
Introduction-preliminaries Burgers equations with geometric effects Well-balanced finite volume approximation

Relativistic Burgers equations on a curved
spacetime

Baver Okutmustur

Middle East Technical University (METU)

HYP2012, June 25–29, 2012

Joint work with Philippe LeFloch and Hasan Makhlof, Université Paris 6
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Euler equations ⇒ Burgers equation

Euler equations of compressible fluids

∂tρ+ ∂x(ρu) = 0, ∂t(ρu) + ∂x(ρu2 + p(ρ)) = 0

ρ : density, u : velocity of the fluid, p(ρ) : pressure

Rewrite the second equation combining with the first one

0 = u ∂t(ρ) + ρ ∂t(u) + u2∂x(ρ) + 2uρ ∂x(u)

= ρ(∂tu + 2u∂xu) + u(∂tρ+ u∂xρ)

= ρ(∂tu + 2u∂xu)− uρ∂xu = ρ(∂tu + u∂xu)

The (inviscid) Burgers equation

∂tu + ∂x(u2/2) = 0, u = u(t, x), t > 0, x ∈ R
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Hyperbolic Balance law

Hyperbolic balance laws

Balance laws

divω(T (v)) = S(v)

M = (M, ω) : (n + 1)-dimensional curved spacetime (with boundary)
divω : the divergence operator associated with the volume form ω
v : M → R unknown function (scalar field)
T = T (v) flux vector field on M, S = S(v) a scalar field on M.

The manifold M is assumed to be foliated by hypersurfaces :

M =
⋃
t≥0

Ht ,

such that each slice Ht is an n-dimensional manifold.
Ht : spacelike, H0 : initial slice
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Lorentz invariance and derivation of the new model

Lorentz invariant conservation law

Supposing that n = 1, S(v) ≡ 0

M = [0,+∞)× R covered by a single coordinate chart (x0, x1) = (t, x)
with ω = dx0dx1, it follows that

Hyperbolic conservation law

∂0T 0(v) + ∂1T 1(v) = 0,

where ∂0 = ∂/∂x0, ∂1 = ∂/∂x1, x0 ∈ [0,∞) and x1 ∈ R.

We search for the flux vector fields T = T (v) for which solutions to the

above equation satisfy Lorentz invariant property.
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Lorentz invariance and derivation of the new model

Derivation of a Lorentz invariant model

Lorentz transformations (x0, x1) 7→ (x̄0, x̄1)

x̄0 := γε(V ) (x0 − ε2Vx1),

x̄1 := γε(V ) (−V x0 + x1), γε(V ) =
(
1− ε2 V 2

)−1/2
,

ε ∈ (−1, 1) denotes the inverse of the (normalized) speed of light,
γε(V ) is the so-called Lorentz factor associated with a given speed
V ∈ (−1/ε, 1/ε)

v : fluid velocity component in the coordinate system (x0, x1)
related to the component v in the coordinates (x̄0, x̄1)

v =
v − V

1− ε2V v
.
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Lorentz invariance and derivation of the new model

Relativistic Burgers equations on Minkowski spacetime

Theorem

The conservation law

∂0T 0(v) + ∂1T 1(v) = 0, (1)

is invariant under Lorentz transformations if and only if after
suitable normalization one has

T 0(v) =
v√

1− ε2v 2
, T 1(v) =

1

ε2

(
1√

1− ε2v 2
− 1

)
,

where the scalar field v takes its value in (−1/ε, 1/ε).
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Lorentz invariance and derivation of the new model

Sketch of the proof

Use Lorentz transformation with related change of coordinates
Apply the chain rule to write ∂0T 0, ∂1T 1

Substitute them in the conservation law equation (1)
Checking the Lorentz invariance property
Determine the general expression of T 0 and T 1

T 0(v) = T 0(φε)(u) = eεu−e−εu

2ε = 1
ε sinh(εu) = u + O(ε2u3),

T 1(v) = T 1(φε(u)) = eεu+e−εu−2
2ε2 = 1

ε2

(
cosh(εu)− 1

)
= u2

2 + O(ε2u4),

where v = 1
ε
e2εu−1
e2εu+1 = φε(u).

