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Emergence behavior of self-propelled agents
patterns, structures, correlations, synchronization, only local interactions, no leader



3 zones: repulsion, alignment, attraction
3 classes of models: agent based, kinetic, hydrodynamics

attraction

alignment

alignment attractionrepulsion

Φ(r)

K(r)

0 r

Figure 1: The 3 zone model (repulsion-alignment-attraction) can be viewed as a special
choice of kernel K and potential Φ.

When the number of particles becomes large (i.e. N → ∞), one can formally derive
the equation satisfied by the particle distribution function f(x, v, t) (i.e. the probability
distribution of the particles in phase-space (x, v)). Under suitable assumptions [3, 10, 25],
f satisfies:

ft + v · ∇xf = −∇v · [(Pv⊥vf )f ] + d∆vf, (2.4)

where

vf =
jf + rf

|jf + rf |
,

jf =

∫

x′,v′
K(|x′ − x|)v′ f(x′, v′, t) dx′dv′,

rf = −∇x

∫

x′,v′
Φ(|x′ − x|) f(x′, v′, t) dx′dv′.

The operator ∇v denotes the tangential gradient on the sphere and ∆v is the Laplace-
Beltrami operator. The function Φ is the antiderivative of Φ′ which vanishes at infinity
(i.e. Φ(r)

r→∞−→ 0). Using the distribution f , we want to identify the asymptotic behavior
of the model in different regimes. This is the purpose of the next section.

2.2 Scaling parameters

Introducing two dimensionless parameters ε and η, the starting point is the following
scaled version of the previous kinetic model for the distribution function f(x, v, t):

ft + v · ∇xf = −1

ε
∇v ·

[
(Pv⊥vη

f )f
]
+ d∆vf, (2.5)
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Agent based model of self-alignment with
attraction-repulsion potential

dxk
dt

= vk

dvk = Pv⊥k

(
vk dt +

√
2τ dBk

t

)
, Pv⊥ = Id− v ⊗ v .

where

vk = ν
jk + rk

|jk + rk |+ δ
,

jk =
∑

j

K (|xj−xk |)vj , rk = −∇xΦ(xk), Φ(x) =
∑

j

φ(|xj−x |),



Mean field kinetic equation

ft + v · ∇x f = −∇v · [(Pv⊥vf )f ] + τ∆v f ,

where

vf = ν
jf + rf

|jf + rf |+ δ
, jf =

∫

x ′,v ′
K (|x ′ − x |)v ′ f (x ′, v ′, t) dx ′dv ′,

rf = −∇x

∫

x ′,v ′
Φ(|x ′ − x |) f (x ′, v ′, t) dx ′dv ′.

c.f. Bolley, Caizo, & Carrillo 2012



Hydrodynamical equations

Hydrodynamical rescaling

ft + v · ∇x f = −1

ε
(∇v · [(Pv⊥vf )f ]− τ∆v f ) ,

local aligment K (|xj − xk |/ε) gives the pressure term

near local aligment K (|xj − xk |/
√
ε) gives viscosity term

near local van Der Waals potential
Φ(x , u) =

∫∫
Rn×Sn−1

φ(|x − y |/√ε)(f (y , v , t)− f (x , u, t))dydv
induced a capillary force

∂tρ+ c1∇x · (ρΩ) = 0,

ρ(∂tΩ + c2Ω · ∇xΩ) + τPΩ⊥∇xρ = c3PΩ⊥∆(ρΩ) + c4PΩ⊥∇x∆ρ,



Symmetrization viscous hyperbolic system

In 2D, we set Ω = (cosϕ, sinϕ), ρ̂ = a(ρ), a′(ρ) =

√
p′(ρ)

ρ ,

λ(ρ̂) = a′(ρ)ρ, h(ρ̂) = 2 lnρ.
Then the system recast as

(∂t + Ω · ∇x)ρ̂+ λ(ρ̂) (Ω⊥ · ∇x)ϕ = 0

(∂t + cΩ · ∇x)ϕ+ λ(ρ̂) (Ω⊥ · ∇x)ρ̂ = µ (∆ϕ+∇xh(ρ̂) · ∇xϕ) .

local classical solution



Flocking of self propelled particles, Vicsek et al PRL ’95

time-discrete model

tn = n∆t, k-th individual
xnk : position at tn

vnk : velocity with |vnk | = 1.

