Introduction-preliminaries	
0000000	

Well-balanced finite volume approximation 00 000000000

Relativistic Burgers equations on a curved spacetime

Baver Okutmustur

Middle East Technical University (METU)

HYP2012, June 25-29, 2012

Joint work with Philippe LeFloch and Hasan Makhlof, Université Paris 6

- 1 Introduction-preliminaries
 - Euler equations \Rightarrow Burgers equation
 - Hyperbolic Balance law
 - Lorentz invariance and derivation of the new model
 - Derivation from relativistic Euler equations
- 2 Burgers equations with geometric effects
 - Relativistic Euler Equations on Schwarzschild spacetime
 - Burgers equation on Schwarzshild spacetime
 - Relativistic Burgers equation on Schwarzshild spacetime
- 3 Well-balanced finite volume approximation
 - Geometric formulation of finite volume schemes
 - Finite volume methods in coordinates
 - Numerical experiments

Introduction-preliminaries

Well-balanced finite volume approximation 00 000000000

Euler equations \Rightarrow Burgers equation

Euler equations of compressible fluids

$$\partial_t \rho + \partial_x (\rho u) = 0, \quad \partial_t (\rho u) + \partial_x (\rho u^2 + p(\rho)) = 0$$

 ρ : density, u : velocity of the fluid, $p(\rho)$: pressure

Rewrite the second equation combining with the first one

$$0 = u \partial_t(\rho) + \rho \partial_t(u) + u^2 \partial_x(\rho) + 2u\rho \partial_x(u)$$

= $\rho(\partial_t u + 2u\partial_x u) + u(\partial_t \rho + u\partial_x \rho)$
= $\rho(\partial_t u + 2u\partial_x u) - u\rho \partial_x u = \rho(\partial_t u + u\partial_x u)$

The (inviscid) Burgers equation

$$\partial_t u + \partial_x (u^2/2) = 0, \qquad u = u(t,x), \ t > 0, \ x \in \mathbb{R}$$

Introduction-preliminaries	
•	

Well-balanced finite volume approximation 00 000000000

4/30

Hyperbolic Balance law

Hyperbolic balance laws

Balance laws

 $\operatorname{div}_\omega(T(v))=S(v)$

 $M = (M, \omega) : (n + 1)$ -dimensional curved spacetime (with boundary) div_{ω} : the divergence operator associated with the volume form ω $v : M \to \mathbb{R}$ unknown function (scalar field) T = T(v) flux vector field on M, S = S(v) a scalar field on M.

The manifold M is assumed to be foliated by hypersurfaces :

$$M=\bigcup_{t\geq 0}H_t,$$

such that each slice H_t is an *n*-dimensional manifold. H_t : spacelike, H_0 : initial slice

Introduction-preliminaries	Burgers equations with geometric effects
•000000	

Well-balanced finite volume approximation 00 000000000

Lorentz invariance and derivation of the new model

Lorentz invariant conservation law

Supposing that n = 1, $S(v) \equiv 0$

 $M = [0, +\infty) \times \mathbb{R}$ covered by a single coordinate chart $(x^0, x^1) = (t, x)$ with $\omega = dx^0 dx^1$, it follows that

Hyperbolic conservation law

$$\partial_0 T^0(v) + \partial_1 T^1(v) = 0,$$

where $\partial_0 = \partial/\partial x^0$, $\partial_1 = \partial/\partial x^1$, $x^0 \in [0,\infty)$ and $x^1 \in \mathbb{R}$.

We search for the flux vector fields T = T(v) for which solutions to the above equation satisfy Lorentz invariant property.