T 0 and T 1 are linear and quadratic, respectively.

Substitute u = 1
2ε ln 1+εv

1−εv , we get the desired result. (Note that in the

limiting case ε→ 0, we recover the (inviscid) Burgers equation).
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Lorentz invariance and derivation of the new model

Properties of the relativistic Burgers equation

∂0

(
v√

1−ε2v2

)
+ ∂1

(
1
ε2

(
1√

1−ε2v2
− 1
))

= 0 (1)

1 The map w = T 0(v) = v√
1−ε2v2

∈ R is increasing and one-to-one

from (−1/ε, 1/ε) onto R.

2 In terms of the new unknown w ∈ R, (1) is equivalent to

∂0w + ∂1fε(w) = 0,

fε(w) =
1

ε2

(
− 1±

√
1 + ε2w 2

)
,

(2)

3 In the non-relativistic limit ε→ 0, one recovers the Burgers equation

∂0u + ∂1(u2/2) = 0, where u ∈ R. 9 / 30
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Lorentz invariance and derivation of the new model

The proposed equation retains several key features of the
relativistic Euler equations :

Like the conservation of mass-energy in the Euler system, it
has a conservative form.

Like the velocity component in the Euler system, our unknown
v is constrained to lie in the interval (−1/ε, 1/ε) limited by
the light speed parameter.

Like the Euler system, by sending the light speed to infinity
one recover the classical (non-relativistic) model.
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Lorentz invariance and derivation of the new model

The non-relativistic limit

We recover the Galilean transformations by relativistic case with
ε→ 0 given by

x̄0 = x0, x̄1 = x1 − Vx0, v = v − V .

We have the following :

The conservation law

∂0T 0(v) + ∂1T 1(v) = 0,

is invariant under Galilean transformations iff the flux functions T 0

and T 1 are linear and quadratic, respectively. If T 0(v) = v , then
after a suitable normalization one gets T 1(v) = v 2/2.

11 / 30



Introduction-preliminaries Burgers equations with geometric effects Well-balanced finite volume approximation

Derivation from relativistic Euler equations

Relativistic Euler Equations

∂0

(
p + ρc2

c2

v 2

c2 − v 2
+ ρ

)
+ ∂1

(
(p + ρc2)

v

c2 − v 2

)
= 0,

∂0

(
(p + ρc2)

v

c2 − v 2

)
+ ∂1

(
(p + ρc2)

v 2

c2 − v 2
+ p

)
= 0,

p, ρ, v and c denote the pressure, density, velocity and speed of light.
Set ρ as a constant (and thus the pressure p) in the second equation :

∂0

(
v

c2 − v 2

)
+ ∂1

(
v 2

c2 − v 2

)
= 0.

Use change of variable z = v
1−ε2v2 , with c = 1/ε, we get

∂0z +
1

2ε2
∂1

(
− 1±

√
1 + 4ε2z2

)
= 0. (3)
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Relativistic Euler Equations on Schwarzschild spacetime

Vanishing pressure on flat spacetime

Assume that the pressure vanishes identically in the relativistic Euler
equations, i.e.

∂0

( ρ

c2 − v 2

)
+ ∂1

( ρv

c2 − v 2

)
= 0,

∂0

( ρv

c2 − v 2

)
+ ∂1

( ρv 2

c2 − v 2

)
= 0.

Rewriting these two equations :

(c2 − v 2)(∂0ρ+ v∂1ρ) + ρ(2v∂0v + (v 2 + c2)∂1v) = 0,

v(c2 − v 2)(∂0ρ+ v∂1ρ) + ρ((v 2 + c2)∂0v + 2vc2∂1v) = 0.