xn+1
k = xnk + vnk∆t

alignment to local mean velocity
v̄nk =

∑N
j=1 ψ(|xj − xk |)vnj + noise

vn+1
k = v̄nk/|v̄nk |

Degond-Motsch ’08
ẋk = vk
v̄k =

∑N
j=1 ψ(|xj − xk |)vj

ωk = v̄k/|v̄k |
dvk = (Id− vk ⊗ vk)(λ(ρk)ωkdt +

√
2τdBt)

We take λ = λk = |v̄k |

R

Xk

ωk



Vicsek model and phase transition
Order parameter/mean speed |J(f )| and variance 1− |J(f )|2

T. Vicsek [5].  He proposed a very simple simulation model and demonstrated that it exhibited 
flocking.  His model is paraphrased as follows:   
 
In a 2-dimensional box of side length L with periodic boundary conditions, at t = 0, N particles 
were distributed in random positions xi.  Velocity for each particle was constrained to a 
constant value v, and initial directions !i for each particle’s velocity were randomized.  At each 
time step, position and direction followed 
 

tttt iii !"#" )()()1( vxx  and $$$ !"#" rii tt )()1(  
 

where ri t)($  is the average direction of the velocities of particles within a distance r of the 
ith particle.  Particles further away have no influence on the given particle.  $!  is a random 
number uniformly chosen between –"/2 and +"/2.  This creates fluctuations in velocity 
direction, representing the effect of finite temperature.   
 
Viscek made an analogy between his model and a model of a ferromagnet.  The velocities of 
the particles are analogous to the spins and the interactions are local.  When v = 0, the model 
exactly corresponds to the 2D XY model, albeit not on a regular lattice.  When simulated with 
different parameters for fluctuations and density, he found four different behaviors [5]:  
 

 
 

a) High noise, low density: particles moved independently 
b) Low noise, low density: particles formed groups that were independent 
c) High noise, high density: particles moved with some correlations 
d) Low noise, high density: all particles moved in the same direction 

 
The last behavior is physically interesting because it is analogous to a ferromagnetic state: 
rotational symmetry is spontaneously broken.  The average velocity is zero except in the last 
case, so average velocity is a suitable order parameter.  He measured the critical exponents and 
also found that the size of the scaling region increased as the system size was increased, strong 
signs that this is a true phase transition.  This was something that the physics community could 
be excited about:  a very simple model that produces a “novel type of phase transition” as the 
title of Vicsek’s paper proclaims [5].  

   
Above are two plots from [5] showing the increase of the scaling region as N is increased. va is 
the average velocity, the order parameter.   
 
A Paradox? 
 
This transition is especially novel because the transition happens in a system of 2 dimensions.  
According to the Mermin-Wagner theorem, no ferromagnetic state exists in a system of 2 or 
fewer dimensions [6].  The theorem generally states that there can be no spontaneous breaking 
of a continuous symmetry in 2 or fewer dimensions.  The heuristic argument is that in low 
dimensions, fluctuations become too strong for long range order to develop.  This theorem, 
however, is not a fundamental principle, but rather an exact mathematical result that holds for a 
huge class of Hamiltonians [7].  In particular, it requires the system to be in thermal 
equilibrium.  Therefore, an apparent violation of this theorem in a non-equilibrium system such 
as this one is not surprising.  Clearly, the movement of the particles is the cause, because at v = 
0, the system is merely the 2D XY model in thermal equilibrium.  However, a full 
understanding of the physical origin of this violation and its consequences requires an analysis 
of the model behind the simulation.   
 
A Theoretical Approach 
 
J. Toner and Y. Tu performed such an analysis in [8].  First, they reasoned that physics should 
only be interested in the long length-scale properties of a flock.  In this regime, the flock can be 
modeled as a continuous hydrodynamic model.  In such a top-down approach, universal 
properties could be found for all flocks obeying certain basic symmetries.  As they explained, a 
flock has only two symmetries: conservation of mass and rotational invariance.  In particular, 
momentum is not conserved due to a lack of Galilean invariance.  To understand why flocks 
are not invariant under Galilean transformations, consider a flock of birds moving coherently, 
each with the approximately same velocity.  Taking a Galilean transformation by subtracting 
the average velocity of the flock from each bird leaves a flock of roughly stationary birds.  This 
is clearly a different physical situation.   
 
