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Intuitive Introduction

What are shock waves?

Shock waves are discontinuities evolving in time.
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Intuitive Introduction

Where do shock waves appear?

Shock waves form in fluids and gases, governed
by compressible Euler equations.

In General Relativity (GR), shock waves can be
present in the matter content of spacetime.
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Intuitive Introduction

Einstein equations:

“spacetime curvature ' matter content”

In GR, shock waves are discontinuities in matter
content.

Spacetime curvature is determined by metric
tensor.

−→ How do shock waves effect the metric tensor?
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Intuitive Introduction

In some coordinates, the metric is only C 0,1,
(Lipschitz continuous).

That’s counterintuitive: Einstein equations are
2nd order system
(→ would expect C 1,1 metric regularity).

Moreover, many fundamental features of
spacetime require a C 1,1 metric regularity.

Question:

Can we raise the metric regularity to C 1,1 by
transforming to different coordinates?
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Intuitive Introduction

Question:

Can we raise the metric regularity to C 1,1 by
transforming to different coordinates?

Across a single shock wave: Yes! (Israel, 1966)

At point of shock wave interaction: No!
(R. and Temple, 2011)
−→ “Regularity Singularity”
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Part II

Background: Shock Waves in General

Relativity
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A manifold M is a Hausdorff-space locally diffeomorphic to Rn:
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A manifold M is a Hausdorff-space locally diffeomorphic to Rn:

x ◦ y−1 and y ◦ x−1 C k -differentiable;
called “change of coordinates”

collection of all such mappings and domains, (x ,U), is called
a C k -atlas
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All geometrical information about M (e.g., angles, curvature,...) is
captured in the Lorentz-metric tensor, g.

In coord’s x j , g = gijdx idx j :=
n∑

i ,j=1

gijdx idx j .

Convention: sum over repeated indices, (n = dim(M)).

Roughly: think of dx j as dual vector to j-th coordinate vector
in x(U).

Pointwise, (gij)1≤i ,j≤n is a symmetric matrix which has
signature (-+++)

In new coord’s, g(x) = gµν(y)dyνdyν , the metric components
transform as

gij(x) = Jµi Jνj gµν(y(x)),

where Jµj := ∂xµ◦y−1

∂y j denotes the Jacobian.
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Spacetime is a 4-D manifold with a Lorentz-metric
(→ “Equivalence Principle”).
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At the heart of GR are the Einstein equations:

“spacetime curvature ' energy/matter content′′

Energy and matter content of spacetime is described by the
energy-momentum-tensor Tµν , which depends on type of
matter-fields considered.

Spacetime curvature is described by Einstein tensor, Gµν , via
“measuring failure of 2nd order (covariant) derivatives to
commute”.
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G is the unique (modulo a constant) curvature tensor being
divergence-free, divG = 0, thus imposing conservation of
energy in the Einstein equations.
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A single shock wave being present in the Einstein equations is
characterized by:

Tµν is discontinuous across a hypersurface Σ and C 0

elsewhere.

Across Σ, the Rankine Hugoniot jump conditions hold, that is,

[Tµν ]Nν = 0,

where

Nν normal to Σ,
[u] := uL − uR denotes the jump in u across Σ
uL/R denotes the left/right limit of u to Σ.

Einstein equations, Gµν = κTµν , hold strongly off Σ.

M. Reintjes GR Shock Interaction are Regularity Singularities



A single shock wave being present in the Einstein equations is
characterized by:

Tµν is discontinuous across a hypersurface Σ and C 0

elsewhere.

Across Σ, the Rankine Hugoniot jump conditions hold, that is,

[Tµν ]Nν = 0,

where

Nν normal to Σ,
[u] := uL − uR denotes the jump in u across Σ
uL/R denotes the left/right limit of u to Σ.

Einstein equations, Gµν = κTµν , hold strongly off Σ.

M. Reintjes GR Shock Interaction are Regularity Singularities



A single shock wave being present in the Einstein equations is
characterized by:

Tµν is discontinuous across a hypersurface Σ and C 0

elsewhere.

Across Σ, the Rankine Hugoniot jump conditions hold, that is,

[Tµν ]Nν = 0,

where

Nν normal to Σ,
[u] := uL − uR denotes the jump in u across Σ
uL/R denotes the left/right limit of u to Σ.

