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1. Setting of the problem

Motivation:
Physically : To compute accurate and effective properties of
mixtures.
Mathematically: To compute solutions of homogenization
problems.
These problems come from :

I diffusion of heat or electricity,

I equilibrium of elastic bodies, ...
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Classical problem of elliptic homogenization: In a bounded domain

Ω of Rd , d ≥ 2 : {
∇ · (A(·/ε)∇uε) = f in Ω,

uε|∂Ω = φ.
(Sε)

I uε = uε(x), φ and f take values in RN for some N ≥ 1.

I A = A(y) takes values in Md (MN(R)).

Usual notation: ∇ · (A(·/ε)∇uε) := ∂α (Aαβ(·/ε)∂βu)

where Aαβ(y) ∈ MN(R) for all 1 ≤ α, β ≤ d .

3 / 30



Assumptions:

(H1) Coercivity: There exists λ > 0, , s.t. for all family (ξα)1≤α≤d
of vectors in RN and all y in Rd .

Aαβ(y) ξα · ξβ ≥ λ ξα · ξα

(H2) Periodicity: ∀y ∈ Rd , ∀h ∈ Zd ,

A(y + h) = A(y), f (y) = f (y + h)

(H3) Smoothness: A, f and Ω are smooth.
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Question: Behavior of the solutions uε as ε→ 0 ?

Classical approach: two-scale asymptotic expansion:

uεapp = u0(x) + εu1(x , x/ε) + . . . + εnun(x , x/ε)

with ui = ui (x , y) periodic in y .

Use formal asymptotics to determine the ui inductively.
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Case without boundary

Proposition: There exists smooth (non trivial) u0, u1, . . . , un

such that

∇ · (A(·/ε)∇uεapp) = O(εn−2) in L2(Ω).

- The construction of the ui ’s involves the famous cell problem

−∇ · (A∇χγ) (y) = ∇α · Aαγ (y), y in Td

with solution χγ ∈ MN(R).

I The first term u0 does not depend on y .

I u1 is given by u1 = −χγ∂xγu0(x) + u1.
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The solvability condition for u2 yields the equation satisfied by u0.

u0 necessarily satisfies

∇ · A0∇u0 = 0

where the constant homogenized matrix is given by

A0,αβ =

∫
Td

Aαβ(y) dy +

∫
Td

Aαγ(y)∂yγχ
β(y) dy .
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Case with boundary

Problem: The two-scale expansion (computed as in the case
without boundaries) provides a poor approximation of the solution !

Reason: The boundary condition is far from being satisfied.

The error term eε = uε − uεapp satisfies{
∇ · (A(·/ε)∇eε) ≈ 0 in Ω,

eε|∂Ω ≈ −εu1(·, ·/ε).

The boundary data is O(
√
ε) in H1(∂Ω), O(ε) in L2(∂Ω).

The error is O(
√
ε) in H1(Ω), O(ε) in L2(Ω).

Better approximation: Requires to study systems in which both the
coefficients and the boundary data oscillate.
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Our main model problem

Model problem: {
∇ · (A(·/ε)∇u) = 0 in Ω,

u|∂Ω = ϕ(·/ε).
(Sε)

We keep assumptions (H1)-(H2)-(H3).
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Question: Behavior of the solutions uε as ε→ 0 ?

Much harder than the original homogenization problem !

In the original problem, energy estimates yield ‖uε‖H1(Ω) ≤ C .

Here, ‖uε‖H1(Ω) ≤ Cε−1/2.

Classical compactness methods fail.

We shall really need (H1)-(H2)-(H3).

10 / 30



Remark: Under these assumptions, we can use results of
Avellaneda and Lin: the solution of (Sε) satisfies

‖uε‖Lp(Ω) ≤ C‖ϕ(·/ε)‖Lp(∂Ω) ≤ C ′, ∀1 < p ≤ ∞.

From there: ‖uε‖H1(ω) ≤ C ′′, for all ω b Ω.

Suggests that singularities are stronger near the boundary:
boundary layer.

Difficulty: the periodic structure of the oscillations breaks down in
the boundary layer. No simple two-scale expansion.

A large number of questions remain open. Of particular
importance is the analysis of the behavior of solutions near
boundaries and, possibly, any associated boundary layers.
Relatively little seems to be known about this problem.

Bensoussan et al, Asymptotic analysis for periodic structures
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Existing results:

(Moscow and Vogelius [97], Allaire and Amar [99], Neuss [01], Sarkis

[08])

Obtained under some restrictions on the domain:

Ω is a polyhedron whose sides have normal vectors in Qd .

