
14th International Conference on Hyperbolic Problems
Università di Padova
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Three-phase flow in porous media Conservation of the masses

Physical constants and functions, i ∈ w , o, g

si , saturation of phase i ; ρi , density of phase i ;
vi , seepage velocity of phase i ; φ, rock porosity;

v =
∑

j vj , total seepage velocity; fi =
vi

v
, Fractional vol. flux
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Saturation triangle (sw + so + sg = 1)

The domain of (sw , so) such that sw + so < 1, 0 < sw and 0 < so .
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Physical constants and functions, i ∈ w , o, g

si , saturation of phase i ; ρi , density of phase i ;
vi , seepage velocity of phase i ; φ, rock porosity;
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The domain of (sw , so) such that sw + so < 1, 0 < sw and 0 < so .

Conservation of the masses

One dimensional horizontal flow of three immiscible phases with no
gravitational effects and no mass exchange between phases.

∂
∂t

(φρisi ) +
∂
∂x

(ρivfi) = 0, i ∈ {o,w , g}

Incompressible fluids with v 6= 0

∂
∂t

(φsi ) +
∂
∂x

(vfi) = 0 →
rescaling

∂
∂t
si +

∂
∂x
fi = 0, i ∈ {o,w , g}
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Three-phase flow in porous media Darcy’s law

Darcy’s Law

Permeabilities mi , total permeability m =
∑

j mj and pressure p:

vi = mi
∂p

∂x
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Darcy’s Law

Permeabilities mi , total permeability m =
∑

j mj and pressure p:

vi = mi
∂p

∂x

Fractional flux with convex monomial mobility functions

fi =
vi

v
=

mi
∂p
∂x

∑

j mj
∂pj
∂x

=
mi

m
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∑
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∂pj
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=
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→
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Matos, Castañeda, Marchesin (UP;IMPA) Classification of the umbilic point Hyp 2012 – Padova 4 / 14



Three-phase flow in porous media Darcy’s law

Darcy’s Law

Permeabilities mi , total permeability m =
∑

j mj and pressure p:

vi = mi
∂p

∂x

Fractional flux with convex monomial mobility functions

fi =
vi

v
=

mi
∂p
∂x

∑

j mj
∂pj
∂x

=
mi

m
→

{

mi = bi s
ai
i

bi > 0 ; ai > 1
→ fi =

bi s
ai
i

∑

j bjs
aj
j

.
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Conservation of the masses

We have
∑

j sj = 1 and
∑

j fj = 1 thus

∂
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Matos, Castañeda, Marchesin (UP;IMPA) Classification of the umbilic point Hyp 2012 – Padova 4 / 14



Three-phase flow in porous media Darcy’s law

Darcy’s Law

Permeabilities mi , total permeability m =
∑

j mj and pressure p:

vi = mi
∂p

∂x

Fractional flux with convex monomial mobility functions

fi =
vi

v
=

mi
∂p
∂x

∑

j mj
∂pj
∂x

=
mi

m
→

{

mi = bi s
ai
i

bi > 0 ; ai > 1
→ fi =
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ai
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∑
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.

Conservation of the masses

We have
∑

j sj = 1 and
∑

j fj = 1 thus

∂

∂t

[

sw
so

]

+
∂

∂x

[

fw (sw , so)
fo(sw , so)

]

= 0 ⇔
∂

∂t
S +

∂

∂x
F (S) = 0 (1)

The system (1) has an isolated umbilic point in the triangle.

(See Medeiros or Schaeffer, Shearer, Marchesin, Paes-Leme)
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Three-phase flow in porous media The umbilic point

The isolated umbilic point lies at (sw , so) = (α, β) where:

dm(si)

dsi
=

dm(sj)

dsj
= ξ, for i 6= j ∈ {w , o, g}

(At the umbilic point each liquid hampers the motion of all others.)
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Three-phase flow in porous media The umbilic point

The isolated umbilic point lies at (sw , so) = (α, β) where:

dm(si)

dsi
=

dm(sj)

dsj
= ξ, for i 6= j ∈ {w , o, g}

(At the umbilic point each liquid hampers the motion of all others.)