Einstein equations, Gµν = κTµν , hold strongly off Σ.

M. Reintjes GR Shock Interaction are Regularity Singularities



A single shock wave being present in the Einstein equations is
characterized by:

Tµν is discontinuous across a hypersurface Σ and C 0

elsewhere.

Across Σ, the Rankine Hugoniot jump conditions hold, that is,

[Tµν ]Nν = 0,

where

Nν normal to Σ,
[u] := uL − uR denotes the jump in u across Σ
uL/R denotes the left/right limit of u to Σ.

Einstein equations, Gµν = κTµν , hold strongly off Σ.

M. Reintjes GR Shock Interaction are Regularity Singularities



A single shock wave being present in the Einstein equations is
characterized by:

Tµν is discontinuous across a hypersurface Σ and C 0

elsewhere.

Across Σ, the Rankine Hugoniot jump conditions hold, that is,

[Tµν ]Nν = 0,

where

Nν normal to Σ,
[u] := uL − uR denotes the jump in u across Σ
uL/R denotes the left/right limit of u to Σ.

Einstein equations, Gµν = κTµν , hold strongly off Σ.

M. Reintjes GR Shock Interaction are Regularity Singularities



Remark:
The (probably) most important setting for shock waves in GR are
the Coupled Einstein Euler equations,

Gµν = κTµν ,
divT = 0,

where Tµν = (ρ+ p)uµuν + pgµν (perfect fluid),

u tangent to fluid flow,

ρ energy-density,

p = p(ρ) pressure.

Shock waves can form in the relativistic Euler equations, divT = 0,
out of smooth initial data.
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Part III

The Question of the Metric Regularity

M. Reintjes GR Shock Interaction are Regularity Singularities



Let’s illustrate the effect of shock waves on the metric regularity:

Choose Standard Schwarzschild Coordinates,
that is, coord’s where the metric reads

ds2 = −A(t, r)dt2 + B(t, r)dr 2 + r 2
(
dϑ2 + sin2(ϑ)dϕ2

)
,

Then, the first Einstein equation reads
∂B
∂r + B B−1

r = κAB2r T 00.

Now, let a shock waves be present in Tµν

=⇒ T 00 is discontinuous
=⇒ ∂B

∂r is discontinuous
−→ B ∈ C 0,1 \ C 1
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Conclusion:

In some coordinates, the Einstein equations contain first order
differential equations.

Thus, if shock waves are present in Tµν , the metric can only
be in C 0,1, but not in C 1.

Central Question:

Do there exist coordinates x j such that the metric in the new
coordinates, gij , is in C 1,1?
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What’s interesting about C 0,1 versus C 1,1 metric regularity?

C 1,1-regularity is crucial to define curvature tensors, Gij ,
Rij ,..., in a classical (non-distributional) sense

C 1,1-regularity is required for the Einstein equations to hold
strongly.

If one cannot smooth the metric to C 1,1, it cannot be locally
Minkowski!
(→ No observer in free-fall?!)

C 1,1 is a quite common assumption in GR, e.g., C 1,1

regularity is required in Singularity Theorems (of Penrose,
Hawking and Ellis).
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regularity is required in Singularity Theorems (of Penrose,
Hawking and Ellis).
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Part IV

The Metric Regularity Across a Single

Shock Surface
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“Israel’s Theorem“
(based on Israel 1966) (see also: Smoller and Temple 1994)

Suppose:

(M,g) a (Riemann) manifold with a C 1,1-atlas

gµν is C 0,1 across a single smooth surface Σ,

(gµν solves the Einstein equations strongly away from Σ)

Then the following is equivalent:

There exist coordinates xα such that gαβ ∈ C 1,1,
(w.r.t. partial differentiation in xα).

The RH jump conditions, [Tµν ]Nν = 0, hold on Σ and T ij is
in L∞.

Lesson: Across a single shock one can always lift metric regularity
to C 1,1!
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Part V

The Metric Regularity at Points of Shock

Wave Interaction
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Israel’s Theorem addresses the metric regularity across a single
shock surface only.

However, shock waves can interact.

Can one still lift the metric regularity if two shock waves interact?