Introduction-preliminaries
000000

Well-balanced finite volume approximation 00 000000000

Lorentz invariance and derivation of the new model

Derivation of a Lorentz invariant model

Lorentz transformations $(x^0, x^1) \mapsto (\bar{x}^0, \bar{x}^1)$

$$\bar{x}^0 := \gamma_\epsilon(V) \left(x^0 - \epsilon^2 V x^1 \right),$$

$$ar{x}^1 \coloneqq \gamma_\epsilon(V) \, (-V \, x^0 + x^1), \qquad \qquad \gamma_\epsilon(V) = ig(1 - \epsilon^2 \, V^2ig)^{-1/2},$$

 $\epsilon \in (-1, 1)$ denotes the inverse of the (normalized) speed of light, $\gamma_{\epsilon}(V)$ is the so-called Lorentz factor associated with a given speed $V \in (-1/\epsilon, 1/\epsilon)$

v: fluid velocity component in the coordinate system (x^0, x^1) related to the component \overline{v} in the coordinates $(\overline{x}^0, \overline{x}^1)$

$$\overline{v} = \frac{v - V}{1 - \epsilon^2 V v}.$$

Introduction-preliminaries
000000

Well-balanced finite volume approximation 00 000000000

Lorentz invariance and derivation of the new model

Relativistic Burgers equations on Minkowski spacetime

Theorem

The conservation law

$$\partial_0 T^0(\nu) + \partial_1 T^1(\nu) = 0, \qquad (1)$$

is invariant under Lorentz transformations if and only if after suitable normalization one has

$$T^0(v)=rac{v}{\sqrt{1-\epsilon^2v^2}}, \qquad T^1(v)=rac{1}{\epsilon^2}igg(rac{1}{\sqrt{1-\epsilon^2v^2}}-1igg),$$

where the scalar field v takes its value in $(-1/\epsilon, 1/\epsilon)$.

Introduction-preliminaries	Burgers equations with geometric effects	Well-balanced finite volume approximation
		00
000000		

Lorentz invariance and derivation of the new model

Sketch of the proof

Use Lorentz transformation with related change of coordinates Apply the chain rule to write $\partial_0 T^0$, $\partial_1 T^1$ Substitute them in the conservation law equation (1) Checking the Lorentz invariance property Determine the general expression of T^0 and T^1

$$\begin{split} T^{0}(v) &= T^{0}(\phi_{\epsilon})(u) = \frac{e^{\epsilon u} - e^{-\epsilon u}}{2\epsilon} = \frac{1}{\epsilon} \sinh(\epsilon u) = u + O(\epsilon^{2}u^{3}), \\ T^{1}(v) &= T^{1}(\phi_{\epsilon}(u)) = \frac{e^{\epsilon u} + e^{-\epsilon u} - 2}{2\epsilon^{2}} = \frac{1}{\epsilon^{2}} (\cosh(\epsilon u) - 1) = \frac{u^{2}}{2} + O(\epsilon^{2}u^{4}), \\ \text{where } v &= \frac{1}{\epsilon} \frac{e^{2\epsilon u} - 1}{e^{2\epsilon u} + 1} = \phi_{\epsilon}(u). \end{split}$$

 T^0 and T^1 are linear and quadratic, respectively. Substitute $u = \frac{1}{2\epsilon} \ln \frac{1+\epsilon v}{1-\epsilon v}$, we get the desired result. (Note that in the limiting case $\epsilon \to 0$, we recover the (inviscid) Burgers equation).

Introduction-preliminaries	
0000000	

Well-balanced finite volume approximation 00 000000000

Lorentz invariance and derivation of the new model

Properties of the relativistic Burgers equation

$$\partial_0 \left(\frac{v}{\sqrt{1 - \epsilon^2 v^2}} \right) + \partial_1 \left(\frac{1}{\epsilon^2} \left(\frac{1}{\sqrt{1 - \epsilon^2 v^2}} - 1 \right) \right) = 0 \tag{1}$$

- **1** The map $w = T^0(v) = \frac{v}{\sqrt{1-\epsilon^2 v^2}} \in \mathbb{R}$ is increasing and one-to-one from $(-1/\epsilon, 1/\epsilon)$ onto \mathbb{R} .
- 2 In terms of the new unknown $w \in \mathbb{R}, (1)$ is equivalent to

$$\partial_0 w + \partial_1 f_{\epsilon}(w) = 0,$$

$$f_{\epsilon}(w) = \frac{1}{\epsilon^2} \left(-1 \pm \sqrt{1 + \epsilon^2 w^2} \right),$$
 (2)

3 In the non-relativistic limit $\epsilon \rightarrow 0$, one recovers the Burgers equation

$$\partial_0 u + \partial_1 (u^2/2) = 0$$
, where $u \in \mathbb{R}$.