As this is a top-down approach rather than deriving equations of motion through 
approximations of individual interactions, they are written as the most general equations of 
motion consistent with the symmetries.  All of the details about individual properties are 



Paramagnetism to ferromagnetism phase transition near
Curie temperature



Dynamics of orientational alignment

oriented particles {ωj}Nj=1 ⊂ Sn−1, unit sphere in Rn

dynamics of orientational alignment, for k = 1, · · · ,N

dωk = (Id− ωk ⊗ ωk)J(t)dt +
√

2τ(Id− ωk ⊗ ωk) ◦ dBk
t ,

J(t) = 1
N

∑N
j=1 ωj(t).

Stochastic integral is in the Stratonovich sense.

Bt Brownian motion in Rn

(Id− ω ⊗ ω) ◦ dBt = dWt , Brownian motion on sphere

ωk

ω̄kS1

√
2DdBtνω̄kdt

dωk



Dynamics of orientational alignment

in 2D, ωk(t) = e iθk (t),

dθk = sin(θ̄(t)− θk)dt +
√

2σ dBk
t ,

sin(θ̄(t)) =
1

N

N∑

j=1

sin(θj(t))

connected to Kuramoto nonlinear oscillator

θ̇k = Ωk + sin(θ̄(t)− θk),

and Synchronization. S.-Y. Ha’s talk on Monday



Standard deviation and Order Parameter |v̄|

Standard deviation:

σ2
v =

1

N

N∑

k=1

|vk − v̄|2 =
1

N

N∑

k=1

|vk |2 − |v̄|2, v̄ =
1

N

N∑

k=1

vk

If |vk | = 1, then
σ2
v = 1− |v̄|2,

Measures alignment

α ∼ 1

ωkS1
S1

α " 1

ωk

α ∼ 1: ω aligned α " 1: ω random



Mean field equation, Fokker-Planck eq, Smoluchowski eq

potential ψ(ω, t) = −ω · J(t), least potential if ω aligns to J

identity: (Id− ω ⊗ ω)J = −∇ωψ
recast as steepest descent motion:

dωk = −∇ωψ(ωk)dt +
√

2τdW k
t

probability density function, f (ω, t), ω ∈ Sn−1,

mean field equation (Fokker-Planck eq, Smoluchowski eq),∫
Sn−1 f (ω, t) = 1 =

∫
Sn−1 dω

∂t f = d∆ωf +∇ω(f∇ωψ) := Q(f ), d =
τ

ρ

ψ(ω, t) = −ω · J(t), J(t) =

∫

Sn−1

ωf (ω, t),

interaction kernel

ψ(ω, t) =

∫

Sn−1

K (ω, ω′)f (ω′, t), K (ω, ω′) = −ω · ω′



Free energy-dissipation relation

free energy:

F(f ) = d

∫

Sn−1

f ln f +
1

2

∫

Sn−1

ψf .

chemical potential ψ

µ =
δF
δf

= d ln f + ψ, v = −∇ωµ = −d∇ω ln f −∇ωψ,

recast as the continuity equation (Doi 1981, Hess 1976):

ft +∇ω · (f v) = 0,

dissipation of free energy:

∂tF +D = 0, D(f ) =

∫

Sn−1

f |∇ωµ|2.



Onsager theory on orientational phase transition, 1949

recall free energy:

F(f ) = d

∫

Sn−1

f ln f +
1

2

∫

Sn−1

ψf , ψ(ω) =

∫

Sn−1

K (ω, ω′)f (ω′)

K (ω, ω′) = |ω × ω′|, Onsager : excluded volume potential for
rodlike polymers

K (ω, ω′) = |ω × ω′|2 = 1− (ω · ω′)2, Maier-Saupe kernel

K (ω, ω′) = −ω · ω′, Dipolar interaction kernel.

K (ω, ω′) = −αω · ω′ − β(ω · ω′)2, magnetic rod suspension

equilibria feq are given by
minimizing F(f ) subject to

∫
Sn−1 f = 1

phase transition in equilibria probability density function near
critical temperature/noise level or critical mass



Critical parameter dc = 1
n and Linear stability

c(
κ
)

σ

κ
→

0

κ → ∞

1

nAround the constant state : f = 1 + g .

