
{ —(h- V)U+Hdlvu}:O in QF,

divh=0 inQy,
op—on=0 Hy=0 onwr,

(all the “hat” functions are determined like corresponding ones for
(U, H,¢)), where

@ = (0,03Ps3, 020503, 0y), ® =1a— (0,0,8,D).
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY PROOF

HIGH-ORDER ENERGY ESTIMATE

Linearizing about the basic state (13) leads to the hyperbolic-elliptic
boundary value problem

AU + 35 A;0,U+CU = F in Q7
Vx$H=0 divh=0 in Qrp,

8tf :A’UN fﬁlalf*@282f+f83®]\/v+gla (14)
q="H -H—[04]f + g2,

Hy = 01(Hif) + 02(Haf) on wr,
(UH,f)=0 for t < 0,

for data F' and g = (g1, g2) vanishing in the past, where ...
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ANALYSIS OF LINEARIZED STABILITY

Ay =

A =: A,

fj = (HTl ) H’TQ ) H3a363)7

Hy = Hs — H10U — Ho0, 0,

PAoLO SECCHI

f5> ?
Q‘>

LINEARIZED STABILITY IN H
PROOF
HIGH-ORDER ENERGY ESTIMATE

a=0,1,2,
C:=C(U,V),

b = (H105B3, HaO3 D3, Hy),

Hy = Hs0 U +H;, i=1,2.
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P1 I Ut I'ERFACE PROBLEM LINEARIZED STABILITY IN H
\N-\I\\]\ OF LINEARIZED STABILITY PROOF
) INEAR ST ILITY HIGH-ORDER ENERGY ESTIMATE

STABILITY RESULT IN H'!

THEOREM (S. & TRAKHININ, 2011)
Let T' > 0. Assume the basic state (13) satisfies
|HxH|>6>0 on wr, (15)

where § is a fixed constant. For all (F,g) € H},,,(QF) x H5(wr)
vanishing in the past, problem (14) has a unique solution

(U, H, f) € H.,.(QF) x HY(Q7) x H5(wr) such that

||U”Ht1an(Q;) + HHHHI(Q;) + [I(q, UN:-HN)’UJTHHO'S(MT)
+ 1l wr) < C(HFHHtlm(Q;) + gl z15 (o))

where C = C(6,T) > 0 is a constant independent of the data (F,g).

Similar a priori estimate in [Trakhinin, JDE 2010].
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor
HIGH-ORDER ENERGY ESTIMATE

TWO MAIN IDEAS FOR THE PROOF:

1. Hyperbolic regularization

2. Secondary symmetrization
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor
HIGH-ORDER ENERGY ESTIMATE

1. HYPERBOLIC REGULARIZATION

We re-introduce the displacement current 9;E and accordingly modify
the boundary conditions:

/TOBtanLZ?:l A\jajU6+é\U6 =F in Q%,
g0 =V X H° =0, eOH*+V X € =0 inQrp,

Oi f€ + 0101 f° + D202 f° — fEO30N — vy = g1,

" g N 16
¢"+ (0341 /T —b-H" +ce- € =gy, (16)
€] — e 0y (Haf®) + € 01(E3f%) = 0,
€5+ 0i(H1f®) +02(E3f%) =0 on wr,
(U2, 9°, €, f) =0 for t <0,

where € > 0 is a parameter that will converge to zero and where . ..
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

Ef = ( T,ES,E;?), E = (ElﬂE27E3)a
€ = (ES, ES,, E50:03), ¢ = (E{03B3, E50:®3, EY),

T1?

ES = B5o 0+ Ef, k=1,2, Ey = E5— E{0,¥ — E50,0.

The coefficients Ej will be chosen later on.

All the other notations for U¢ and H® (e.g., v%;, b°, b, etc.) are
analogous to those for U and H.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

Solutions to problem (16) satisfy

divh® =0 in QF,
divh® =0, dive® =0 _ inQy, an
HS = H101f¢ + Ha02f¢ — feO3HN,

5 = 01 (H1f%) + 02 (Ha ) on wr,

(as restrictions on the initial data).