Case d = 2: polygons with sides of rational slope.

The work with David Gérard-Varet:

I Extension to generic polyhedrons (J. Eur. Math. Soc. 2010)

I Extension to smooth domains (Acta Math. 2012)
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2. Statement of the result

Theorem: Let Ω be uniformly convex. Assume (H1)-(H2)-(H3).
The solution uε of (Sε) converges in L2(Ω) to the solution u0 of{

∇ · (A0∇u) = 0 in Ω,

u|∂Ω = ϕ0,
(S0)

where the matrix A0 is constant, and the boundary data ϕ0 is in
Lp(∂Ω) for all p. Moreover,

‖uε − u0‖L2(Ω) = O(εα) for some α > 0.

Remarks:

I A0 and ϕ0 are ”explicit”.

I Strong convergence with a rate. The optimal rate is an
interesting open problem.
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I ϕ0 comes from solving a half-space problem (boundary layer)

I No smoothness on ϕ0. This may be intrinsic.

I u0 ∈ L2(Ω), but is smooth inside Ω.

I Possible generalizations:
ϕ(x , y) instead of ϕ(y), less constraints on Ω.

I The proof of the theorem simplifies a little for scalar equations
(maximum principle).

From now on:

N = 1, d = 2, Ω = D(0, 1).
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3. Ideas from the proof

a) Explanation for the homogenization

Idea:

uε ≈ uε,int︸ ︷︷ ︸
interior part

+ uε,bl︸︷︷︸
boundary layer corrector

The Homogenized system will be understood if we have some
explicit approximation for these interior and boundary layer terms.

I The interior term

Classical two-scale asymptotic expansion is OK :

uε,int = u0(x) + εu1(x , x/ε) + . . . + εnun(x , x/ε)
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Question: What is the boundary value ϕ0 of u0 ?

I Boundary layer corrector

Difficulty: no clear structure for the boundary layer.

Guess: The boundary layer has typical scale ε. No curvature effect:

1. Near a point x0 ∈ ∂Ω, replace ∂Ω by the tangent plane at x0:

T0(∂Ω) := {x , x · n0 = x0 · n0} :

2. Dilate by a factor ε−1.

Formally, for x ≈ x0, one looks for

uε,bl(x) ≈ U0(x/ε)
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The profile U0 = U0(y) is defined in the half plane

Hε
0 = {y , y · n0 > ε−1x0 · n0}.

It satisfies the system:{
∇y · (A∇yU0) = 0 in Hε

0 ,

U0|∂Hε0 = ϕ− ϕ0(x0).

Remark: x0 is just a parameter in this system.

How to determine ϕ0(x0) ??
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We need to understand the properties of the following system :

Auxiliary boundary layer system{
∇y · (A∇yU) = 0 in H,

U|∂H = φ.
(BL)

where H := {y , y · n > a}.
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Idea: The solution U of (BL) satisfies:

U → U∞, as y · n→ +∞,

for some constant U∞ that depends linearly on φ.

Back to U0, one can derive the homogenized boundary data ϕ0.
Indeed:

I On one hand, one wants U0 → 0 (localization property).

I On the other hand,

U0 → U∞(ϕ− ϕ0(x0)) = U∞(ϕ)− ϕ0(x0).

so that:
ϕ0(x0) := U∞(ϕ) . . .

. . . This formal reasoning raises many problems !
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I Well-posedness of (BL) is unclear.

- No natural functional setting (no decay along the boundary).
- No Poincaré inequality.
- No maximum principle.

I Existence of a limit U∞ for (BL) is unclear.
Underlying problem of ergodicity.

I U∞ depends also on H, that is on n and a.

- No regularity of U∞ with respect to n.

- Back to the original problem, our definition of ϕ0(x0)
depends on x0, but also on ε.

Possibly many accumulation points as ε→ 0.
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b) Polygons with sides of rational slopes

In such cases, the boundary layer systems of type (BL) can be fully
understood.

I Well-posedness: the coefficients of the systems are periodic
tangentially to the boundary.

After rotation, they turn into systems of the type{
∇z · (B∇zV ) = 0, z2 > a,

V |z2=a = ψ,
(BL1)

with coefficients and boundary data that are periodic in z1.

This yields a natural variational formulation.
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I Existence of the limit : Saint-Venant estimates on (BL1).