∂tg = d∆ωg + (n − 1)(1 +�g)ω · J[g ]−
(((

((((
(((((Id− ω ⊗ ω)J[g ] · ∇ωg ,

d

dt
J[g ] = (n − 1)

(
1

n
− d

)
J[g ] +

��
���

���
���

∫

Sn−1

(Id− ω ⊗ ω)J[g ]g

Linearly stable when d > dc , unstable when d < dc .



Characterization of equilibria

Proposition

The steady states to the Fokker- Planck eq. are probability
measures f on Sn−1 satisfy one of the following equivalent
conditions

equilibrium: f ∈ C 2(Sn−1) and Q(f ) = 0

no dissipation, f ∈ C 1(Sn−1) and D(feq) = 0

critical states: f ∈ C 0(Sn−1) and critical point of F(f )
subject to

∫
Sn−1 f = 1.

δF
δf

= µ (Lagrange multiplier, a constant)

Gibbs/Boltzmann states: f positive, symmetric, analytic

µ =
δF
δf

= d ln f − J[f ] · ω = constant (chemical potential)



Characterization of equilibria: Von Mises-Fisher
distribution, 1953

recall equilibria (Gibbs/Boltzmann states) are given by
d ln f − J[f ] · ω = C . Denote J[f ] = |J(f )|Ω, Ω ∈ Sn−1

f = Z−1 exp(κω · Ω), κ = |J(f )|/d

Von Mises-Fisher distribution with concentration parameter κ > 0:

MκΩ(ω) = Z−1 exp(κω · Ω), Z =

∫

Sn−1

exp(κω · Ω) .

Compatibility equation for κ:

|J[MκΩ]| = κd = c(κ) :=

∫ π
0 cos θ eκ cos θ sinn−2 θ dθ∫ π

0 eκ cos θ sinn−2 θ dθ
.

0 6 c(κ) 6 1, order parameter/mean speed for equilibria



Characterization of equilibria (d > 0): two phases
Lemma

Let β = c(κ)2 + n
c(κ)

κ
− 1. For any κ > 0, we have β > 0.

The function κ 7→ c(κ)

κ
(= d for the compatibility equation) is

decreasing (its derivative is −β
κ ), starting from 1

n at 0.

If d > dc , only one solution to compatibility equation: κ = 0.
Equilibrium : constant state 1 (disordered phase).

If d < dc , either κ = 0 or κ is the unique positive solution of
the compatibility equation (ordered phase MκΩ,Ω ∈ Sn−1).

Near the critical value of dc = 1/n,
c(κ(d)) ∼

√
(n + 2)(dc − d).

Proposition

Any steady state to Fokker- Planck equation is of the above forms



Order parameter c(κ) vs d
s.d. =

√
1− c(κ)2, concentration parameter κ = c(κ)/d

c(
κ
)

σ

κ
→

0

κ → ∞

1

n



Super-critical d < 1/n, cartoon shape of free energy
spontaneous symmetry breaking, spontaneous magnetization



Basic results (are also valid for other kernels)

For f0 ∈ Hs(Sn−1), f0 ≥ 0, d ≥ 0, s ∈ R,
∃! solution f ∈ C∞

(
0,∞;Hs(Sn−1)

)
(also analytic in a

Gevrey class if d > 0) to Fokker- Planck equation.

Instantaneous regularity, uniform boundedness :

‖f (·, t)‖Hs+m(Sn−1) 6 C

(
1 +

1

tm

)
‖f0‖Hs(Sn−1), t > 0

constant C depending only on d > 0, m, n, s.