NO, one cannot!
(R. & Temple, 2011)

Before we state our theorem, let me introduce the shock wave
interaction we consider:
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Points of Regular Shock Wave Interaction in SSC:

Assumption on spacetime:

Suppose spacetime M is spherically symmetric.

Assume Standard Schwarzschild Coordinates (=:SSC) exists
around a point p ∈ M, that is, coord’s (t, r , ϑ, ϕ) where the
metric reads

g = −A(t, r)dt2 + B(t, r)dr 2 + r 2dΩ2,

with dΩ2 := dϑ2 + sin2(ϑ)dϕ2.

Remark: Spherical symmetry, though being restrictive, includes
many important spacetimes:

Schwarzschild spacetime (outside of black hole or star),

Oppenheimer-Tolman spacetime (inside of gaseous star),

Friedman-Robertson-Walker spacetime (cosmology).
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Assumption on shock waves:

Assume shock waves are radial, that is, the shock surfaces,
Σ1 and Σ2, are 2-spheres evolving in time.

More precisely, Σi can be parameterized as

Σi (t, ϑ, ϕ) = (t, xi (t), ϑ, ϕ) , xi (t) > 0, (i = 1, 2).

Note: Σi (t) is a 2-sphere with radius xi (t) and center r = 0.

Instead of Σi it suffices to consider curves γi (t) = (t, xi (t)),
(so-called “shock curves”).
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Definition

p ∈ M is a “point of regular shock wave interaction in SSC” if

γi (t) = (t, xi (t)), i = 1, 2, are smooth timelike curves defined
on t ∈ (−ε, 0).

γ1 and γ2 intersect in p = γ1(0) = γ2(0).

The SSC-metric, gµν , is only C 0,1 across each shock curve
and C 2 off and along them.

(Einstein equations hold strongly off Σi .)

Rankine Hugoniot conditions, [Tµν ]i (Ni )ν = 0, hold across
each γi , (for i = 1, 2), and in the limit to t ↗ 0.

Shocks interact with distinct speeds, ẋ1(0) 6= ẋ2(0).

So, p is 2-sphere with radius x1(0) = x2(0) and center r = 0.

We expect this structure to be generic, for radial shock waves
in spherical symmetry!
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Vogler simulated such a shock wave interaction with the
above structure (2011).

Existence before and after interaction was established by
Groah and Temple (2005).
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Let’s state our main theorem:
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Theorem 1, (R. and Temple, 2011)

Assume p is “a point of regular shock wave interaction in SSC”.
Then: @ C 1,1 coordinate transformation, defined in a
neighborhood of p, such that both holds:

The metric components are C 1 functions of the new
coordinates.

The metric has a nonzero determinant at p.

Remark:

Theorem 1, asserts a trade off between

a (non-removable) lack of C 1 metric-regularity
a vanishing metric determinant

This is our motivation for calling points of shock wave
interaction “Regularity Singularities”.
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Theorem 1, (R. and Temple, 2011)

Assume p is “a point of regular shock wave interaction in SSC”.
Then: @ C 1,1 coordinate transformation, defined in a
neighborhood of p, such that both holds:

The metric components are C 1 functions of the new
coordinates.

The metric has a nonzero determinant at p.

Remark:
We only require two shock waves to be present before (or after)
the interaction.

=⇒ We address many physical shock wave interaction, e.g.:

two shock waves come in; two shock waves go out

two shock waves come in; one shock and one rarefaction wave
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Part VI

The Proof of Theorem 1
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Outline of the proof (Thm 2):

(i) Assume Jµα is the Jacobian of a coordinate transformation
smoothing the metric from C 0,1 to C 1. We derive a condition
Jµα must meet at each shock curve.

(ii) We characterize all Jµα , (defined on a neighborhood of
shocks), satisfying that condition, by deriving an explicit form
to represent them in.

(iii) Now, Jµα is integrable to coordinates,

=⇒ Jµα,β = Jµβ,α.

Taking limit to point of interaction p of above equation yields

Det (gαβ(p)) = 0.
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Proof:

Step (i):

Assume (for contradiction) there exist coordinates xα, such
that the transformed metric,

gαβ = JµαJνβgµν , (1)

is in C 1, where Jµα = ∂xµ

∂xα (Jacobian) and gµν metric in SSC.
(Indices µ, ν, σ refer to SSC and α, β, γ to new coords.)