If ¥ =0,®3 =x3, then h® = H° = H®,¢* = & = E°; whene =1
(16)2 is nothing else than the usual Maxwell equations.

PAoLo SECccHI PLASMA-VACUUM INTERFACE



LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

Under the boundary conditions in (16), (17), the boundary wr is

@ characteristic for the plasma equations (size N = 8§,
rank(A3) = 2); we expect a loss of regularity in the normal
direction to the boundary. We are forced to study the system in
weighted anisotropic Sobolev spaces H";

@ characteristic for the vacuum equations (size N = 6, rank=4).
Full regularity in standard Sobolev spaces H™" is expected thanks
to the constraints (17).
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE
If we look for a standard L? energy estimate we get the boundary

integral

1
/ (qsvf\, + - (9H5¢5 — ﬁ%@i)) dx’ dt.
wr

€

We don't know how to control it.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

If we look for a standard L? energy estimate we get the boundary
integral

1
/ (qsvf\; + - (9H5¢5 — ﬁ%@i)) dx’ dt.
wr

€
We don't know how to control it.
As regards existence of solutions, main difficulties are:

@ the coupling with the front f¢ (UKL doesn't hold)
@ the so-called non-reflexivity [Ohkubo, Hokkaido MJ 1981]:

—Aspo O
ker( 3(‘)3 0 B§>$ZN

T T

boundary matrix boundary space (for f¢ =0)

(B3 denotes the boundary matrix in the Maxwell equations)
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

In fact, at {z3 = 0}

o 5e) (o) | comsi+ 1)

(where V& = (H®, E¥)),
so that the boundary conditions (involving H§, £5) do not have (weak
H~'/2) sense in a weak formulation.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

In fact, at {z3 = 0}

o 5e) (o) | comsi+ 1)

(where V& = (H®, E¥)),
so that the boundary conditions (involving H§, £5) do not have (weak
H~'/2) sense in a weak formulation.

Thus we consider the following secondary symmetrization for the
modified Maxwell equations obtained from a linear combination of
(16)2 and the restrictions (17)a.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor
HIGH-ORDER ENERGY ESTIMATE

2. SECONDARY SYMMETRIZATION

Let us define the matrix
903 0 0
ﬁ — 0 83(193 0
-0 —0LU 1

For every choice of vector functions &/ # 0, consider the system,
obtained from (16)2, (17)2,

1
(h° + -V x &) =7 (7 x 771 (e0pe® — V x H°)) + —0,
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

(18) is symmetric hyperbolic provided

elv] < 1,

and equivalent to (16)2 on solutions with initial data satisfying the
constraints

divh®* =0, dive* =0 for t = 0.

Thus we may deal with (18) instead of (16)s.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

LEMMA

Let T > 0. Assume the basic state (13) satisfies |H x H| > 6 > 0 on
wr, where § is a fixed constant.

Then for all € > 0 sufficiently small and all F € H},,(QF),

g € HY?(wr), vanishing in the past, problem (16) has a unique
solution

(U%, 59, €, 1) € L, (QF) x H(@Q7) x HY(Q7) x H'S(wr) such
that

100 @y + 19° €1 gy + 12" 0 HR o 2050
17 Narr2ory < CUF iy @ + l9llasen) (19)

where C = C(6,T) > 0 is a constant independent of € and the data
(F.9).
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor
HIGH-ORDER ENERGY ESTIMATE

PrROOF OF THE LEMMA. CONTROL OF THE FRONT

The boundary condition (16),
Ocf€ + 0101 f° + 0202 f° = g1 + f°O30N + vy (20)

is a linear transport equation. Solving it, f gets the regularity of v3;.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor
HIGH-ORDER ENERGY ESTIMATE

PrROOF OF THE LEMMA. CONTROL OF THE FRONT

The boundary condition (16),
Ocf€ + 0101 f° + 0202 f° = g1 + f°O30N + vy (20)

is a linear transport equation. Solving it, f gets the regularity of v3;.
On the other hand, the boundary constraints (17) yield

