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Historical Review

The horizontal two-phase flow injection problem was
solved by Buckley and Leverett in 1942.

The B-L equation for two-phase flow with gravity is solved
through Oleinik’s construction, (ex., Proskurowski (1981)).

Isaacson, Marchesin, Plohr, Temple, Paes Leme, Seabra,
De Souza, Furtado, etc, contributed to solve the R-P for
immiscible horizontal three-phase flow.

We present a class of Riemann solutions for immiscible
three-phase flow with gravity.
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Physical Problem and Simplifications

The porosity φ and the
absolute permeability of the
rock k are constant.

The fluids are immiscible and
there is no mass interchange
between phases.

The flow occurs uniformly in
the vertical direction filling the
entire porous medium.

The fluids are incompressible.

There are no sources or sinks.

Gravity

Interface
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Mass Conservation and Darcy’s Law.

Conservation of mass

∂

∂t
φsi +

∂

∂x
ui = 0 i = 1,2,3, (1)

where si denotes saturation and ui is the velocity of each
phase.

Darcy’s law

ui = −k
kr ,i

µi

(

✓
✓✓❙
❙❙

∂p
∂x

− ρig
)

i = 1,2,3, (2)

p is the pressure, kr ,i is the relative permeability, µi is the
viscosity and ρi is the density for each phase i .
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Deriving the System of Conservation Laws.

ui = ufi + kΛi

∑

j 6=i

fjρijg, i = 1,2,3, (3)

where ρij = ρi − ρj .

Mobilities and fractional flow functions

Λi = kr ,i/µi , fi =
Λi

∑3
j=1 Λj

, i = 1,2,3.

We use the quadratic Corey permeability model

kr ,i(si ) = s2
i . (4)
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System of Conservation Laws

Dimensionless equations for vertical three-phase flow

∂si

∂t
+

∂

∂x

(

αfi(s1, s2) + Gi(s1, s2)
)

= 0, i = 1,2,3, (5)

where
α =

u
uref

=
u µref

Kref ρref g

is the convection/gravity ratio (later we will set α = 0).
Since

∑

si = 1 there is a redundant equation.

Gravitational Fluxes

G1 = kΛ1
(

(1 − f1)ρ13 + f2ρ32
)

,

G2 = kΛ2
(

(1 − f2)ρ21 + f3ρ13
)

,

G3 = kΛ3
(

(1 − f3)ρ32 + f1ρ21
)

.
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Umbilic and quasi-umbilic points

Umbilic point

A coinc. point S∗ is an umbilic point of St + [F (S)]x = 0 if

(H1) dF (S∗) is diagonalizable.

(H2) There is a neighborhood V of S∗ such that dF (S) has
distinct eigenvalues for all S ∈ V − S∗.

Quasi-umbilic point

A coincidence point S∗ is a quasi-umbilic point ⇔ (H2) holds
but (H1) fails.

Coincidence diagonalization curve

A coincidence diagonalization curve is a curve of coincidence
points along which condition (H2) fails but condition (H1) holds.
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Coincidence Points
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α = 0, ρ1 > ρ2 > ρ3

Vi are umbilic points, Qi are
quasi-umbilic points.

α = 0, ρ1 = ρ2 6= ρ3

V3 is an umbilic point, Q1,Q2 are
quasi-umbilic points, ∂3 is a
coincidence diagonalization line.

α 6= 0 small, ρ1 > ρ2 > ρ3

Vi and U∗
α

are umbilic points, Qα

i
are quasi-umbilic points.
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Coincidence Points
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Coincidence Points
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Schaeffer-Shearer Cone and Deviator operator

Dev(dF (s1, s2)) = dF −
1
2

tr(dF )I =
[ X Y + Z

Y − Z X

]

(6)

(s1, s2) −→ (X ,Y ,Z )

Umbilic point Quasi-umbilic point Coinc. diag. line
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Wave groups and Riemann solutions

The Riemann solutions consist of two wave groups
separated by a constant state.
Each wave group consists on a sequence of rarefaction
waves and adjacent shock waves.
Shock waves must satisfy the Generalized Lax conditions.
No 1-wave is preceded by a 2-wave.
Parameterized by wave curves (Liu).

Saturation

x
g

Figure: Wave groups in Riemann solutions
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Generalized Lax Shock Waves and TSR

Generalized Lax 1-shock and 2-shock waves

1-shock: λ1(S
+) ≤ σ ≤ λ1(S

−), and σ < λ2(S
+). (7)

2-shock: λ2(S
+) ≤ σ ≤ λ2(S

−), and λ1(S
−) < σ. (8)

At most one equality in (7), (8).

Triple Shock Rule (TSR)

Assume that the states S1, S2 and S3 satisfy S2 ∈ H(S1),
S3 ∈ H(S2) and σ(S1,S2) = σ(S2,S3) then S3 ∈ H(S1) and
σ(S1,S3) = σ(S1,S2) = σ(S2,S3).
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Some bifurcation manifolds

i-Inflection manifold

States S such that ∇λi(S) · ri(S) = 0

i-Boundary extension manifold

States S for which exist S′ such that

S ∈ H(S′) with S′ on the boundary and λi(S) = σ(S,S′).

(i , j)-Double contact manifold

States S for which exist states S′ such that

S′ ∈ H(S) with λi(S) = σ(S,S′) = λj(S
′),
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Simplified cases

Buoyancy driven flow α = 0

ELDEHD

Three distinct densities

Solutions for general buoyancy-driven problem (three fluids with
distinct densities) are “superpositions” of the solutions of
simplified cases EHD and ELD.
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Rarefaction curves for EHD: α = 0, ρ1 = ρ2 > ρ3

2
V

3
V

1
V

2
Q

1
Q 3

B

2
V

2
Q

1
Q

3
V

1
V

Figure: Integral curves for both families. The arrows indicate
increasing characteristic speed. The dots represent the
Inflection curves.
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Wave curve for EHD. Left state in ∂3, right state V3.

P1
SL

satisfies
σ(SL,P1

SL
) = λ1(P1

SL
) < 0.

P1
SM

satisfies

σ(P1
SM

,SM) = λ1(P1
SM

) > 0.

σ(P1
SM

,SM) < σ(SM ,V3)
(speed compatibility!!!)

Dominant phase in SL remains
“dominant” along the solution:
The triangles V3–B3–V2 and
V3–B3–V1 are invariant in the
solution.

1-INF

1-wave curve

2-wave curve

B
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Example of Riemann solution in EHD
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Wave curves in ELD: α = 0, ρ3 = ρ2 < ρ1
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Example of Riemann Solution in ELD
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RP for three-distinct densities

V3 V1

V2
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THANKS
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