Combining these equations we recover the classical Burgers equation (in
flat spacetime)

∂0v + ∂1(v 2/2) = 0

.
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Burgers equation on Schwarzshild spacetime

Vanishing pressure on Schwarzshild spacetime

Suppose that p ≡ 0. We get the Euler system in 1 + 1 dimensions on a
Schwarzshild background takes the simplified form

∂t

(
r2

c2 T̃ 00
)

+ ∂r

(
r(r−2m)

c T̃ 01
)

= 0,

∂t

(
r(r−2m)

c T̃ 01
)

+ ∂r

(
(r − 2m)2 T̃ 11

)
− 3m (r−2m)

r T̃ 11 + m (r−2m)
r T̃ 00 = 0,

where T̃ 00 := c2ρ+p(ρ)v2/c2

c2−v2 c2, T̃ 01 := c2ρ+p(ρ)
c2−v2 cv , T̃ 11 := v2ρ+p(ρ)

c2−v2 c2.
Combining these two equations, we arrive at

∂tv +
(

1− 2m

r

)
v∂rv =

m

r 2
(v 2 − c2), or equivalently ,

Burgers equation on Schwarzshild spacetime

∂t(r 2v) + ∂r

(
r(r − 2m)

v 2

2

)
= rv 2 −mc2 (4)
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Burgers equation on Schwarzshild spacetime

Static solutions of Burgers equation on Schwarzschild
spacetime

Consider

∂r

(
r(r − 2m)

v 2

2

)
= rv 2 −mc2

We find that all static solutions are described by

Static solutions of Burgers equation

vs(r) = ±
√

c2 − K 2
(
1− 2m

r

)
, or

c2 − v 2
s

1− 2m
r

= K 2, K ∈ (0, c) (5)
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Relativistic Burgers equation on Schwarzshild spacetime

Relativistic Burgers equation on Schwarzshild spacetime

We set M = R+ × R.
In coordinates (x0, x1) with ∂α := ∂/∂xα (with α = 0, 1), the hyperbolic
balance laws under consideration reads

∂0(ωT 0(v , x0, x1)) + ∂1(ωT 1(v , x0, x1)) = ω S(v , x0, x1),

where v : M → R is the unknown function and Tα = Tα(v , x0, x1) and
S = S(v , x0, x1) are prescribed (flux and source) fields on M, while
ω = ω(x0, x1) is a positive weight-function.
Set x0 = ct, x1 = r , with c = 1/ε, we propose the following model

Relativistic Burgers equation on Schwarzshild spacetime

∂t(r 2w) + ∂r

(
r(r − 2m)fε(ω)

)
= 0, fε(ω) =

1

ε

(
− 1 +

√
1 + ε2w 2

)
(6)
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Relativistic Burgers equation on Schwarzshild spacetime

Static solution of Relativistic Burgers equation on
Schwarzshild spacetime

Consider
∂r

(
r(r − 2m)fε(ω)

)
= 0,

where fε is strictly convex. We take positive branch of f −1
ε .

It follows that

Static solution of Relativistic Burgers equation

ws(r) = f −1
ε

( K

r(r − 2m)

)
= ± K

r(r − 2m)

√
ε2 + 2

r(r − 2m)

K
. (7)
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Geometric formulation of finite volume schemes

Geometric formulation of finite volume schemes

(M, ω) : (1 + 1)-dimensional curved spacetime, globally hyperbolic,
foliated by spacelike, compact, oriented hypersurfaces Ht , (t ∈ R) :

M =
⋃
t∈R

Ht .

T h =
⋃

K∈T h K : a triangulation of M, which is made of (compact)
spacetime elements K .

The boundary ∂K of an element K is piecewise smooth
∂K =

⋃
e⊂∂K e and contains exactly two spacelike faces, denoted by

e+
K and e−K , and “timelike” elements

e0 ∈ ∂0K := ∂K \
{

e+
K , e

−
K

}
.

|K | and |e+
K |, |e

−
K |, |e0| represent the measures of K and e+

K , e
−
K , e

0,
respectively.
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Geometric formulation of finite volume schemes

Consider a hyperbolic balance law posed on M :

divω(T (v)) =
1

ω
(∂0(ωT 0(v , x)) + ∂1(ωT 1(v , x)) = S(v , x)

Integrating this equation in space and time∫
K

(ωS)dVM =

∫
K

divω(T (v)) dVM ,

which is equal to∫
e+
K

T 0ω(ne+
K
, ·) =

∫
e−K

(T 0)ω(ne−K
, ·)−

∑
e0∈∂0K

∫
e0

T 1ω(ne0 , ·)+

∫
∂0K

S(v)ω.