~ = ~ & 21
H101f€ + HaOof¢ = HS — (01H1 + OoH2) f€ on wr, (21)

{fham + Hy0: f° = Hy, + f°03Hy,
Under the stability condition (15) we have
HyHy — HyHy #0,
and we may solve the above linear system (21) and (20) for V; ./ f°.
Thus V; ./ f€ has the regularity of v§,, H5,, H at I, ie. f©
gains one derivative.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor
HIGH-ORDER ENERGY ESTIMATE

PROOF OF THE LEMMA. ANALYSIS OF BOUNDARY
TERMS

Write the secondary symmetrization (18) as

3
M§OWE + > M50;We + M§W* =0, (22)
j=1
where W¢ = (9%, €°).
Look for a L? energy estimate for system (16);, (22), where we choose

vy =101, Vo =1, v3=001f+020of.

Under this choice the boundary is characteristic for (22).
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

We get the boundary integral

1 —~
A= —2/ (ALUS,U?) — (MEWS, We)da' dt =
wr

1
— [ (- i+ i - sze)
wr -
+ (01595 + 0295 HSy + (0165 + ®2€§)E}3\,>dm’ dt.

Inserting the boundary conditions of (16) (where &5, &5 are chosen
proportional to ) gives
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

Acm [ (Bt vty 0500 (B0 + 50017 — 55007)
wr

+ e(Er B + B, E5) (8:f° + 0101 f¢ + 0205 f°)

+ fg{[a?;cﬂ viy — 030N (¢° + [034) f°) + (OHa — 91 E3)(H5 + et ES)
+ (OrH1 + 02 E3) (9 — 0o ESy) + (01H1 + OoHa) (0195 + 1295) }.
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LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

Acm [ (Bt vty 0500 (B0 + 50017 — 55007)
wr

+ e(Er B + B, E5) (8:f° + 0101 f¢ + 0205 f°)

+ f{[054] viy — 30N (q° + [034) %) + (8 Ho — 01 E3)(95 + et EY)
+ (OrH + 02E3) (95 — e02ER) + (01H1 + 0aH2) (6195 + 6295) }-
We choose A A
E=-UVxH,
so that R R R
E3+01He —02H1 =0, E; =0, E;,=0.

The choice is related to Ohm'’s law.
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We are left with no derivatives of f€:

A= [ {854 viy — 930N (q° + (03] f°)

wr
+ (OHa — 01 E3) (95 + et ER)
+ (OHy + 0o F3) (95 — ct2 EY)
+ (81Hy + OoHa) (0195 + 9293) }-
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ANALYSIS OF LINEARIZED STABILITY Proor

HIGH-ORDER ENERGY ESTIMATE

We are left with no derivatives of f€:

A= [ {854 viy — 930N (q° + (03] f°)

wr
+ (OHa — 01 E3) (95 + et ER)
+ (OHy + 0o F3) (95 — ct2 EY)
+ (81Hy + OoHa) (0195 + 9293) }-

To exploit the diminished order we pass to an energy estimate in H}., .
(instead of L?), take tangential derivatives, perform some integration
by parts, use the higher regularity at the boundary of the
noncharacteristic part of the vector solution, etc etc . ..

In the end we get the (uniform in €) a priori estimate (19).
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PROOF OF THEOREM 1

Given the uniform (in €) a priori estimate (19), we may

pass to the limit in the hyperbolic regularizing system (16) as e — 0
and find the solution (U, H, f) € H},,(QF) x HY(Q7) x H(wr) of
the linearized problem (14):

AU + Y5 A;0;U +CU = F in QF,
Vx$H=0, divh=0 in Qr,
O f = on — 0101f — D202 f + f 030N + g1,
q="MH-H—[04f + g2,

Hy = 01(H1f) + 02 (Haf) on wr,

(UM, f)=0 for ¢ < 0.
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HIGH-ORDER ENERGY ESTIMATE

As we want to work with functions in Sobolev spaces (vanishing at
infinity), in contradiction with a uniform stability condition

|[HxH|>d>0 on [0,T] x T,

we make a shift by a constant solution.
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HIGH-ORDER ENERGY ESTIMATE