Strong maximum principle: if f0 6≡ 1, regular, d > 0

e−(n−1)
∫ t

0 |J(s)|ds min f0(ω) < f (ω, t) < e(n−1)
∫ t

0 |J(s)|ds max f0(ω)



Characterization of equilibria: LaSalle invariance principle
(also valid for other kernels)

Proposition

Let f0 be a probability measure on Sn−1 and f (t) be the solution
with initial data f0. Denote by F∞ = limt→∞F(f (t)). Then

the ω-limit set
E∞ = {f ∈ C∞(Sn−1) : F(f ) = F∞,D(f∞) = 0} is not
empty.

f (t) converges to E∞ in Hs(Sn−1) for any s ∈ R:

lim
t→∞

inf
g∈E∞

‖f (·, t)− g‖Hs(Sn−1) = 0, for any s ∈ R



We now show the rates of convergence:
R
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Conformal Laplacian ∆̃n−1 on sphere Sn−1

for n odd,

∆̃n−1 =

(n−3)/2∏

`=0

(−∆ω + `(n − 2− `))

for n even,

∆̃n−1 =

[
−∆ω +

(
n − 2

2

)2
]1/2 (n−4)/2∏

`=0

(−∆ω + `(n− 2− `))

for any spherical harmonic of degree `, Y`, one has

∆̃n−1 Y` = `(`+ 1) . . . (`+ n − 2)Y`,

Laplace-Belltrami: −∆ωY` = `(`+ n − 2)Y`



Some notations

Subspace

Ḣs(Sn−1) =
{
g ∈ Hs(Sn−1),

∫

Sn−1

g = 0
}
, s ∈ R

‖g‖2
Ḣs(Sn−1)

= 〈(−∆ω)sg , g〉

Define, for g a mean-zero function, the following norms:

‖g‖2

H̃−
n−1

2 (Sn−1)
=

∫

Sn−1

g∆̃−1
n−1g ,

‖g‖2

H̃−
n−3

2 (Sn−1)
=

∫

Sn−1

−∆ωg∆̃−1
n−1g ,

equivalent to the Ḣ−
n−1

2 (Sn−1) and Ḣ−
n−3

2 (Sn−1) Sobolev
norms.



Lemma

1 For any g ∈ Ḣs(Sn−1), h ∈ Ḣ−s+1(Sn−1),

∣∣∣∣
∫

Sn−1

g∇ωh
∣∣∣∣ 6 C‖g‖Ḣs(Sn−1)‖h‖Ḣ−s+1(Sn−1)

2 For any g ∈ Ḣs+1(Sn−1),

∣∣∣∣
∫

Sn−1

g∇ω(−∆ω)sg

∣∣∣∣ 6 C‖g‖2
Ḣs(Sn−1)

3 For any g ∈ Ḣ−
n−3

2 (Sn−1),

∫

Sn−1

g∇ω∆̃−1
n−1g = 0

∆̃n−1∇ωg + (n − 1)ω∆̃n−1g = ∇ω∆̃n−1g



A new entropy

Let f = 1 + g , h = ∆̃−1
n−1g

〈h, gt〉 = d〈h,∆ωg〉+ 〈∇ωh,((((((((Id− ω ⊗ ω)J[g ](1 +�g)〉

〈h, gt〉 = −d〈h,−∆ωg〉+ n−1
(n−1)! |J(f )|2

1

2

d

dt
‖f − 1‖2

H̃−
n−1

2 (Sn−1)
=− d‖f − 1‖2

H̃−
n−3

2 (Sn−1)
+ 1

(n−2)! |J(f )|2

6− (n − 1)(d − 1
n )‖f − 1‖2

H̃−
n−1

2 (Sn−1)
.

The above conservation laws only involves quadratic quantities,
i.e., contribution only comes from linear terms!



Remarks on H−
n−1

2 (Sn−1), M(Sn−1), and new entropy

L1(Sn−1) ↪→ M(Sn−1) ↪→ H−
n−1

2
−ε(Sn−1)

H−
n−1

2 (Sn−1) 6⊂ M(Sn−1), M(Sn−1) 6⊂ H−
n−1

2 (Sn−1)

L1
+(Sn−1) ↪→ H

− n−1
2

+ (Sn−1) ⊂ M+(Sn−1) = D′+(Sn−1) ⊂
M(Sn−1) ↪→ H−

n−1
2
−ε(Sn−1)

For f0 ∈ Hs(Sn−1), s ∈ R, f0 can be negative, d > 0,
∃! solution f ∈ C

(
0,∞;Hs(Sn−1)

)
to FP equation

For f0 ∈ Hs(Sn−1), s ≥ −(n− 1)/2, f0 can be negative, d = 0,
∃! solution f ∈ C

(
0,∞;Hs(Sn−1)