One shows that F (t) :=
∫
z2>t |∇zV |2 dz satisfies the

differential inequality.

F (t) ≤ −CF ′(t)

From there, one gets exponential decay of all derivatives, and:

V → V∞, exponentially fast, as z2 → +∞

or
U → U∞, exponentially fast, as y · n→ +∞

Key: Poincaré for functions periodic in z1 with zero mean.

I In polygonal domains, the regularity of U∞ with respect to n
does not matter.
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I For rational slopes, the limit U∞ does depend on a.

Back to (Sε) (in polygons with rational slopes):

The analogue of our thm is only available up to subsequences in ε.

The homogenized system may depends on the subsequence.

There are examples with a continuum of accumulation points.

Conclusion: Far from enough to handle general domains.

Need to know more on (BL), getting rid of the ”rationality”
assumption.
Ref : Moscow and Vogelius [97], Allaire and Amar [99].
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c)More general treatment of (BL)

Remark: One can not be fully general: the existence of U∞
requires some ergodicity property.

Simpler example: ∆U = 0 in {y2 > 0}, U|y2=0 = φ .

I If φ 1-periodic, then U(0, y2)→
∫ 1

0 φ exponentially fast.

I But there exists φ ∈ L∞ such that U(0, y2) has no limit.

Remarks:

I Explicit formula: U(0, y2) =
1

π

∫
R

y2

y 2
2 + t2

φ(t) dt.

I For φ with values in {+1,−1}, the asymptotics relates to coin
tossing.
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In our problem, we have some ergodicity property ! For general
half planes, the coefficients of (BL) or (BL1) are not periodic, but
they are quasiperiodic in the tangential variable.

Reminder: A function F = F (z1) is quasiperiodic if it reads

F (z1) = F(λz1) ,

where λ ∈ RD and F = F(θ) is periodic over RD ( D ≥ 1).

Example: For (BL1), D = 2 , and λ = n⊥ (the tangent vector).

Previous results: n ∈ RQ2.

Idea: Replace this by the small divisor assumption:

(H) ∃κ > 0, |n · ξ| ≥ κ|ξ|−2, ∀ξ ∈ Z2 \ {0}
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Remarks:

I Assumption (H) is generic in the normal n: satisfied for a set
of full measure in S1.

I Does not include the previous result.

Theorem:

If n satisfies (H), the system (BL) is ”well-posed”, with a smooth
solution U that converges fast to some constant U∞.

Moreover, U∞ does not depend on a.

Proof of the proposition:

I Well-posedness: involves quasiperiodicity. One has:{
∇z · (B∇zV ) = 0, z2 > a,

V |z2=a = ψ,

where B(z) = B(λz1, z2), ψ(z) = P(λz1, z2).
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Functions B = B(θ, t) and P = P(θ, t) are periodic in θ ∈ T2.

Idea: consider an enlarged system in θ, t, of unknown V = V(θ, t):{
D · (BDV) = 0, t > a,

V|t=a = P
(BL2)

where D is the ”degenerate gradient” given by D = (λ · ∇θ, ∂t)

Advantage: Back to a periodic setting (θ ∈ T2).

Drawback: degenerate elliptic equation.

- Variational formulation with a unique weak solution V.

- One can prove through energy estimates than V is smooth.

- Allows to recover V through the formula V (z) = V(λz1, z2).
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I Convergence to a constant:

Relies on Saint-Venant estimates, adapted to (BL2). Thanks

to (H), we prove that F (t) :=

∫
t′>t
|DV|2 dθ dt ′ satisfies

F (t) ≤ C (−F ′(t))α, ∀α < 1.

Conclusion: Much better understanding of the auxiliary boundary
layer systems. Allows to handle generic polygonal domains.

28 / 30



d) Extension to smooth domains

Main problem: No smoothness of U∞ with respect to n is known.
It is only defined almost everywhere (diophantine assumption).

Idea: For any κ > 0, U∞ is Lipschitz in restriction to

Aκ :=

{
n ∈ S1, |n · ξ| ≥ κ

|ξ|2
, ∀ξ ∈ Z2 \ {0}

}
.

Remark: One has |Ac
κ| = O(κ).

Idea: The construction of the boundary layer corrector can be
performed in the vicinity of points x such that n(x) ∈ Aκ.

Contribution of the remaining part of the boundary is negligible
when κ� 1.

Broadly, optimizing in κ and ε yields a rate.
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Thank you

30 / 30