As we want to work with functions in Sobolev spaces (vanishing at
infinity), in contradiction with a uniform stability condition

|[HxH|>d>0 on [0,T] x T,

we make a shift by a constant solution.
Let us consider constant solutions U and H (with f = 0), where

U = ((17(])0)07[:[70)7 E = (Hlaﬁ%o)v 7:[ = (7:[177:{270)7 (23)

H24-H2  HA+H3

qg=p+ ) 2 p >0,
p(p,0) >0,  pp(p,0) >0 (hyperbolicity condition), (24)
H{Hs — HyH1 7'5 0 (stability condition).
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Make a shift by the change of unknowns
U=U-U, H=H-H, (25)

then write again U, H instead of U, H.
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HIGH-ORDER ENERGY ESTIMATE

Make a shift by the change of unknowns

Y

U=U-U, H=H-H,

then write again U, H instead of U, H.
We reformulate the problem in terms of the new unknowns as:

P(U,¥) =0 in[0,T] x QF,

V(H, @) =0 in[0,T] x Q"
B(U,H,) =0 on [0,7] x T,
lim (U,H,¢) =0,

|z|—o00

(U, H)|t=0 = (Uo, Ho) in Q" x Q7 ¢lt=o =0 onT,
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ANALYSIS OF LINEARIZED STABILITY PRrOOF

HIGH-ORDER ENERGY ESTIMATE

where now P(U, V) = P(U, ¥)U,
P(U,0) = Ag(U4T)044 A (U+T )0y +As(U+T) 0o+ A3 (U+T, ©)ds,

P = UNuy=0
B(U, H, ) = 4] i :
Hijzs=0 — O1(H1p) — O2(Hap)

1 _
[q] = Q|CC3:0 - §|H’i3:0 —H- H‘zgiﬂ‘
As for the constraints, we have the new one
Hy = 01(Hip) + 02(Hap) on [0,T] x T,

instead of Hy = 0.
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Now linearize about the basic state

(U(t,z) + U, H(t,z) + H, f(t,2)). (31)

Assume the basic state (31) satisfies

~

~ I~ a _ 0 =Ar
p(p+p,5)>0, pp(p+pas)>0 In QT7

N 1 . . -
Ol +—— {(w-V)H—((thh)-V)ﬁ+(H+H)diva}:0 in QF,
33

divh=0  in Qp,
Oyp — oy = 0, 'H\N = 81(7'_(1g0) + 82(7'_[290) on wr,

(all the “hat” and “bar” functions are determined like corresponding
ones for (U, H, ¢)).
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HIGH-ORDER ENERGY ESTIMATE

Linearization leads to the nonhomogeneous hyperbolic-elliptic
boundary value problem

AU + Y5 A;0,U+CU =F in QF,
Vx$H=y, divh=E in Qr,
Oif =vN — 0101 f — 0202f + f 030N + g1, (32)

QZ(ﬁ+ﬂ2'Hj[33@]f+gz,A )
Hy = 01((H1 +H1)f) + 02 ((Ha +Ha)f) + 93 on wr,

(Uava):O fOI’t<0,

PAoLo SECccHI PLASMA-VACUUM INTERFACE



LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY PRrOOF
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where R R
Ay = A, (U+TU), a=0,1,2,
;{3 =: Avg(ﬁ—l—U,(I\/), é\Z: C(fj,\f/),
for data (F, x, =) and g = (g1, 92, g3) vanishing in the past, and
satisfying the compatibility conditions

divy = 0, Jo- Edx = [ g3da’,
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Assumptions:

Let 7> 0, m € Nym > 1,s = max{m, 7}. Assume the basic state
(31) satisfies the stability condition

(H+H)x (H+H)| >8>0  onuwr,

where ¢ is a fixed constant.

U € H:H(Q), H € H(QF), VU € H*™(Qy),

F e HMY(QF), (x.E) € H™ 1 (Q7) NLY*(Q7),

g e Hm+1/2(wT) with g3 € L4/3(wT), all functions vanishing in the
past.

