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Historical Review

@ The horizontal two-phase flow injection problem was
solved by Buckley and Leverett in 1942.

@ The B-L equation for two-phase flow with gravity is solved
through Oleinik’s construction, (ex., Proskurowski (1981)).

@ Isaacson, Marchesin, Plohr, Temple, Paes Leme, Seabra,
De Souza, Furtado, etc, contributed to solve the R-P for
immiscible horizontal three-phase flow.

@ We present a class of Riemann solutions for immiscible
three-phase flow with gravity.
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Physical Problem and Simplifications

@ The porosity ¢ and the
absolute permeability of the
rock k are constant.

@ The fluids are immiscible and
there is no mass interchange
between phases.
@ The flow occurs uniformly in
the vertical direction filling the ferfoce
entire porous medium.
@ The fluids are incompressible.

@ There are no sources or sinks.




The model
[ lele}

Mass Conservation and Darcy’s Law.

Conservation of mass

St ou=0 =123, 1)

where s; denotes saturation and u; is the velocity of each
phase.

uj :_k&(ég_ﬁg) I :172737
Hi

p is the pressure, k; ; is the relative permeability, 4; is the
viscosity and p; is the density for each phase i.
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Deriving the System of Conservation Laws.

uj = ufi + kA ijpljgv = 1,2,3, (3)
J#

where Pij = Pi — pj-

Mobilities and fractional flow functions

/\.
/\i:kr,i/ﬂi’ fi = 3I ) |:1’273
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We use the quadratic Corey permeability model

kri(si) = s (4)
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System of Conservation Laws

Dimensionless equations for vertical three-phase flow

Jsi 0 i
St T 3¢ (0fi(51,52) + Gi(s1,82)) =0, i=1,23, (5
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is the convection/gravity ratio (later we will set oz = 0).
Since ) s; = 1 there is a redundant equation.

Gravitational Fluxes

G1 = KkA1((1—f1)p13 +f2ps2),
Gy = kAy((1—"f2)par +fapaz),
Gz = kAs((1—f3)psz +f1pa1).
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Umbilic and quasi-umbilic points

Umbilic point
A coinc. point S* is an umbilic point of S¢ + [F(S)]x = O if
(H1) dF(S*) is diagonalizable.
(H2) There is a neighborhood V of S* such that dF (S) has
distinct eigenvalues for all S € YV — S*.

Quasi-umbilic point

A coincidence point S* is a quasi-umbilic point < (H2) holds
but (H1) fails.

Coincidence diagonalization curve

A coincidence diagonalization curve is a curve of coincidence
points along which condition (H2) fails but condition (H1) holds.
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Coincidence Points

V; are umbilic points, Q; are
quasi-umbilic points.
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Coincidence Points

V3 is an umbilic point, Q;, Q, are
quasi-umbilic points, 93 is a
coincidence diagonalization line.
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Coincidence Points

Vi and U}, are umbilic points, Q“
are quasi-umbilic points.
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Schaeffer-Shearer Cone and Deviator operator

X Y +Z

Dev(dF(sl,sz)):dF—%tr(dF)I:[Y_Z 2] ®

(81,52) — (X,Y,Z)

Umbilic point Quasi-umbilic point Coinc. diag. line

tZ t1Z N4

7/ Dev(dF)
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Wave groups and Riemann solutions

@ The Riemann solutions consist of two wave groups
separated by a constant state.

@ Each wave group consists on a sequence of rarefaction
waves and adjacent shock waves.

@ Shock waves must satisfy the Generalized Lax conditions.
@ No 1-wave is preceded by a 2-wave.
@ Parameterized by wave curves (Liu).
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Figure: Wave groups in Riemann solutions
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Generalized Lax Shock Waves and TSR

Generalized Lax 1-shock and 2-shock waves

1-shock: \(ST) <o <A1 (S7), and o < X\p(S™). (7)
2-shock: \(ST) <o < Xp(S7), and M\ (S7) <o (8)

At most one equality in (7), (8).

Triple Shock Rule (TSR)

Assume that the states S;, S, and Sz satisfy S, € H(S;),
53 S H(Sz) and O'(Sl, Sz) = 0‘(52, 83) then 83 € H(Sl) and
0(S1,S3) = 0(S1,S2) = (S2, S3).
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Some bifurcation manifolds

i-Inflection manifold
States S such that VAi(S) -ri(S) =0

i-Boundary extension manifold

States S for which exist S’ such that

S € H(S') with S’ on the boundary and \i(S) = o(S,S).

(i,j)-Double contact manifold

States S for which exist states S’ such that

S" € H(S) with X(S)=0(S,S’) = \(S),

\




Simplified Problems

Simplified cases

Buoyancy driven flow o = 0

Three distinct densities
p3 < p2 < pP1
EHD ELD

p3<p2=p1 p3=p2<p1

@ Solutions for general buoyancy-driven problem (three fluids with
distinct densities) are “superpositions” of the solutions of
simplified cases EHD and ELD.
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Rarefaction curves for EHD: a = 0, p1 = p2 > p3

Figure: Integral curves for both families. The arrows indicate
increasing characteristic speed. The dots represent the
Inflection curves.




Simplified Problems

o] lo}

Wave curve for EHD. Left state in 03, right state Vs.

@ Pg satisfies
O'(SL, PéL) = Al(PéL) < 0.

@ Pg satisfies
O'(PéM,SM) = )\l(PéM) > 0.

o O‘(P%M,SM) < O'(SM,Vg)
(speed compatibility!!!)

@ Dominant phase in S, remains
“dominant” along the solution:
The triangles V3—B3—V, and
V3—B3—V; are invariant in the
solution.
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Example of Riemann solution in EHD

p=p>p

I

blue fluid dominant

s/u>s/u
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Wave curves in ELD: a =0, p3 = p2 < p1
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Example of Riemann Solution in ELD

p=>p=p




Buoyancy Driven Flow

RP for three-distinct densities

=== 1-shock curve

: @ critical point
+++ 1l-composite curve .
. W critical left data
1-rarefaction curve
=== 2-shock curve Wm double-contact pair
—— 2-rarefaction curve ® quasi-umbilic points
1-inflection ° TSR envolving
—  1-boundary-extension the critical point
manifolds ° TSR envolving
the double-contact pair
range for Solution like in ELD

double-contact
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