We introduce the approximations

T e(v) ' 1

|e−K |ωe−K

∫
e−K

T 0(v)ω(ne+
K
, ·), SK '

1

|K |ωK

∫
K

S(v)ω,

and ∫
e0

T 1(v)ω(ne0 , ·) ' |e0|ωe0 QK ,e0 (v−K , v
−
Ke0

),

where QK ,e0 : R2 → R is a numerical flux function. 19 / 30
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Finite volume methods in coordinates

We obtain the finite volume approximations

|e+
K |ωe+

K
T e+

K
(v +

K ) = |e−K |ωe−K
T e−K

(v−K )−
∑

e0∈∂0K

|e0|ωe0 QK ,e0 (v−K , v
−
Ke0

)

+ ωK |K |SK .

and in local coordinates it is of the form

ωj T
n+1

j = ωj T
n

j − λ
(
ωj+1/2 Qn

j+1/2 − ωj−1/2 Qn
j−1/2

)
+ ωj |∆t|Sn

j

where λ := ∆t/∆r , T
n

j := T (vn
j )
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Finite volume methods in coordinates

Well-balanced scheme on Schwarzshild spacetime

We focus attention on defining a well-balanced scheme specifically in the
case

ω(r) = r(r − 2m), m ≥ 0

The discrete version of Burgers equation on Schwarzschild spacetime
reads

T
n+1

j = T
n

j − ∆t
∆r

(
ωj+1/2 Qj+1/2 − ωj−1/2 Qj−1/2

)
+ ∆t S j

where the mess size ∆r = rj+1/2 − rj−1/2, and

rj−1/2 = 2m + j∆, rj = 2m + (j + 1/2)∆r , rj+1/2 = 2m + (j + 1/2)∆r

and the averaged weights are ωj±1/2 = rj±1/2(rj±1/2 − 2m).
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Numerical experiments

Comparison between schemes and models

Geometric Burgers equation I (Rel. Burg. eqn. on Sch. spacetime)

∂t(r 2w) + ∂r

(
r(r − 2m)(−1 +

√
1 + w 2

)
= 0 (Conservative)

Geometric Burgers equation II (Burg. eqn. on Sch. spacetime)

∂t(r 2v) + ∂r

(
r(r − 2m)v 2/2

)
= rv 2 −mc2 (Non-conservative)

Normalize c = 1/ε = 1, r ∈ (2m,R) where R is an upper bound for the
spatial variable. We use the Godunov flux at the boundary.
For the numerical calculations : We take 2m = 0.1, R = 1.0,CFL = 0.9
We compare the numerical solutions based on the three schemes :
-A first order Lax-Friedrichs scheme (plotted with +)
-A second order Lax-Friedrichs scheme (plotted with dots)
-A well-balanced second-order Lax-Friedrichs scheme (plotted with –)
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Numerical experiments

Numerical solutions (model I)
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Numerical experiments

Comparison of the numerical flux by the three schemes
(model I)
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Numerical experiments

Numerical solutions (model II)
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Numerical experiments

Comparison of the numerical values of K 2 based on the
three schemes (model II)
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Numerical experiments

Comparison of schemes for a single shock at r = 0.5
(model II)

Perturbation of shock to the right away from the singularity
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Numerical experiments

Late-time asymptotics–perturbed static solutions (model I)

Impose an initial perturbation
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Numerical experiments

Late-time asymptotics-perturbed static solutions (model II)

29 / 30



Introduction-preliminaries Burgers equations with geometric effects Well-balanced finite volume approximation

Numerical experiments
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