)
to FP equation

For d = 0, f0 ∈ H−(n−1)/2(Sn−1)

‖f0−1‖2

H̃−
n−1

2
+|J(0)|t ≤ ‖f (·, t)−1‖2

H̃−
n−1

2
≤ ‖f0−1‖2

H̃−
n−1

2
+|J|∞t



Global exponential rate for under-critical case d > 1/n

Let f = 1 + g . By a high-low decomposition, for any s ∈ R

1

2

d

dt
‖g‖2

Ḣs + d‖g‖2
Ḣs+1 ≤

C

(N + 1)(N + n − 1)
‖g‖2

Ḣs+1 + C‖gN‖2
Ḣs

we can extend above result to:

Theorem

For d > 1/n, f0 ∈ Hs(Sn−1), s ≥ −(n − 1)/2, we have global
exponential decay towards the uniform distribution with
rate (n − 1)(d − 1

n )

‖f − 1‖Hs(Sn−1) 6 C‖f0 − 1‖Hs(Sn−1) exp
(
−(n − 1)(d − 1

n )t
)
.



Asymopotic exponential rate for super-critical case
d < 1/n

Proposition

If J[f0] = 0 then J[f (t)] = 0 for all t and E∞ = {1}, F∞ = 0.
FP equation becomes heat equation, exponential decay with
rate 2nd to the uniform distribution.

If J[f0] 6= 0 then J[f (t)] 6= 0 for all t and
E∞ = {MκΩ,Ω ∈ Sn−1}, F∞ < 0. Furthermore, for any s ∈ R

lim
t→∞

‖f (·, t)−MκΩ(t)‖Hs(Sn−1) = 0

where Ω(t) = J[f (t)]/|J[f (t)]|.



ODE: d
dtJ[f ] = M(t)J[f ]

d

dt
J[f ] = −d(n − 1)J[f ] +

(∫

S
(Id− ω ⊗ ω) f dω

)
J[f ]

=

(
(1− (n − 1)d)Id−

∫

S
ω ⊗ ω f

)
J[f ] =: M(t)J[f ],

M(t) is smooth, so we have a global unique solution.
If J[f (0)] = 0, then J[f (t)] ≡ 0, reduced to the heat equation.
If J[f (0)] 6= 0, then J[f (t)] 6= 0.
If f (t)→ 1, then M(t)→ (n − 1)( 1

n − d). Hence

1

2

d

dt
|J[f ]|2 = J[f ] ·M(t)J[f ] > ((n − 1)( 1

n − d)− ε)|J[f ]|2.

|J[f ]| → ∞. This is a contradiction.



Asymptotic around MκΩ(t), Ω(t) = J[f ]
|J[f ]|

let cos θ = ω · Ω(t)

If d < 1/n, fix the corresponding κ > 0.

f = MκΩ (1 + α(cos θ − c(κ) + g) , 〈g〉MκΩ
= 0, 〈gω〉MκΩ

= 0

for large t,

F(f )−F(MκΩ) ≤ 1

2

(
(β + ε)(d − β)α2 + (d + ε)〈g2〉MκΩ

)

D(f ) ≥ λκ
(

(β2 − ε)α2 + (d2 − ε)〈g2〉MκΩ

)

λκ ≥ (n − 1)e−2κ, 1st positive eigenvalue 1/MκΩ∇ · (MκΩ∇)



Asymptotic around MκΩ(t), Ω(t) = J[f ]
|J[f ]|

F(f (t))−F(MκΩ(t)) =

∫ ∞

t
D(f )

for any r < λκβ, t > tr , denote C = d
β(d−β)

α(t) + C 〈g2(t)〉MκΩ(t)
≤
(
α(tr ) + C 〈g2(tr )〉MκΩ(tr )

)
e−2r(t−tr )

There is a Ω∞ ∈ Sn−1 s.t. for large t

|Ω(t)−Ω∞| ≤
∫ ∞

t
|dΩ

dt
| ≤ Ce−rt , ‖f (t)−MκΩ∞‖L2(Sn−1) ≤ Ce−rt

The asymptotic rate r∞(d) ≥ 2(n − 1)( 1
n − d) + O( 1

n − d)3/2

in the neighborhood of d = 1/n.



