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Application

]G’U Meteorology: Cloud Simulation

Gravity induces hydrostatic balance
How do clouds evolve over long periods of time?
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Multiscale phenomena of geophysical flows
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-wave speeds differ by several orders: ||u|| << ¢ = M, Fr:=
-typically Fr ~ 10~2
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Multiscale phenomena of geophysical flows

-wave speeds differ by several orders: ||u|| << ¢ = M, Fr:= <<1

L]
C

-typically Fr ~ 10~2

max(|u| +¢, |[v| +c)At <1
Ax -

max(<1+1) \/u2+vz> % <1

Fr
- number of time steps O(1/Fr)

-low Mach / low Froude number problem
[ Bijl & Wesseling ('98), Klein et al.('95, '01), Meister ('99,01),
Munz &Park ('05), Degond et al. ('11) ... ]
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Cancelation problem

- Sesterhenn et al. ('99)
- h ... water depth in the shallow flow
1
- “pressure term” —Zth —
2Fr
-hp,hg = hy +6h, h~ O(Fr?)
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Cancelation problem

- Sesterhenn et al. ('99)
- h ... water depth in the shallow flow
1
- “pressure term” —Zth —
2Fr
-hp,hg = hy +6h, h~ O(Fr?)

- BUT round off errors can yield the cancelation effects

Wy —h2 = ((K? +2hpoh+0h?)(1 +e1) —H2) (1 +€2)

(hy + oh)?

o + h.o.t.

ik —ht

Sh | (2hy + oh) + €

1 1
leading order error in the pressure term ~ Felo(—)w o) !
r

Fr?
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Cancelation problem

- Sesterhenn et al. ('99)
- h ... water depth in the shallow flow

1
- “pressure term” —ZVh2 ==
2Fr
- hy,hg = hy +6h, Sh~ O(Fr?)

1 1
leading order error in the pressure term ~ —€1O0(—5 )~ O(1) !
g . —e10(=5)~ O(1)

-Remedy: introduce background values and work with perturbations only
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- AIM:
= reduce adverse effect of 1+ 1/Fr
® |arge time step scheme: At does not depends on Fr
m efficient scheme for advection effects
® stability and accuracy of the scheme is independent on Fr

June 25, 2012
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Asymptotic preserving schemes

Goal: Derive a scheme, which gives a consistent approximation of the limiting
equations for e = Fr — 0

[ S.Jin&Pareschi('01), Gosse& Toscani('02), Degond et al.('11), ...]
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Asymptotic preserving schemes

Goal: Derive a scheme, which gives a consistent approximation of the limiting
equations for e = Fr — 0

[ S.Jin&Pareschi('01), Gosse& Toscani('02), Degond et al.('11), ...]
- to illustrate the idea: shallow water egs.

-h=2z+Db, h- water depth, z - mean sea level to the top surface, b - mean
sea level to the bottom (b < 0)
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Asymptotic preserving schemes

Goal: Derive a scheme, which gives a consistent approximation of the limiting
equations for e = Fr — 0

[ S.Jin&Pareschi('01), Gosse& Toscani('02), Degond et al.('11), ...]
- to illustrate the idea: shallow water egs.

-h=2z+Db, h- water depth, z - mean sea level to the top surface, b - mean
sea level to the bottom (b < 0)

01z + dym +dyn = 0
1 2
2par(F) = Tatos

1 1
o + dx(mn/ (z + b)) + 9y (n*/(z+b)) + ﬁay(z% = —ﬁbayz

opm + 0y (m?/ (z+ b)) + 9y (mn/(z + b)) + .
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Asymptotic expansion

-rigorous analysis [Klainerman & Majda ('81)]
-formally: (e = Fr)

2(x, t;e) = 20 (x, ) + ez (x, 1) + 22 (x, 1)
uf(x, t6) = u® (x,£) + eu (x, t) 4+ 2u® (x, t)
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Asymptotic expansion

-rigorous analysis [Klainerman & Majda ('81)]
-formally: (e = Fr)

2(x, t;e) = 20 (x, ) + ez (x, 1) + 22 (x, 1)
uf(x, t6) = u® (x,£) + eu (x, t) 4+ 2u® (x, t)
plug into the SWE —
20 =z0); 9, —p) =0
9:h(M) =
91z = 9, (M) = 9,m©)
am® + 9, (KO (u(9)?) + 103,22 = 0
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Asymptotic expansion

-rigorous analysis [Klainerman & Majda ('81)]
-formally: (e = Fr)