Now, gαβ being in C 1 implies that, for all α, β, γ ∈ {0, ..., 3},

[gαβ,γ ]i = 0. (2)

[·]i jump across the shock curve γi
f,γ := ∂f

∂xγ denotes differentiation w.r.t. new coords xα.

Thus, differentiating the RHS of (1) and taking the jump
leads to

[Jµα,γ ]iJ
ν
βgµν + [Jνβ,γ ]iJ

µ
αgµν + JµαJνβ [gµν,γ ]i = 0.
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[Jµα,γ ]iJ
ν
βgµν + [Jνβ,γ ]iJ

µ
αgµν + JµαJνβ [gµν,γ ]i = 0, (3)

is a necessary condition for smoothing the metric.

(3) is linear in [Jµα,γ ]i .

Equation (3) simplifies significantly once we

substitute the explicit form of the SSC metric, gµν ,
use our assumption, that the coord transfo only acts on the
(t, r)-plane.

By assumption, Jµα satisfies the integrability condition,
Jµα,β = Jµβ,α, which implies

[Jµα,β]i = [Jµβ,α]i . (4)

A long computation shows that the unique solution, [Jµα,γ ]i , of
(3) together with (4) is given by:
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A long computation shows that the unique solution, [Jµα,γ ]i , of
(3) together with (4) is given by:

[Jt0,t ]i = −
1

2

(
[At ]i

A
Jt0 +

[Ar ]i

A
Jr0

)
; [Jt0,r ]i = −

1

2

(
[Ar ]i

A
Jt0 +

[Bt ]i

A
Jr0

)
[Jt1,t ]i = −

1

2

(
[At ]i

A
Jt1 +

[Ar ]i

A
Jr1

)
; [Jt1,r ]i = −

1

2

(
[Ar ]i

A
Jt1 +

[Bt ]i

A
Jr1

)
[Jr0,t ]i = −

1

2

(
[Ar ]i

B
Jt0 +

[Bt ]i

B
Jr0

)
; [Jr0,r ]i = −

1

2

(
[Bt ]i

B
Jt0 +

[Br ]i

B
Jr0

)
[Jr1,t ]i = −

1

2

(
[Ar ]i

B
Jt1 +

[Bt ]i

B
Jr1

)
; [Jr1,r ]i = −

1

2

(
[Bt ]i

B
Jt1 +

[Br ]i

B
Jr1

)
.(5)

Notation:

At := ∂A
∂t , ...

µ, ν ∈ {t, r} and α, β ∈ {0, 1}
J t

0 denotes the µ = t and α = 0 component of the Jacobian Jµα

(5) is a necessary condition on [Jµα,γ ]i for smoothing the
metric to C 1.
It’s only defined on the shock curves!
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[Ar ]i

A
Jr1

)
; [Jt1,r ]i = −

1

2

(
[Ar ]i

A
Jt1 +

[Bt ]i

A
Jr1

)
[Jr0,t ]i = −

1

2

(
[Ar ]i

B
Jt0 +

[Bt ]i

B
Jr0

)
; [Jr0,r ]i = −

1

2

(
[Bt ]i

B
Jt0 +

[Br ]i

B
Jr0

)
[Jr1,t ]i = −

1

2

(
[Ar ]i

B
Jt1 +

[Bt ]i

B
Jr1

)
; [Jr1,r ]i = −

1

2

(
[Bt ]i

B
Jt1 +

[Br ]i

B
Jr1

)
.(5)

Notation:

At := ∂A
∂t , ...

µ, ν ∈ {t, r} and α, β ∈ {0, 1}
J t

0 denotes the µ = t and α = 0 component of the Jacobian Jµα

(5) is a necessary condition on [Jµα,γ ]i for smoothing the
metric to C 1.
It’s only defined on the shock curves!
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Step (ii):

Next, we characterize all C 0,1-functions, defined on some
open neighborhood N of p, that meet (5).