Introduction-preliminaries	Burgers equations with geometric effects	Well-balanced finite volume approximation
		00
	00	00
0000000		00000000
and the second second second second	- C.I	

Lorentz invariance and derivation of the new model

The proposed equation retains several key features of the relativistic Euler equations :

- Like the conservation of mass-energy in the Euler system, it has a conservative form.
- Like the velocity component in the Euler system, our unknown v is constrained to lie in the interval (-1/e, 1/e) limited by the light speed parameter.
- Like the Euler system, by sending the light speed to infinity one recover the classical (non-relativistic) model.

Introduction-preliminaries	Burgers equations with geometric effects	Well-balanced finite volume approximation
		00
	00	00
000000		

Lorentz invariance and derivation of the new model

The non-relativistic limit

We recover the Galilean transformations by relativistic case with $\epsilon \rightarrow 0$ given by

$$\bar{x}^0 = x^0, \quad \bar{x}^1 = x^1 - V x^0, \quad \overline{v} = v - V.$$

We have the following :

The conservation law

$$\partial_0 T^0(v) + \partial_1 T^1(v) = 0,$$

is invariant under Galilean transformations iff the flux functions T^0 and T^1 are linear and quadratic, respectively. If $T^0(v) = v$, then after a suitable normalization one gets $T^1(v) = v^2/2$.

Introduction-preliminaries	
000000	

Well-balanced finite volume approximation 00 000000000

Derivation from relativistic Euler equations

Relativistic Euler Equations

$$\partial_0 \left(\frac{p + \rho c^2}{c^2} \frac{v^2}{c^2 - v^2} + \rho \right) + \partial_1 \left((p + \rho c^2) \frac{v}{c^2 - v^2} \right) = 0,$$

$$\partial_0 \left((p + \rho c^2) \frac{v}{c^2 - v^2} \right) + \partial_1 \left((p + \rho c^2) \frac{v^2}{c^2 - v^2} + \rho \right) = 0,$$

 p, ρ, v and c denote the pressure, density, velocity and speed of light. Set ρ as a constant (and thus the pressure p) in the second equation :

$$\partial_0\left(rac{v}{c^2-v^2}
ight)+\partial_1\left(rac{v^2}{c^2-v^2}
ight)=0.$$

Use change of variable $z=rac{v}{1-\epsilon^2v^2}$, with $c=1/\epsilon$, we get

$$\partial_0 z + \frac{1}{2\epsilon^2} \partial_1 \left(-1 \pm \sqrt{1 + 4\epsilon^2 z^2} \right) = 0.$$
(3)

ク Q (~ 12 / 30

Introduction-preliminaries	Burgers equations with geometric effects
000000	

Relativistic Euler Equations on Schwarzschild spacetime

Vanishing pressure on flat spacetime

Assume that the pressure vanishes identically in the relativistic Euler equations, i.e.

$$\begin{split} \partial_0 \Big(\frac{\rho}{c^2 - v^2} \Big) &+ \partial_1 \Big(\frac{\rho v}{c^2 - v^2} \Big) = 0, \\ \partial_0 \Big(\frac{\rho v}{c^2 - v^2} \Big) &+ \partial_1 \Big(\frac{\rho v^2}{c^2 - v^2} \Big) = 0. \end{split}$$

Rewriting these two equations :

$$\begin{aligned} (c^2 - v^2)(\partial_0 \rho + v\partial_1 \rho) + \rho(2v\partial_0 v + (v^2 + c^2)\partial_1 v) &= 0, \\ v(c^2 - v^2)(\partial_0 \rho + v\partial_1 \rho) + \rho((v^2 + c^2)\partial_0 v + 2vc^2\partial_1 v) &= 0. \end{aligned}$$