The Goal

Classification of the F (S) near the umbilic point according to Schaeffer and
Shearer depending on its location within the saturation triangle.
(Schaeffer and Shearer classified the fluxes in four types.)

Schaeffer, Shearer, Marchesin, Paes-Leme

They prove the umbilic is type I or II.

The real Goal

Where does the singularity change from type I to type II?
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Schaeffer and Shearer’s Results SS-Isolated umbilic point
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Review of Schaeffer and Shearer’s Results

Definition: Umbilic point

Let H be a C 2 function H : R2 → R
2, U → H(U).

If DH has two equal eigenvalues and is diagonalizable at U∗ then U∗ is an
umbilic point of H.
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Schaeffer and Shearer’s Results SS-Isolated umbilic point

Review of Schaeffer and Shearer’s Results

Definition: Umbilic point

Let H be a C 2 function H : R2 → R
2, U → H(U).

If DH has two equal eigenvalues and is diagonalizable at U∗ then U∗ is an
umbilic point of H.

Definition: Isolated umbilic point

If there exists a neighborhood N of U∗ such that DH has distinct real
eigenvalues for all U ∈ N \ U∗ then U∗ is an isolated umbilic point of H.

Definition: SS-isolated umbilic point and SS-flux

Let G be the second order expansion of the flux H around U∗.
If U∗ is an isolated umbilic point of G then U∗ is a SS-isolated umbilic point
of H and H is a SS-flux.
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Schaeffer and Shearer’s Results Normal form

Definition of G (U)

Let G be the second order expansion of a SS-flux H around U∗ with change
of coordinates such that G is a homogeneous quadratic SS-flux.
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Schaeffer and Shearer’s Results Normal form

Definition of G (U)

Let G be the second order expansion of a SS-flux H around U∗ with change
of coordinates such that G is a homogeneous quadratic SS-flux.

Theorem: Topological behavior depends on quadratic expansion

If G is generic (in some sense) then the SS-isolated umbilic point of H is
classified by studying G .
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Theorem: Topological behavior depends on quadratic expansion
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classified by studying G .

Equivalence

Quadratic fluxes G1 and G2 are equivalent if there is an invertible constant
matrix M such that G2 (U) = M−1G1 (MU).
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Quadratic fluxes G1 and G2 are equivalent if there is an invertible constant
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shocks near the umbilic point that arise from Riemann problems.
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Schaeffer and Shearer’s Results Normal form

Definition of G (U)

Let G be the second order expansion of a SS-flux H around U∗ with change
of coordinates such that G is a homogeneous quadratic SS-flux.

Theorem: Topological behavior depends on quadratic expansion

If G is generic (in some sense) then the SS-isolated umbilic point of H is
classified by studying G .

Equivalence

Quadratic fluxes G1 and G2 are equivalent if there is an invertible constant
matrix M such that G2 (U) = M−1G1 (MU).
Equivalence preserves the topological characteristics of rarefactions and
shocks near the umbilic point that arise from Riemann problems.

Theorem: Schaeffer and Shearer’s normal form

There exists a and b such that G is equivalent to

Q(U) =

[

au2 + 2buv + v2

bu2 + 2uv

]

.
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Schaeffer and Shearer’s Results The four different robust configurations

Non degenerate G

G is not degenerate if it is equivalent to a Q with

a 6= 3
4b

2, a 6= 1 + b2, a 6= Φ(b).
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Schaeffer and Shearer’s Results The four different robust configurations

Non degenerate G

G is not degenerate if it is equivalent to a Q with

a 6= 3
4b

2, a 6= 1 + b2, a 6= Φ(b).