2(x, t;e) = 20 (x, ) + ez (x, 1) + 22 (x, 1)
uf(x, t6) = u® (x,£) + eu (x, t) 4+ 2u® (x, t)
plug into the SWE —
20 =z0); 9, —p) =0
o) =
91z = 9, (hOu) = 9,m®)
am® + 9, (KO (u(9)?) + 103,22 = 0
limiting system as ¢ — 0 (9;b = 0)
1O (x) = b(x) + const. (1)
oth®) = 9,m©)
9 + 105,40 4 5.2 =0

Does a numerical scheme give a consistent approximation of (1) ?
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Time discretization

Key idea:

- semi-implicit time discretization: splitting into the linear and nonlinear part
- linear operator modells gravitational (acoustic) waves are treated implicitly
- rest nonlinear terms are treated explicitly

June 25, 2012
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Time discretization

Key idea:

- semi-implicit time discretization: splitting into the linear and nonlinear part
- linear operator modells gravitational (acoustic) waves are treated implicitly
- rest nonlinear terms are treated explicitly

ow

Zp =~V -F(w) + B(w) = L(w) + N (w)

w:(z,m,n)T, z=h—-b, b<0
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Time discretization

Key idea:

- semi-implicit time discretization: splitting into the linear and nonlinear part
- linear operator modells gravitational (acoustic) waves are treated implicitly
- rest nonlinear terms are treated explicitly

%‘;’ — —V -F(w) + B(w) = L(w) + N (w)

w:(z,m,n)T, z=h—-b, b<0

dx(m) + ay(”)
b
L(w):= ?fzaxz
=392
Fr

[Restelli ('07), Giraldo & Restelli ('10)]
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e [: spatially varying linear system

wi + A1 (b)wy + Az (b)wy, =0

0 10 0 0 1
A= eblxy) 0 0 A= 0 0 0 — Ek
0 0 0 w2b(cy) 0 0

Multi-d evolution operator in [Arun, M.L., Kraft, Prasad (2009)]
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e [: spatially varying linear system

wi + Al(b)wx + Az(b)Wy =0
0 1 0 0 01

A= Lboy) 0 0 A= 0 0 0 — Ek
0 00 s2b(xy) 0 0

Multi-d evolution operator in [Arun, M.L., Kraft, Prasad (2009)]
e REST: nonlinear system N
Zt = 0

1

mi + (m*/(z —b))x + @(%)x + (mn/(z—1b))), =0
N

e+ (mn/ (2 — b))y + (2/ (2 — b))y + %(zz)y —0 —s EY

June 25, 2012
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Semi-implicit time discretization

wit =w' 4 — [E(w”) + E(w"+1)} + AN (W' F1/2)
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Semi-implicit time discretization

witl = w' % [E(w”) + E(w"+1)} + At/\/(w"+1/2)

- spatial discretization: FV update using flux differences
-+ EG-evolution operator to evaluate fluxes at interfaces (multi-d Riemann

solver)
L) = o Y B, f=mn
7Aka:1Xk o ’ o
1 2
N (w+172) = v k; Sx, (Fn(Epj2(W")))
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AP property for the semi-implicit time discretization
scheme

semi-discrete scheme:
At
Zn—‘rl — 7 [mZ—H + m;z} (2)

At D b 1
m = gt — 5> |:£zzz+1 + SZZZ:| — At [(Z§+1/2)2 + (mu)7;+1/2 (3)
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AP property for the semi-implicit time discretization
scheme

semi-discrete scheme:

At
=" > [mZ 1 + mﬂ (2)
At Db b 1
mn+1 m" 5 |:€2 z+1 :| At [2 2( n+1/2) (mu)n+1/2 (3)

- we assume that 2", z"t1/2 ity t1/2

. approximate the limiting egs. (1)
e Eq.(3) yields for e~

By X

b/ (nt1 | _(0)n L (oynt1/2 (0 m+1/2 _
2 (z + Zx ) + EZ Zy =0

— 2O+ () = const.
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At
+1 _ +1
2" =2 — [m;’ + mz}

At D b 1
L S |:SZZ§+1 + 8222:| — At [(Z§+1/2)2 + (mu)z—&-l/Z

e Eq.(2) yields for € consistent approx. of
atz<0> = axm<0>

- periodic, slip BC = Z(O)'”+1(x) _ Z§O)’"(x)
- mOm L (x) = const.
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At
Zn+1 — 7 [mZJrl + m;l:|

At b b 1
mn+1 —m" — 7 |:822;1+1 + 8222:| — At [Zez(zz—&-l/Zy + (mu)z—&-l/z

e Eq.(3) yields for ¢ terms :