PAoLo SEccHI PLASMA-VACUUM INTERFACE



LINEARIZED STABILITY IN H
ANALYSIS OF LINEARIZED STABILITY PRrOOF
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THEOREM (S. & TRAKHININ, 2012)

Under the previous assumptions, problem (32) has a unique solution
(UK, f) € HMQF) x H™(Q7) x H™'/2(wr).
For m > 7 the solution obeys the tame estimate

1012 gy + 1P gmy + 112, 080y o 172
17 miss2gury < CL (17 iz(@my + 16 E gy + NlgWrns ory
+ 6 El2ago rizosiay + 1981220 mizsmqry ) X
X (IO s gty + 1P gy + IV TNt o))

+ HFHHm+1 + ||X7‘—’HHm 1 ) + Hg”%erl/Q(wT)

+ IIx; EHL2(O7T;L6/5(Q—)) + H93Hi2(07T;L4/3(F))}~ (33)
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PROOF OF THEOREM 2

It follows from Theorem 1 and estimates of commutators.
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NASH-MOSER TECHNIQUE

. MAIN RESULT
NONLINEAR STABILITY

Summarizing:

15¢ step:
Linearized stability in A

2nd step:
Higher-order tame estimate.

37 step:
Solve the original nonlinear problem (10), (11), (12) by a Nash-Moser
iteration.
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NASH-MOSER TECHNIQUE

Given F : X — X, with X a Banach space (the same space for the
sake of simplicity), we want to solve the nonlinear equation

F(u) = w, (34)

where we may assume F(0) = 0.
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NASH-MOSER TECHNIQUE

Given F : X — X, with X a Banach space (the same space for the
sake of simplicity), we want to solve the nonlinear equation

F(u) = w, (34)

where we may assume F(0) = 0.

1) Assume F is continuously differentiable and the linear application
F'(+) is invertible in a neighborhood of u = 0. Then F is locally
invertible.
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NASH-MOSER TECHNIQUE

Given F : X — X, with X a Banach space (the same space for the
sake of simplicity), we want to solve the nonlinear equation

F(u) = w, (34)
where we may assume F(0) = 0.
1) Assume F is continuously differentiable and the linear application

F'(+) is invertible in a neighborhood of u = 0. Then F is locally
invertible.

By Newton's method we may solve (34) by the approximating
sequence

Ug = 07
up 1 = up + (F'(ug)) " (w — Flug)), k>1.

Newton's method has a fast convergence rate:

(35)

lups1 — urllx < Cllup — up—1%-
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2) Instead of one single space X, we are given a scale of Banach
spaces Xog D X1 D -+ D X,;, D ... with norms || - ||;,, m > 0, and
ﬁmzoXm = (.

For instance X,,, = H™ (Sobolev spaces), X; = C*® (Holder spaces).
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2) Instead of one single space X, we are given a scale of Banach
spaces Xog D X1 D -+ D X,;, D ... with norms || - ||;,, m > 0, and
ﬁmzoXm = (.

For instance X,,, = H™ (Sobolev spaces), X; = C*® (Holder spaces).

It may happen that F : X,,, — X,,, but F'(-) is only invertible
between X, and X,,_,, with a loss of regularity of order r.
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2) Instead of one single space X, we are given a scale of Banach
spaces Xog D X1 D -+ D X,;, D ... with norms || - ||;,, m > 0, and
ﬁmzoXm = (.

For instance X,,, = H™ (Sobolev spaces), X; = C*® (Holder spaces).

It may happen that F : X,,, — X,,, but F'(-) is only invertible
between X, and X,,_,, with a loss of regularity of order r.