The four types of robust configurations

Type I ⇔ a < 3
4b

2

Type II ⇔ 3
4b

2 < a < 1 + b2

Type III ⇔ 1 + b2 < a < Φ(b)
Type IV ⇔ Φ(b) < a

With the normal form it is easy for classify a flux

We cannot get the normal form for F (S)

We need another way to distinguish Type I from Type II
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Main Result The determinant of the derivative of the normal flux

New result on quadratic fluxes

Definition of NG

We define NG based on the quadratic form det(DG (U)):

det(DG (U)) = UTNGU
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det(DG (U)) = UTNGU

Theorem

G (U) has Type I if and only if det(NG ) > 0.

Proof: The normal flux
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New result on quadratic fluxes

Definition of NG

We define NG based on the quadratic form det(DG (U)):

det(DG (U)) = UTNGU

Theorem

G (U) has Type I if and only if det(NG ) > 0.

Proof: The normal flux

Q(U) =

[

au2 + 2buv + v2

bu2 + 2uv

]

⇔ DQ(U) =

[

2au + 2bv 2bu + 2v
2bu + 2v 2u

]

Therefore, det(DQ(U)) =
[

u v
]

[

4a − 4b2 −2b
−2b −4

] [

u

v

]
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We define NG based on the quadratic form det(DG (U)):

det(DG (U)) = UTNGU

Theorem

G (U) has Type I if and only if det(NG ) > 0.

Proof: The normal flux

Q(U) =

[

au2 + 2buv + v2

bu2 + 2uv

]
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New result on quadratic fluxes

Definition of NG

We define NG based on the quadratic form det(DG (U)):

det(DG (U)) = UTNGU

Theorem

G (U) has Type I if and only if det(NG ) > 0.

Proof: The normal flux

Q(U) =

[

au2 + 2buv + v2

bu2 + 2uv

]

⇔ DQ(U) =

[

2au + 2bv 2bu + 2v
2bu + 2v 2u

]

Therefore, det(DQ(U)) =
[

u v
]

[

4a − 4b2 −2b
−2b −4

] [

u

v

]

,

NQ =

[

4a − 4b2 −2b
−2b −4

]

and det(NQ) = −4
(

4a − 3b2
)

.
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We define NG based on the quadratic form det(DG (U)):

det(DG (U)) = UTNGU

Theorem

G (U) has Type I if and only if det(NG ) > 0.

Proof: The normal flux

Q(U) =

[

au2 + 2buv + v2

bu2 + 2uv

]

⇔ DQ(U) =

[

2au + 2bv 2bu + 2v
2bu + 2v 2u

]

Therefore, det(DQ(U)) =
[

u v
]

[

4a − 4b2 −2b
−2b −4

] [

u

v

]

,

NQ =

[

4a − 4b2 −2b
−2b −4

]

and det(NQ) = −4
(

4a − 3b2
)

. Thus,

det(NQ) > 0 ⇔ a < 3
4b

2 ⇔ Q is Type I;
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Main Result The determinant of the derivative of an equivalent flux

Proof: Equivalent flux

If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU)
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Proof: Equivalent flux

If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU) ⇒
⇒ DQ(U) = M−1DG (MU)M ⇒

⇒ det (DQ(U)) = det (DG (MU))
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If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU) ⇒
⇒ DQ(U) = M−1DG (MU)M ⇒

⇒ det (DQ(U)) = det (DG (MU)) ⇔
⇔ UTNQU = UTMTNGMU
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Proof: Equivalent flux

If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU) ⇒
⇒ DQ(U) = M−1DG (MU)M ⇒

⇒ det (DQ(U)) = det (DG (MU)) ⇔
⇔ UTNQU = UTMTNGMU ⇒
⇒ det (NQ) = det

(

MTNGM
)
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Main Result The determinant of the derivative of an equivalent flux

Proof: Equivalent flux

If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU) ⇒
⇒ DQ(U) = M−1DG (MU)M ⇒

⇒ det (DQ(U)) = det (DG (MU)) ⇔
⇔ UTNQU = UTMTNGMU ⇒
⇒ det (NQ) = det

(

MTNGM
)

⇔
⇔ det (NQ) = det2 (M) det (NG )