On+1 . (0)n _ At {b (Z(z),n+1 _Z(z),n)

m x x

+Z(0)’"+1/2Z,((2)'n+1/2 _ (mu),(co)’n+1/2]

~
~

O _ A {h(o),n+1/22§2),n+1/2 _ (hMZ)(O),n+1/2}

- which is a consistent approx. of the momentum eq.

ou® = 409,40 43,22

June 25, 2012
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Application to atmospheric flow

Compressible Euler equations

o'+ V-(pu) =0
d(pu) + V- (pu@u+p'ld) = —p'gk
9(p0)" + V- (pbu) =0

with background state p, p, 0 in hydrostatic balance
dyp = —pg

State variables: w = [0, pu, pv, (00)']T

= Potential temperature 6 := T/t w Exner-pressure 1t(y) := 1 — ==
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Application to atmospheric flow

Compressible Euler equations

o'+ V-(pu) =0
d(pu) + V- (pu@u+p'ld) = —p'gk
9(p0)" + V- (pbu) =0

with background state p, p, 0 in hydrostatic balance
dyp = —pg

State variables: w = [0, pu, pv, (00)']T

= Potential temperature 6 := T/t w Exner-pressure 1t(y) := 1 — ==

In short:

ow+ V.- F(w)= s (w)

Flux Source term

M. Luk&&ova (Institute of Mathematics, Uni-Mainz) June 25, 2012



e Goal:
® approximate the Euler egs. using the above splitting into linearized and
nonlinear waves and semi-implicite time discretization
® space discretization using the discontinuous Galerkin method and P1, P2
- elements
® use multi-d evolution in order to approximate fluxes along cell interfaces
. verify AP !

June 25, 2012
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Key Ingredients of the Discretization




Discontinuous Galerkin FEM

DG-FEM are finite element methods based on
completely discontinuous finite element spaces.

Ingredients:

Triangulation 7, = {x}
approximate solutions by dividing the domain () into finite subregions

Parametric function space VZ
Piecewise pth-order polynomials in each element

Averages and jumps on interior edges
Approximation possibly discontinuous across interelement boundaries

1 _ -
{o}e = 5 (0% +07) , Pole = on* +opm
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Discontinuous Galerkin FEM

DG-FEM are finite element methods based on
completely discontinuous finite element spaces.

Ingredients:

Triangulation 7, = {x}
approximate solutions by dividing the domain () into finite subregions

Parametric function space VZ
Piecewise pth-order polynomials in each element

Averages and jumps on interior edges
Approximation possibly discontinuous across interelement boundaries

1 _ -
{o}e = 5 (0% +07) , Pole = on* +opm

Local variational formulation

{ Find u, € V7, s.t. Discrete system &

basis functions
B(uh,vh) = E(Uh) VUh S VZ

M. Luk&&ova (Institute of Mathematics, Uni-Mainz) June 25, 2012



Variational Formulation
Multiply

d
W+ V- -F(w) = 0w+ ) _ f(w) = s(w)

s=1

with a test function v and perform integration by parts:

Z[/atw-v dx—i(/fs(w)-asvdx—l— /fs(w)-vns ds )] =Y /s(w)-v dax.
= x o

*€Tn % KETH %
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Variational Formulation

Multiply

0w+ V - F(w) = dyw + i fs(w) = s(w)
s=1

with a test function v and perform integration by parts:

AR vdx— /f - 0sv dx +1 /f* v ds)] = 2/s(w)~v dax.
3 |aK 1 KTy

Ke'ﬁ, X

M. Luk&&ova (Institute of Mathematics, Uni-Mainz)

June 25, 2012



Variational Formulation
Multiply

ow+V - F(w )—atw—i—ZfS ) =s(w)
s=1

with a test function v and perform integration by parts:

____________

Z[/atw vdx— (/fs( ) - 05V dXx + 1 /f Vs dS']—Z/ v dx.
€Ty ¥ s=1 %

'BK ! k€Tn

Another integration by parts yields

d

Z/[Btw Zasfs ) — s(w )} vax= Y Z/[fs(w)—f;‘(w)}-vns ds

€T % k€T, s=1 ox

4
® choose w,v € [Vﬁ] , insert quadrature rules

= numerical flux function f; (w) required
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Variational Formulation
Multiply

ow+V - F(w )—atw—i—ZfS ) =s(w)
s=1

with a test function v and perform integration by parts:

____________

/Btw vdx— /fs ) - 05V dXx + 1 /f Vs dsi)]: Z/s(w).v dx.
k€T % s=1 IBK | k€T %

Another integration by parts yields

Z/[atw Zasfs ) — s(w )].Vd

€T %

2
Il
0=
-
2
s
=
I
i
-
s
=
<
=
B>
s
195}

FVEG: :eg_flux_strong

4
® choose w,v € [Vﬁ] , insert quadrature rules

= numerical flux function f; (w) required
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f! (w) should approximate the flux of w through interior edges