Algebraic rate at critical case d = 1/n

J[f0] 6= 0, we have J[f (t)] 6= 0 for all t > 0.

Set Ω(t) = J[f (t)]
|J[f (t)]| . cos θ = ω · Ω

Set f = 1 + h, J[f ] = 〈(1 + h)ω〉 = 〈hω〉 = 〈h cos θ〉Ω
Set h = g + α cos θ + 1

2α
2(cos2 θ − 1

n ) + 1
6α

3(cos3 θ − 3
n+2 cos θ),

where α = n〈h cos θ〉
〈g〉 = 〈g cos θ〉 = 0

F(f ) =

∫ ∞

t
D(f )

1− ε 6 4n3(n + 2)

2n2(n + 2)〈g2〉+ α4
F(1 + h) 6 1 + ε

D(f ) > (1− ε)n−1
n2 (〈g2〉+ 1

n3(n+2)2α
6)



Algebraic rate at critical case d = 1/n

For any r < 8(n−1)
n2(n+2)

1
2 (2n2(n + 2)〈g2〉+ α4) > r

∫ ∞

t
(2n2(n + 2)〈g2〉+ α4)

3
2

2n2(n + 2)〈g2〉+ α4 6
1

r2(t − t0)2
.

For r ′ < 8(n−1)
n(n+2) , there is a t0 > 0 such that for all t > t0,

‖f − 1‖2
L2 = 〈h2〉 6 1√

r ′(t − t0)
.



Summary

We consider alignment model for interacting, self-propelled,
oriented particles system {ωj}Nj=1 ⊂ Sn−1, unit sphere in Rn

dωk = (Id−ωk⊗ωk)(J(t) dt+
√

2τ dBk
t ), J(t) =

1

N

N∑

j=1

ωj(t)

motivated by Vicsek model of flocking of birds, alignment in
ferromagnetism

This model is well described by mean field equation (also
known as nonlinear Fokker-Planck equation, Doi-Onsager
equation, Smoluchowski equation, McKean-Vlasov equation)

∂t f = d∆ωf +∇ω(f∇ωψ), ψ(ω, t) =

∫

Sn−1

k(ω, ω′)f (ω′, t),

where k(ω, ω′) = −ω · ω′ is dipolar interaction kernel.



Summary

There is a critical noise parameter d = 1
n (analog to Curie

temperature). For d ≥ 1/n, the only equilibrium is the
uniform distribution; for d < 1/n, there is also a family of
non-isotropic equilibria: Fisher-Von Mises distribution,
MκΩ(ω), Ω ∈ Sn−1 with concentration parameter κ(d).

For d > 1
n , we discovered a new entropy

1

2

d

dt
‖f − 1‖2

H̃−
n−1

2 (Sn−1)
=− d‖f − 1‖2

H̃−
n−3

2 (Sn−1)
+ 1

(n−2)! |J(f )|2

6− (n − 1)(d − 1
n )‖f − 1‖2

H̃−
n−1

2 (Sn−1)
.

The norms above involve the conformal Laplacian. The above
conservation laws only involves quadratic quantities, i.e.,
contribution only comes from linear terms!

Rates of convergence to the equilibrium are given by following
theorem.



Theorem (Rates of convergence to equilibrium)

Suppose f0 ≥ 0, J[f0] 6= 0, and f0 ∈ Hs(Sn−1) for some s ∈ R.
Then there exists a unique global weak solution to the nonlinear
Fokker-Planck equation, f ∈ C∞((0,+∞)× Sn−1) and f > 0 all
time t > 0;

For d > 1
n , for all t0 > 0, there is a constant C depending

only on t0, s, p, n, d, s.t.

‖f (t)− 1‖Hp(Sn−1) 6 C‖f0‖Hs(Sn−1) e
−(n−1)(d− 1

n )t , t ≥ t0

For d = 1
n , r <

2
n(n−1)p−1(n+2)

, there existes t0, s.t.

‖f (t)− 1‖Hp(Sn−1) 6 1/
√
rt, t > t0

For d < 1
n , r < r∞(d), there existes t0 and Ω ∈ Sn−1, s.t.

‖f (t)−MκΩ‖Hp(Sn−1) 6 e−rt , t > t0

where rate function r∞(d) > c( 1
n − d) when d is close to 1

n .



Thank You!