Matos, Castañeda, Marchesin (UP;IMPA) Classification of the umbilic point Hyp 2012 – Padova 10 / 14



Main Result The determinant of the derivative of an equivalent flux

Proof: Equivalent flux

If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU) ⇒
⇒ DQ(U) = M−1DG (MU)M ⇒

⇒ det (DQ(U)) = det (DG (MU)) ⇔
⇔ UTNQU = UTMTNGMU ⇒
⇒ det (NQ) = det

(

MTNGM
)

⇔
⇔ det (NQ) = det2 (M) det (NG )

Proof

We have det2(M) > 0, therefore Q and G are type I if and only if:
det (NQ) > 0 and det (NG ) > 0.
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Main Result The determinant of the derivative of an equivalent flux

Proof: Equivalent flux

If G is equivalent to some Q then there is an invertible matrix M such that

Q(U) = M−1G (MU) ⇒
⇒ DQ(U) = M−1DG (MU)M ⇒

⇒ det (DQ(U)) = det (DG (MU)) ⇔
⇔ UTNQU = UTMTNGMU ⇒
⇒ det (NQ) = det

(

MTNGM
)

⇔
⇔ det (NQ) = det2 (M) det (NG )

Proof

We have det2(M) > 0, therefore Q and G are type I if and only if:
det (NQ) > 0 and det (NG ) > 0.

Remark

If G is in degenerate border case between type I and type II then
det(NG ) = 0.
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Main Result Classification of the flux F

Classification of the flux F
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Main Result Classification of the flux F

Classification of the flux F

The original flux

fi =
mi

m
=

bi s
ai
i

∑

j bjs
aj
j

; bi > 0 ; ai > 1.
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Main Result Classification of the flux F

Classification of the flux F

The original flux

fi =
mi

m
=

bi s
ai
i

∑

j bjs
aj
j

; bi > 0 ; ai > 1.

Quadratic expansion of the F (S) about (α, β), where γ = 1− α− β.

f̄w (u, v) =
qw (m̄o + m̄g )− qg m̄w

m2

u2

2
−

qgm̄w

m2
vu −

(qo + qg ) m̄w

m2

v2

2
,

f̄o(u, v) = −
(qw + qg ) m̄o

m2

u2

2
−

qgm̄o

m2
vu +

qo (m̄w + m̄g )− qgm̄o

m2

v2

2
,
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Main Result Classification of the flux F

Classification of the flux F

The original flux

fi =
mi

m
=

bi s
ai
i

∑

j bjs
aj
j

; bi > 0 ; ai > 1.

Quadratic expansion of the F (S) about (α, β), where γ = 1− α− β.

f̄w (u, v) =
qw (m̄o + m̄g )− qg m̄w

m2

u2

2
−

qgm̄w

m2
vu −

(qo + qg ) m̄w

m2

v2

2
,

f̄o(u, v) = −
(qw + qg ) m̄o

m2

u2

2
−

qgm̄o

m2
vu +

qo (m̄w + m̄g )− qgm̄o

m2

v2

2
,

where:
u = sw − α; v = so − β; m = m̄w + m̄o + m̄g ;
m̄w = mw (α); m̄o = m0(β); m̄g = mg (γ);

qw =
d
2mw

ds2w
(α); qo =

d
2mo

ds2o
(β); qg =

d
2mg

ds2g
(γ).
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Main Result Classification of the flux F

The constants A, B and C

qw = A2
wbwα

aw−2; qo = A2
oboβ

ao−2; qg = A2
gbgγ

ag−2.
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The constants A, B and C

qw = A2
wbwα

aw−2; qo = A2
oboβ

ao−2; qg = A2
gbgγ

ag−2.

Ai =
√

ai(ai − 1) for i ∈ {w , o, g}.

For simplicity we set Aw = A, Ao = B and Ag = C .
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Main Result Classification of the flux F

The constants A, B and C

qw = A2
wbwα

aw−2; qo = A2
oboβ

ao−2; qg = A2
gbgγ

ag−2.