Combining these equations we recover the classical Burgers equation (in flat spacetime)

Introduction-preliminaries	Burgers equations with geometric effects	Well-balanced finite volume approxima
	0	

Burgers equation on Schwarzshild spacetime

Vanishing pressure on Schwarzshild spacetime

Suppose that $p \equiv 0$. We get the Euler system in 1 + 1 dimensions on a Schwarzshild background takes the simplified form

$$\partial_t \left(\frac{r^2}{c^2} \widetilde{T}^{00}\right) + \partial_r \left(\frac{r(r-2m)}{c} \widetilde{T}^{01}\right) = 0,$$

$$\partial_t \left(\frac{r(r-2m)}{c} \widetilde{T}^{01}\right) + \partial_r \left((r-2m)^2 \widetilde{T}^{11}\right) - 3m \frac{(r-2m)}{r} \widetilde{T}^{11} + m \frac{(r-2m)}{r} \widetilde{T}^{00} = 0,$$

where $\widetilde{T}^{00} := \frac{c^2 \rho + p(\rho)v^2/c^2}{c^2 - v^2}c^2$, $\widetilde{T}^{01} := \frac{c^2 \rho + p(\rho)}{c^2 - v^2}cv$, $\widetilde{T}^{11} := \frac{v^2 \rho + p(\rho)}{c^2 - v^2}c^2$. Combining these two equations, we arrive at

$$\partial_t v + \left(1 - \frac{2m}{r}\right) v \partial_r v = \frac{m}{r^2} (v^2 - c^2), \quad \text{ or equivalently },$$

Burgers equation on Schwarzshild spacetime

$$\partial_t(r^2v) + \partial_r\left(r(r-2m)\frac{v^2}{2}\right) = rv^2 - mc^2 \qquad (4)$$

Introduction-prelimin	
0000000	

Well-balanced finite volume approximation 00 000000000

Burgers equation on Schwarzshild spacetime

Static solutions of Burgers equation on Schwarzschild spacetime

Consider

$$\partial_r \left(r(r-2m) \frac{v^2}{2} \right) = rv^2 - mc^2$$

We find that all static solutions are described by

Static solutions of Burgers equation

$$v_s(r) = \pm \sqrt{c^2 - K^2 (1 - \frac{2m}{r})}, \text{ or } \frac{c^2 - v_s^2}{1 - \frac{2m}{r}} = K^2, \ K \in (0, c)$$
 (5)

Introduction-preliminaries	Burgers equations with geometric effects	Well-balanced finite volume approxima
0000000	00	00000000

Relativistic Burgers equation on Schwarzshild spacetime

Relativistic Burgers equation on Schwarzshild spacetime

We set $M = \mathbb{R}_+ \times \mathbb{R}$. In coordinates (x^0, x^1) with $\partial_{\alpha} := \partial/\partial x^{\alpha}$ (with $\alpha = 0, 1$), the hyperbolic balance laws under consideration reads

$$\partial_0(\overline{\omega} T^0(v, x^0, x^1)) + \partial_1(\overline{\omega} T^1(v, x^0, x^1)) = \overline{\omega} S(v, x^0, x^1),$$

where $v : M \to \mathbb{R}$ is the unknown function and $T^{\alpha} = T^{\alpha}(v, x^0, x^1)$ and $S = S(v, x^0, x^1)$ are prescribed (flux and source) fields on M, while $\overline{\omega} = \overline{\omega}(x^0, x^1)$ is a positive weight-function. Set $x^0 = ct, x^1 = r$, with $c = 1/\epsilon$, we propose the following model

Relativistic Burgers equation on Schwarzshild spacetime

$$\partial_t(r^2w) + \partial_r\left(r(r-2m)f_{\epsilon}(\omega)\right) = 0, \quad f_{\epsilon}(\omega) = \frac{1}{\epsilon}\left(-1 + \sqrt{1+\epsilon^2w^2}\right) \quad (6)$$