To understand how this is done, we illustrate the procedure
for Jt

0.
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By (5), the jump of the derivatives of J t
0 across γi (t) = (t, xi (t))

should satisfy

[J t
0,t ]i = −1

2

(
[At ]i

A
J t

0 +
[Ar ]i

A
J r

0

)
and [J t

0,r ]i = −1

2

(
[Ar ]i

A
J t

0 +
[Bt ]i

A
J r

0

)
. (6)

Introduce J t
0(t, r) =

∑
i

αi (t) |xi (t)− r |+ Φ(t, r) ,

Φ some function C 1 across γi .
αi (t) := 1

4A◦γi (t) ([Ar ]i J t
0 ◦ γi (t) + [Bt ]i J r

0 ◦ γi (t)) ,

J t
0(t, r) satisfies (6), since:

The value of [J t
0,r ]i follows from:

d
dX
|X | = H(X ), for the Heaviside function H,

and [H(xi (t)− r)]j = 2δij .

The required value of [J t
0,t ]i follows from the identities:

[Ar ]i = −ẋi [Bt ]i , (by RH jump condition and Einstein eqns).
ẋi [Ar ]i = −[At ]i , (by smoothness of gµν along shocks).
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ẋi [Ar ]i = −[At ]i , (by smoothness of gµν along shocks).

M. Reintjes GR Shock Interaction are Regularity Singularities



By (5), the jump of the derivatives of J t
0 across γi (t) = (t, xi (t))

should satisfy

[J t
0,t ]i = −1

2

(
[At ]i

A
J t

0 +
[Ar ]i

A
J r

0

)
and [J t

0,r ]i = −1

2

(
[Ar ]i

A
J t

0 +
[Bt ]i

A
J r

0

)
. (6)

Introduce J t
0(t, r) =

∑
i

αi (t) |xi (t)− r |+ Φ(t, r) ,

Φ some function C 1 across γi .
αi (t) := 1

4A◦γi (t) ([Ar ]i J t
0 ◦ γi (t) + [Bt ]i J r

0 ◦ γi (t)) ,

J t
0(t, r) satisfies (6), since:

The value of [J t
0,r ]i follows from:

d
dX
|X | = H(X ), for the Heaviside function H,

and [H(xi (t)− r)]j = 2δij .

The required value of [J t
0,t ]i follows from the identities:
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In fact, all functions that meet (5) are of the above form,

Jt
0(t, r) =

∑
i

αi (t) |xi (t)− r |+ Φ(t, r) ,

since Jt
0(t, r)−

∑
i
αi (t) |xi (t)− r | is a function C 1 across γi .

In summary, we obtain the following Lemma:
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Lemma
If the RH jump condition hold, then there exists a set of functions

Jµα ∈ C0,1(N ∩ R2
−) that satisfies the smoothing condition (5) on γi ∩N , (i = 1, 2).

All such Jµα assume the canonical form

Jt0(t, r) =
∑
i

αi (t) |xi (t)− r |+ Φ(t, r) , αi (t) =
[Ar ]i φi (t) + [Bt ]i ωi (t)

4A ◦ γi (t)
,

Jt1(t, r) =
∑
i

βi (t) |xi (t)− r |+ N(t, r) , βi (t) =
[Ar ]i νi (t) + [Bt ]i ζi (t)

4A ◦ γi (t)
,

Jr0(t, r) =
∑
i

δi (t) |xi (t)− r |+ Ω(t, r) , δi (t) =
[Bt ]i φi (t) + [Br ]i ωi (t)

4B ◦ γi (t)
,

Jr1(t, r) =
∑
i

εi (t) |xi (t)− r |+ Z(t, r) , εi (t) =
[Bt ]i νi (t) + [Br ]i ζi (t)

4B ◦ γi (t)
, (7)

where
φi = Φ ◦ γi , ωi = Ω ◦ γi , ζi = Z ◦ γi , νi = N ◦ γi , (8)

and Φ,Ω,Z ,N ∈ C0,1(N ∩R2
−) have matching derivatives on each shock curve γi (t),

[Ur ]i = 0 = [Ut ]i , (9)

for U = Φ,Ω,Z ,N, t ∈ (−ε, 0).
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Step (iii):

By assumption, the Jacobian are integrable to coordinates and
thus satisfy Jµα,β = Jµβ,α,

which is equivalent to

Jµα,νJνβ = Jµβ,νJνα .