» Finite Volume Method: one-dimensional approach Rusanov flux
1
fi(w) = 5 [f(Wh) + £ (W) —A(w™ —wT)]

A - max. wave speed

Truly multi-dimensional approach: evolution operator (EG)

e implemented in the CloudFlash code: flash/FVEG.F90
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P= (z,y,t, + At)

Evolution Galerkin Scheme
Replacing a one-dimensional numerical flux



Wave propagation for the Euler equations

Information travels along bicharacteristic curves

Integration along each curve + averaging over the cone mantle yields
integral representation for the solution at the pick of the cone

P= (z,y,tn + Al)

8 M. Luks€ovi-Medvid'ova, K.W. Morton, and Gerald Warnecke.

Finite volume evolution Galerkin methods for hyperbolic systems.
J. Sci. Comp. 2004.

M. Luk&&ova (Institute of Mathematics, Uni-Mainz)
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Short derivation of integral representation

Step 1: Formulation as a quasilinear system
W + A (W) 0xW + Ay (W) 0yw = s(w)

with matrices A;(w), A,(w) and source term s(w).
Freeze Jacobians A;, A, if they depend on w
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Short derivation of integral representation

Step 1: Formulation as a quasilinear system
W + A (W) 0xW + Ay (W) 0yw = s(w)

with matrices A;(w), A,(w) and source term s(w).

Freeze Jacobians A;, A, if they depend on w

Step 2: Quasi-diagonalization

Let R denote the right eigenvectors of P = A ny + Ayny,.
Change of variables v = R~ !w yields a quasi-diagonal system

‘ ;v + diag(B;)dyv + diag(B,)oyv =S +r ‘

where By /; := 371A1/23
r:=R's(w), S:=—(B;—diag(B,))d.v — (B, — diag(B,))d,v.
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Short derivation of integral representation (cont’d)

Step 3: Averaging over the cone mantle
For every direction [ny,ny] = [cos(f),sin(6)] with 6 € [0,27]:

The system

;v + diag(B;)dyv + diag(B,)oyv = S +r

can be solved exactly.
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Short derivation of integral representation (cont’d)

Step 3: Averaging over the cone mantle
For every direction [ny,ny] = [cos(f),sin(6)] with 6 € [0,27]:

The system

;v + diag(B;)dyv + diag(B,)oyv = S +r

can be solved exactly.
Temporal integration over [t,, t, + T] and averaging over the wave-front, i.e.
6 € [0,27], yields an integral representation for [x,y, t, + T].
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Short derivation of integral representation (cont’d)

Step 3: Averaging over the cone mantle
For every direction [ny,ny] = [cos(f),sin(6)] with 6 € [0,27]:

The system

;v + diag(B;)dyv + diag(B,)oyv = S +r

can be solved exactly.
Temporal integration over [t,, t, + T] and averaging over the wave-front, i.e.
6 € [0,27], yields an integral representation for [x,y, t, + T].

Step 4: Back transform to primitive variables
Change of variables w = Rv.
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Exact evolution operator for the linear subsystem

linear part for the Euler system

ow+ L(w) =0
o div(pu)
o ou o ap’ /ox
Y o EWI= | oyt /oy + g
(08)’ div(6pu)
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Exact evolution operator for the linear subsystem

linear part for the Euler system

ow+ L(w) =0
4 div(pu)
o ou o op’ /ox
A B CO =1 o ray + g0
(p0)’ div(6pu)

- linearized version of p':

, Where 4 = YR

ap’ P 9(p0)" _9(pd)’
ox cvp@ ox v ox
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Exact evolution operator for the linear subsystem

ow + Ajwy + Aowy, = S(w)

0 6 00 0 06 0
. ¥ 0 0 O o 0 0 0 O
AM=lo0o000| 5|5 000
0100 0 010
where 0 = 0(y)
eigenstructure: Ay = —a, Ay3 =0,y =a, a:= ’~Y§
R

Note: in the non-dimensional form § = M2

June 25, 2012
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Exact integral representation

p(P) = 5 [ coste) (@) = sin(w) o(Qi(w)) + 5 (p0) (@i ()

27a Jo
‘|’P (Q ) ~( ),(QZ)

27 tn+r
27701/ /tn

— ok JoT ;"”sin(e>gp'<x1<t,w>>dtdw

cos(w) u(xq (t, w)) + sin(w) v(xq (£, w))

Expression intractable for a numerical scheme — Simplify!
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Approximate
m temporal integrals by the rectangle rule
= to avoid large sonic circles use local evolution for T — 0 [Sun & Ren

('09)]

art
L actice T fixed, — ~ 0.1
in practi ix Ax
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Approximate
m temporal integrals by the rectangle rule
= to avoid large sonic circles use local evolution for T — 0 [Sun & Ren
('09)]
= in practice T fixed, % ~0.1

= 271m /027t {_ cos(w) u(Qq(w) — sin(w) v(Q1(w)) + %(PG)/(Ql(w)) .