Ai =
√

ai(ai − 1) for i ∈ {w , o, g}.

For simplicity we set Aw = A, Ao = B and Ag = C .

Calculation of NF

NF =













−m̄2q1q3

(m̄1 + m̄2 + m̄3)
3

m̄3q1q2 − m̄1q2q3 − m̄2q1q3

2 (m̄1 + m̄2 + m̄3)
3

m̄3q1q2 − m̄1q2q3 − m̄2q1q3

2 (m̄1 + m̄2 + m̄3)
3

−m̄1q2q3

(m̄1 + m̄2 + m̄3)
3













.
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The constants A, B and C

qw = A2
wbwα

aw−2; qo = A2
oboβ

ao−2; qg = A2
gbgγ

ag−2.

Ai =
√

ai(ai − 1) for i ∈ {w , o, g}.

For simplicity we set Aw = A, Ao = B and Ag = C .

Calculation of NF

NF =













−m̄2q1q3

(m̄1 + m̄2 + m̄3)
3

m̄3q1q2 − m̄1q2q3 − m̄2q1q3

2 (m̄1 + m̄2 + m̄3)
3

m̄3q1q2 − m̄1q2q3 − m̄2q1q3

2 (m̄1 + m̄2 + m̄3)
3

−m̄1q2q3

(m̄1 + m̄2 + m̄3)
3













.

The sign of det(NF )

R =
4A2B2C 2α2β2γ2 (m̄1 + m̄2 + m̄3)

6

q1q2q3m̄1m̄2m̄3
det(NF )
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Main Result Classification of the flux F

R is a quartic function on α and β. Remembering γ = 1− α− β.

−R is the product of the four linear functions:
+BCα+ ACβ − ABγ; +BCα− ACβ + ABγ;
−BCα+ ACβ + ABγ; +BCα+ ACβ + ABγ.
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Main Result Classification of the flux F

R is a quartic function on α and β. Remembering γ = 1− α− β.

−R is the product of the four linear functions:
+BCα+ ACβ − ABγ; +BCα− ACβ + ABγ;
−BCα+ ACβ + ABγ; +BCα+ ACβ + ABγ.

Zero level of det(NF ) and R

If A 6= B 6= C 6= A then det(NF ) vanishes on the four straight lines:

β = 0

α = 0

γ = 0
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Main Result Classification of the flux F

The classification of F within the triangle

The four straight lines cross the border of the triangle in three points:

(α, β) =
(

0, AB
CA+AB

)

and γ = CA
CA+AB

;

(α, β) =
(

AB
AB+BC

, 0
)

and γ = BC
AB+BC

;

(α, β) =
(

CA
BC+CA

, BC
BC+CA

)

and γ = 0.
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Main Result Classification of the flux F

The classification of F within the triangle

The four straight lines cross the border of the triangle in three points:

(α, β) =
(

0, AB
CA+AB

)

and γ = CA
CA+AB

;

(α, β) =
(

AB
AB+BC

, 0
)

and γ = BC
AB+BC

;

(α, β) =
(

CA
BC+CA

, BC
BC+CA

)

and γ = 0.

I
II II

II
(

0, AB
CA+AB

)

(

BC
BC+CA

, CA
BC+CA

)

(

BC
AB+BC

, 0
) α = 1

β = 1

γ = 1
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Main Result Classification of the flux F

The classification of F within the triangle

The four straight lines cross the border of the triangle in three points:

(α, β) =
(

0, AB
CA+AB

)

and γ = CA
CA+AB

;

(α, β) =
(

AB
AB+BC

, 0
)

and γ = BC
AB+BC

;

(α, β) =
(

CA
BC+CA

, BC
BC+CA

)

and γ = 0.

I
II II

II
(

0, AB
CA+AB

)

(

BC
BC+CA

, CA
BC+CA

)

(

BC
AB+BC

, 0
) α = 1

β = 1

γ = 1

Thank you.
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