Introduction-preliminaries	Burgers equations with geometric effects	Well-balanced finite volume app
	00	

Relativistic Burgers equation on Schwarzshild spacetime

Static solution of Relativistic Burgers equation on Schwarzshild spacetime

Consider

$$\partial_r \Big(r(r-2m)f_\epsilon(\omega) \Big) = 0,$$

where f_{ϵ} is strictly convex. We take positive branch of f_{ϵ}^{-1} . It follows that

Static solution of Relativistic Burgers equation

$$w_{s}(r) = f_{\epsilon}^{-1} \left(\frac{K}{r(r-2m)} \right) = \pm \frac{K}{r(r-2m)} \sqrt{\epsilon^{2} + 2 \frac{r(r-2m)}{K}}.$$
 (7)

Introduction-preliminaries	Burgers equations with geometric effects	Well-balar
		•0
	00	00

Geometric formulation of finite volume schemes

Geometric formulation of finite volume schemes

 (M, ω) : (1 + 1)-dimensional curved spacetime, globally hyperbolic, foliated by spacelike, compact, oriented hypersurfaces $H_t, (t \in \mathbb{R})$:

$$M=\bigcup_{t\in\mathbb{R}}H_t.$$

 $\mathcal{T}^h = \bigcup_{K \in \mathcal{T}^h} K$: a triangulation of M, which is made of (compact) spacetime elements K.

• The boundary ∂K of an element K is piecewise smooth $\partial K = \bigcup_{e \subset \partial K} e$ and contains exactly two spacelike faces, denoted by e_K^+ and e_K^- , and "timelike" elements

$$e^0 \in \partial^0 K := \partial K \setminus \{e_K^+, e_K^-\}.$$

• |K| and $|e_K^+|, |e_K^-|, |e^0|$ represent the measures of K and e_K^+, e_K^-, e^0 , respectively.

Burgers equations with geometric effects	Well-balanced finite volume approximation
	0

Geometric formulation of finite volume schemes

Consider a hyperbolic balance law posed on M :

$$\mathsf{div}_{\omega}(\mathcal{T}(v)) = \frac{1}{\omega}(\partial_0(\omega \mathcal{T}^0(v, x)) + \partial_1(\omega \mathcal{T}^1(v, x)) = S(v, x)$$

Integrating this equation in space and time

$$\int_{\mathcal{K}} (\omega S) dV_M = \int_{\mathcal{K}} \operatorname{div}_{\omega}(T(v)) \, dV_M,$$

which is equal to

$$\int_{e_{\kappa}^{+}} T^{0}\omega(n_{e_{\kappa}^{+}},\cdot) = \int_{e_{\kappa}^{-}} (T^{0})\omega(n_{e_{\kappa}^{-}},\cdot) - \sum_{e^{0} \in \partial^{0}K} \int_{e^{0}} T^{1}\omega(n_{e^{0}},\cdot) + \int_{\partial^{0}K} S(v)\omega.$$

We introduce the approximations

$$\overline{T}_{e}(v) \simeq \frac{1}{|e_{K}^{-}|\overline{\omega}_{e_{K}^{-}}} \int_{e_{K}^{-}} T^{0}(v) \omega(n_{e_{K}^{+}}, \cdot), \quad \overline{S}_{K} \simeq \frac{1}{|K|\omega_{K}} \int_{K} S(v) \omega,$$

and

$$\int_{e^0} T^1(v)\omega(n_{e^0},\cdot) \simeq |e^0|\,\overline{\omega}_{e^0}Q_{K,e^0}(v_K^-,v_{K_{e^0}}^-),$$

where $Q_{K,e^0}: \mathbb{R}^2 \to \mathbb{R}$ is a numerical flux function.