Trying to solve (34) again by Newton's method (35) we get
w1 = upllm—r < Clluk — we—1ll7m,

with a finite loss of regularity at each step. lteration is impossible!
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The idea is to compensate the loss of regularity with the fast
convergence rate.
To do so we introduce a family of smoothing operators {Sp}9>1

So Usz*XPm = ﬁmZO—va
with the following properties (« and 3 in a bounded interval):

i) |Soulla < Clullg a <,
i) [ Spulla < C6°"lullg f<a,

iii) || Sou—ulla < C O Plulls o< B,
iv) |4 Spulla <C O P uls  Va,pB.
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We modify (35) by considering the approximating sequence

UOZO,

et = i+ (F/ (S, )~ (w — Fur)), (36)

where 0, — oo as k — o0.
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We modify (35) by considering the approximating sequence

UOZO,

et = i+ (F/ (S, )~ (w — Fur)), (36)

where 0, — 00 as k — .

Balancing in appropriate way the fast convergence rate of Newton'’s
scheme and loss of regularity gives the convergence of the
approximating sequence.

Since formally Sy, — I as k — oo (in low norm), the sequence {uy} is
expected to converge to a solution u of (34).
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We modify (35) by considering the approximating sequence

UOZO,

et = i+ (F/ (S, )~ (w — Fur)), (36)

where 0, — 00 as k — .

Balancing in appropriate way the fast convergence rate of Newton'’s
scheme and loss of regularity gives the convergence of the
approximating sequence.

Since formally Sy, — I as k — oo (in low norm), the sequence {uy} is
expected to converge to a solution u of (34).

By adapting the Nash-Moser technique to our problem, we get our
main result:
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THEOREM (S. & TRAKHININ, 2012)

Let m > 13. Consider the constant solution (23) (U, H,0), satisfying
(24). Consider initial data (Uy, Ho, fo) that are compactly supported
perturbations in H™95(QF) x H™93(Q~)x H™HY(T) of the
constant solution (23), and that satisfy the hyperbolicity condition
together with suitable compatibility conditions. The initial magnetic
fields satisfy the necessary initial constraints and the stability condition

|Ho x Ho| >6>0  onT,

where 6 is a fixed constant.
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NONLINEAR STABILITY

THEOREM (S. & TRAKHININ, 2012)

Let m > 13. Consider the constant solution (23) (U, H,0), satisfying
(24). Consider initial data (Uy, Ho, fo) that are compactly supported
perturbations in H™95(QF) x H™93(Q~)x H™HY(T) of the
constant solution (23), and that satisfy the hyperbolicity condition
together with suitable compatibility conditions. The initial magnetic
fields satisfy the necessary initial constraints and the stability condition

|Ho x Ho| >6>0  onT,

where 6 is a fixed constant.

If T' > 0 is sufficiently small, then there exists a unique solution
(U, H, f) on [0, T] of (26)—<30) with initial data (Uy, Ho, fo). The
solution is such that (U — U, H — H, f) € H™(]0, T[xQT)x
H™(]0,T[xQ7)x H™T95(]0, T[xT).
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CONCLUSION

Under the stability condition
|[HxH|>6>0 on [0,7T] x T,

we have shown the well-posedness of the nonlinear plasma-vacuum

interface problem (10), (11), (12).

z3
plasma
X2
vacuum
X1
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Thank you for your attention!
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The plasma variables U = (¢, v, H, S) solve an IBVP with
characteristic boundary. The natural function space is the
anisotropic weighted Sobolev space H]"(2) where the trace operator

Y : U — Upr, Yo : H'(QF) — H™H(ID).
Then for every fixed ¢

Ue H™(QV),H € H™(Q)

= (v, H,H);p € H" (I

= Vipf € H"Y(T) = f € H™(T) = & € H™+05(R3)
=Ue€H"Y(Q"),He H"1(Q).

We lose one derivative!
The loss of regularity forces the use of a Nash-Moser iteration.
This fact justifies the study of the linearized problem.
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For characteristic boundaries, the natural function space is the
weighted anisotropic Sobolev space

H™(Q) :={u € L*(Q) : Z*0% ue L*(Q), |a| + 2k < m},

where
Ze =77 ... 2%, a=(ai,...,an),
Zj=0y forj=1,...,n—1 and Z, =x,0,,,
if Q@ = {z,, > 0}.

Generally speaking, one normal derivative (w.r.t. 92) is controlled by
two tangential derivatives.
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