+P/(Q2) . '7(99),(Q2)

a2

M. Luk&&ova (Institute of Mathematics, Uni-Mainz)
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Approximate
m temporal integrals by the rectangle rule
= to avoid large sonic circles use local evolution for T — 0 [Sun & Ren

('09)]

art
L actice T fixed, — ~ 0.1
in practi ix Ax

1 /ozn {_ cos(w) u(Q1(w) — sin(w) v(Q1(w)) + aiZ(pG)l(Ql(m) &
7(08)'(Q2)

a2

+0'(Q2) —

® The resulting operator is a predictor for the cell-interface values of fluxes
in the DG-update

» The operator is asymptotic preserving !
® It can be shown to be of order O(7?).
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Time integration

m Second order linear semi-implicit method: BDF2

ow
T N(w) =R(w) + L(w),

L - linearised operator: acoustic waves / gravity waves
-implicit approx. in time

R := N — L -nonlinear part : explicit approx. in time
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Time integration; cont. ...
- BDF time discretization:

ow

S = (W) — £(w)} + L(w)
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Time integration; cont. ...
- BDF time discretization:

ow

S = (W) — £(w)} + L(w)

implicit corrector

1
[1— AL W™ = W — qAt Y Bl (W)
m=0

with the explicit predictor step

1 1
wo = Z W'+ YAt Z BN (W)
m=0 m=0

ag=4/3, 01 =—-1/3,y=2/3,0=2,p1=—1
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Numerical Experiments

m Fuler equations with hydrostatic assumption: hydrostatic balance
dzp = —gp

= DG space discretization (with Rusanov flux and EG operator)

m SSP Runge Kutta 2 or 3; BDF 2 time discretization

® adaptive mesh refinement, triangular grid - mesh refinement criterium:

|o'| > m)?x(|0’(x,t =0)[)/10
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Test 1: rising warm air bubble

- bubble with a cosine profile in 8 = 6 + 6’

o 0 r>re, r=|x—xc|
0.25[1 + cos(rter/re)] r<rc

xc = (500,350), rc = 250m, 6 = 300K,
x € [0,1000)?, t € [0,700]

e in the momentum and energy eqs. regularized viscous terms with a small
viscosity y are added
U= O.lmz/s
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Error Analysis

- comparison of the multi-D EG-flux and the 1-D Rusanov flux
- semi-implict: BFD2, quadratic elements, T = 150

EG-flux
N = gridlevel | [[uny —un+o|l | [[un+2 — un+all | EOC
3 0.0375 0.0071 2.40
4 0.0226 0.0038 2.56
5 0.0071 0.0014 2.33
6 0.0038 0.0005 3.03
7 0.0014 0.0002 3.05
Rusanov flux
N = gridlevel | [[un — un-oll | [lun+o —un-4ll | EOC
3 0.0815 0.0115 2.82
4 0.0354 0.0060 2.57
5 0.0115 0.0027 2.07
6 0.0060 0.0012 2.33
7 0.0027 0.0005 2.26

M. Luk&&ova (Institute of Mathematics, Uni-Mainz)
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glraldo sembdf2 Leg3 vs rus adp11 at0.025 cvisc i
time=0s time=300s

o]+

0
0 200 400 400 200 O O 200 400 400 200 O

1000

500

time=600s time=900s

0 0
0 200 400 400 200 O O 200 400 400 200 O
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Test 2: small cold bubble on the top of large warm bubble

e Robert test (1993)

- both bubbles: a Gaussian profile

- warm air bubble: amplitude of 0.5 K
- cold air bubble: amplitude 0.17 K
- =01m?/s

M. Luk&&ova (Institute of Mathematics, Uni-Mainz) June 25, 2012



time=0s time=240s

|

\v/

0
0 200 400 600 800 10000 200 400 600 800 1000
time=420s time=600s

0 200 400 600 800 10000 200 400 600 800

(Institute of thematics, Uni-Mainz)




GPU parallelization
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Speed up for the GPU implementation of the EG operator
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