Introduction-preliminaries	

(ロ) (四) (三) (三) (三)

Finite volume methods in coordinates

We obtain the finite volume approximations

$$\begin{aligned} |e_{K}^{+}|\overline{\omega}_{e_{K}^{+}}\overline{\mathcal{T}}_{e_{K}^{+}}(v_{K}^{+}) &= |e_{K}^{-}|\overline{\omega}_{e_{K}^{-}}\overline{\mathcal{T}}_{e_{K}^{-}}(v_{K}^{-}) - \sum_{e^{0} \in \partial^{0}K} |e^{0}|\overline{\omega}_{e^{0}}Q_{K,e^{0}}(v_{K}^{-},v_{K_{e^{0}}}^{-}) \\ &+ \omega_{K}|K|\overline{\mathcal{S}}_{K}. \end{aligned}$$

and in local coordinates it is of the form

$$\overline{\omega}_{j} \overline{T}_{j}^{n+1} = \overline{\omega}_{j} \overline{T}_{j}^{n} - \lambda \left(\overline{\omega}_{j+1/2} Q_{j+1/2}^{n} - \overline{\omega}_{j-1/2} Q_{j-1/2}^{n} \right) + \overline{\omega}_{j} |\Delta t| \overline{S}_{j}^{n}$$
where $\lambda := \Delta t / \Delta r, \ \overline{T}_{j}^{n} := \overline{T}(v_{j}^{n})$

Introduction-preliminaries	
0000000	

Finite volume methods in coordinates

Well-balanced scheme on Schwarzshild spacetime

We focus attention on defining a well-balanced scheme specifically in the case $% \left({{{\boldsymbol{x}}_{i}}} \right)$

 $\omega(r)=r(r-2m),\ m\geq 0$

The discrete version of Burgers equation on Schwarzschild spacetime reads

$$\overline{T}_{j}^{n+1} = \overline{T}_{j}^{n} - \frac{\Delta t}{\Delta r} \left(\omega_{j+1/2} \, Q_{j+1/2} - \omega_{j-1/2} \, Q_{j-1/2} \right) + \Delta t \, \overline{S}_{j}$$

where the mess size $\Delta r = r_{j+1/2} - r_{j-1/2}$, and

$$r_{j-1/2} = 2m + j\Delta, r_j = 2m + (j + 1/2)\Delta r, r_{j+1/2} = 2m + (j + 1/2)\Delta r$$

and the averaged weights are $\omega_{j\pm 1/2} = r_{j\pm 1/2} (r_{j\pm 1/2} - 2m)$.

Well-balanced finite volume approximation

Numerical experiments

Comparison between schemes and models

Geometric Burgers equation I (Rel. Burg. eqn. on Sch. spacetime) $\partial_t(r^2w) + \partial_r\left(r(r-2m)(-1+\sqrt{1+w^2}) = 0$ (Conservative)

Geometric Burgers equation II (Burg. eqn. on Sch. spacetime)

$$\partial_t(r^2v) + \partial_r(r(r-2m)v^2/2) = rv^2 - mc^2$$
 (Non-conservative)

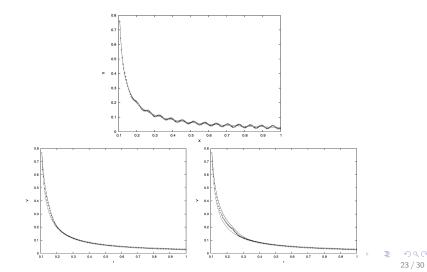
Normalize $c = 1/\epsilon = 1$, $r \in (2m, R)$ where R is an upper bound for the spatial variable. We use the Godunov flux at the boundary. For the numerical calculations : We take 2m = 0.1, R = 1.0, CFL = 0.9 We compare the numerical solutions based on the three schemes : -A first order Lax-Friedrichs scheme (plotted with +) -A second order Lax-Friedrichs scheme (plotted with dots) -A well-balanced second-order Lax-Friedrichs scheme (plotted with dots)

Introduction-preliminaries	
0000000	

Well-balanced finite volume approximation

Numerical experiments

Numerical solutions (model I)