Moreover, the Jacobian must assume the canonical form (7).

Substituting the canonical form (7) into the above
integrability condition and taking the jump across any of the
shocks, (WLOG across γ1), implies that for all t < 0,

δ1(t)ẋ1(t)β2(t)−ε1(t)ẋ1(t)α2(t)+ε1(t)δ2(t)−δ1(t)ε2(t) = 0.
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Taking the limit t → 0+ of

δ1(t)ẋ1(t)β2(t)−ε1(t)ẋ1(t)α2(t)+ε1(t)δ2(t)−δ1(t)ε2(t) = 0,

gives

1

4B

(
ẋ1ẋ2

A
+

1

B

)
[Br ]1[Br ]2 (ẋ1 − ẋ2) (φ0ζ0 − ν0ω0) = 0,

(10)

where

φ0 = lim
t→0+

φ1(t) = lim
t→0+

φ2(t)

φi (t) := Φ ◦ γi (t)
ζ0, ..., ω0 defined analogously.
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In (10), that is,

1

4B

(
ẋ1ẋ2

A
+

1

B

)
[Br ]1[Br ]2 (ẋ1 − ẋ2) (φ0ζ0 − ν0ω0) = 0,

all factors must be nonzero, except the last one,

thus

φ0ζ0 − ν0ω0 = 0. (11)

However,

Det (Jµα ◦ γi (t)) =
(
Jt

0J r
1 − Jt

1J r
0

)
|γi (t) = φi (t)ζi (t)−νi (t)ωi (t).

Thus, taking the limit t → 0+ and using (11), yields

lim
t→0+

Det (Jµα ◦ γi (t)) = φi (0)ζi (0)−νi (0)ωi (0) = φ0ζ0−ν0ω0 = 0.

This completes the proof, since gαβ = JµαJνβgµν . �
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ẋ1ẋ2

A
+

1

B

)
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So far, we’ve established that there is no coordinate
transformation of the (t, r)-plane that smoothes the
SSC-metric, gµν , to C 1.

To prove our main Theorem we just need to extend the above
result to the full atlas.

Recall our main Theorem:

Theorem 1, (R. and Temple, 2011)

Assume p is “a point of regular shock wave interaction in SSC”.
Then: @ C 1,1 coordinate transformation, defined in a
neighborhood of p, such that both holds:

The metric components are C 1 functions of the new
coordinates.

The metric has a nonzero determinant at p.
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Outline of Proof:

Assume there exist coordinates, such that the metric in the
new coordinates, gαβ, is in C 1.

In general, gαβ is not of the box-diagonal form,

ds2 = −A(t, r)dt2 + B(t, r)dr 2 + 2D(t, r)dtdr + C (t, r)dΩ2 .
(12)

However, (following the arguments in [Weinberg, Gravitation
and Cosmology]), there exists a coordinate transformation
that takes gαβ over to a metric of the form (12) and preserves
the metric regularity.

(Remark: A crucial step is to prove a C 1 regularity of
solutions of Killing’s equation, for a given C 1 metric.)

But (12) is related to our original SSC metric, gµν , by a
transformation in the (t, r)-plane, contradicting Theorem 2. �
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Part VII

Conclusion and Discussion
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Conclusion:

At points, p, of regular shock interaction in SSC the
gravitational metric suffers a non-removable lack of C 1

regularity.

The Einstein equations cannot hold strongly (only weakly) in
any coordinate system.

At p, spacetime is not locally flat, that is, there do not exist
coordinates x j , such that the metric satisfies:

gij(p) = ηij , where ηij = diag(−1, 1, 1, 1),
gij,l(p) = 0,
gij,kl are bounded on some neighborhood of p.

In particular, there exist (non-removable) distributional second
order metric derivatives.

These distributional derivatives are not hidden by an event
horizon.

However, all “curvature scalars” remain bounded.
(⇒ No naked singularities!)
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Discussion:

Having unbounded second order metric derivatives, but no
event horizon, regularity singularities might be measurable.
What could be such a measurable effect?

Our Theorem applies to spherically symmetric spacetimes and
radial shock waves only. Do regularity singularities persist, if
we remove any of our symmetry assumptions?
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Thank you for your attention!
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