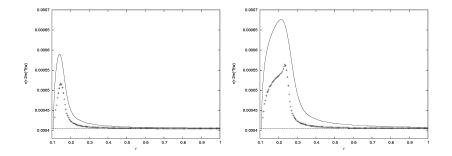


Introduction-preliminaries	
0000000	

Well-balanced finite volume approximation

Numerical experiments

Comparison of the numerical flux by the three schemes (model I) $% \left(\left({{{\rm{D}}_{{\rm{B}}}} \right)_{{\rm{B}}} \right)$

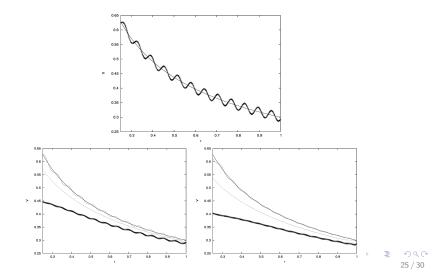


Introduction-preliminaries
0000000

Well-balanced finite volume approximation

Numerical experiments

Numerical solutions (model II)

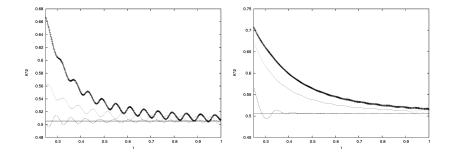


Introduction-preliminaries	
0000000	

Well-balanced finite volume approximation 00 000 00000000

Numerical experiments

Comparison of the numerical values of K^2 based on the three schemes (model II)



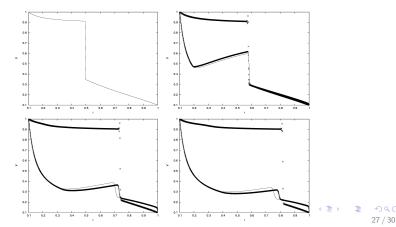
Introduction-preliminaries	

Well-balanced finite volume approximation

Numerical experiments

Comparison of schemes for a single shock at r = 0.5 (model II)

Perturbation of shock to the right away from the singularity



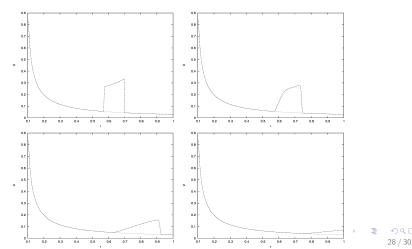
Introduction-preliminaries	Burgers equations with geometric e
	00

Well-balanced finite volume approximation

Numerical experiments

Late-time asymptotics-perturbed static solutions (model I)

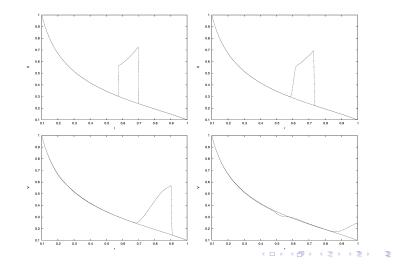
Impose an initial perturbation



Well-balanced finite volume approximation

Numerical experiments

Late-time asymptotics-perturbed static solutions (model II)



	Burgers equations with geometric effects o oo oo	Well-balanced finite volume approximation © ⊙ 00000000●
Numerical experiments		

References

- P.G. LeFloch, H. Makhlof, and B. Okutmustur, *Relativistic* Burgers equations on a curved spacetime. Derivation and finite volume approximation, to appear in SIAM Journal on Numerical Analysis (SINUM), 2012.
- P. Amorim, P. G. LeFloch and B. Okutmustur, *Finite Volume Schemes on Lorentzian Manifolds*, Commun. Math. Sci. Volume 6, Number 4 (2008), 1059-1086.
- P.G. LeFloch and B. Okutmustur, Hyperbolic conservation laws on spacetimes. A finite volume schemes based on differential forms, Far East Jour. Math., Volume 31 (2008), 49-83.