# Simulation of Poroelastic Wave Propagation Using CLAWPACK

#### Grady Lemoine, University of Washington

June 28, 2012

Joint work with Randall LeVeque (University of Washington) and M.-J. Yvonne Ou (University of Delaware) Supported in part by grants from the NIH and NSF

#### Outline

# Poroelasticity Poroelasticity basics Useful structure

2 Solution code



#### Outline

# Poroelasticity Poroelasticity basics Useful structure

#### 2 Solution code

3 Results Qualitative checks Convergence studies

## Poroelasticity theory

- Poroelasticity: study of mechanics of fluid-filled porous solids
- Originally developed by Maurice Biot in 1930s-1960s for soil and rock
  - · Major early interest from oil industry
  - Recent interest for monitoring underground fluid injection (e.g. carbon sequestration)
- · Recently applied to bone as well
  - Understanding wave propagation in bone is original motivator for this work





Transverse section of cortical bone. Images courtesy Wikimedia Commons.

### Equations of poroelasticity

Glossing over a lot of details, can model poroelasticity as a first-order linear system of PDEs:

$$\partial_t Q + A \,\partial_x Q + B \,\partial_z Q = DQ,$$
$$Q = \begin{bmatrix} p & \sigma_{xx} & \sigma_{zz} & \sigma_{xz} & v_x & v_z & q_x & q_z \end{bmatrix}^T$$

- *p* is fluid pressure; *σ* is solid stress tensor; *v* is solid velocity; *q* is fluid flow rate
- These are in principal coordinates of orthotropic (*not* isotropic) material.
- · Left side is classic hyperbolic system
- Right side introduces dissipation, through viscous drag as fluid flows through pores

Show system matrices

Poroelasticity equations look like elastodynamics + acoustics. Three families of propagating waves:

- **1** Fast P-waves, where fluid and solid move (roughly) parallel to propagation direction and in phase
- S-waves, where fluid and solid move transverse to propagation direction
- Slow P-waves, where fluid and solid move (roughly) parallel to propation direction but 180 degrees out of phase

Slow P-waves involve large motions of fluid relative to solid – heavily damped by viscosity

System also supports non-wave-like "diffusive slow mode" where fluid seeps through pores due to pressure gradient

#### Wave structure of viscous orthotropic poroelasticity

Source term DQ causes dissipation and dispersion Anisotropy also causes wave speeds to differ depending on propagation direction Plots below: phase velocity vs. frequency and direction for orthotropic layered sandstone



Grady Lemoine, University of Washington

Simulation of Poroelastic Wave Propagation Using CLAWPACK

# **Energy density**

- Poroelasticity system has some useful properties
- Several are associated with the energy density  $\mathcal{E}$ , which is a quadratic form,

$$\mathcal{E} = \frac{1}{2}Q^T E Q$$

- Hessian *E* is a symmetric positive-definite matrix
- *E* symmetrizes the system: *EA*, *EB*, and *ED* are symmetric
- Easy proof poroelasticity system is hyperbolic
  - Eigenvalues and eigenvectors of Ă = n<sub>x</sub>A + n<sub>z</sub>B satisfy symmetric-definite generalized eigenproblem EĂv = λEv
  - ⇒ Have all real eigenvalues, full set of independent (*E*-orthogonal) eigenvectors, therefore hyperbolic

Show energy matrix

#### Block structure of poroelasticity system

Aside: poroelasticity system has stress-velocity block structure

• Have grouped stress and velocity variables in state vector to emphasize this:

$$Q = \begin{bmatrix} p & \sigma_{xx} & \sigma_{zz} & \sigma_{xz} & v_x & v_z & q_x & q_z \end{bmatrix}^T = \begin{bmatrix} Q_s \\ Q_v \end{bmatrix}$$

• *A*, *B* matrices — stress gradients produce velocity changes, velocity gradients produce stress changes:

$$A = \begin{bmatrix} 0 & A_{sv} \\ A_{vs} & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & B_{sv} \\ B_{vs} & 0 \end{bmatrix}$$

• Energy divides neatly into kinetic and potential:

$$E = \begin{bmatrix} E_s & 0\\ 0 & E_v \end{bmatrix}$$

This will be useful later

Grady Lemoine, University of Washington

Simulation of Poroelastic Wave Propagation Using CLAWPACK

#### Stiffness of relaxation term

#### $\partial_t Q + A \, \partial_x Q + B \, \partial_z Q = DQ$

- Source term *DQ* has its own intrinsic time scales
- May be stiff depending on problem solved
- Can expect difficulties with solution, need to check for possibility of incorrect wave speeds
- Source term is of relaxation type, so expect solution to be close to *reduced system*,

$$\partial_t u + A_r \,\partial_x u + B_r \,\partial_z Q = 0$$

obtained by restricting to null space  $\mathcal{N}(D)$ 

- $A_r = \Pi AG$ , where G maps reduced variables to full variables and  $\Pi$  maps full to reduced
- Conjecture (Pember 1993): Need reduced system to satisfy *subcharacteristic condition* – wave speeds not faster than full system

Grady Lemoine, University of Washington Simulation of Poroelastic Wave Propagation Using CLAWPACK

### Entropy function and subcharacteristic condition

 $\mathcal{E} = \frac{1}{2}Q^T E Q$  turns out to be a *strictly convex entropy function* in the sense of Chen, Levermore, and Liu (1994).

- $\bullet$  *EA* and *EB* are symmetric
- 2 ED is symmetric negative-semidefinite
- **3** The following are equivalent:

• 
$$Q \in \mathcal{N}(D)$$

• 
$$Q^T E D Q = 0$$

- $EQ = \Pi^T v$  for some v
- *E* is positive-definite

Chen, Levermore, and Liu show this implies a nonstrict subcharacteristic condition,

$$\lambda_{\min}(A) \le \lambda_{\min}(A_r), \quad \lambda_{\max}(A_r) \le \lambda_{\max}(A)$$

- Can expect to avoid spurious solutions
- Accuracy may still be affected

Poroelasticity
 Poroelasticity basics
 Useful structure

2 Solution code

3 Results Qualitative checks Convergence studies

### **CLAWPACK**

Solved poroelasticity equations using CLAWPACK

- CLAWPACK: Conservation LAWs PACKage
  - Can really handle any hyperbolic system, not just conservation laws
- High-resolution finite volume package for wave propagation
- Low memory overhead, parallel (multicore, PETSc)
- Supports logically rectangular mapped grids
- · Source terms handled by operator splitting
- Adaptive mesh refinement available too (Berger-Colella-Oliger approach, AMRCLAW)
- Handles code that is common across all high-resolution FVM solvers
  - User only needs to write routines for Riemann solve, source terms

Writing an efficient Riemann solver for this system looks hard:

- $8 \times 8$  system with 3 wave families lots of computation per solve
- For applications, want to handle material heterogeneity
- Also want to handle mapped grids, arbitrary interface direction
- Can't use geometric symmetry anisotropic material! However, can take advantage of block structure, energy matrix to simplify

#### **Riemann solver**

- Waves and speeds come from eigenproblem  $\breve{A}r = \lambda r$ , where  $\breve{A} = n_x A + n_z B$
- E is nonsingular, so multiply by E to get  $E\breve{A}r = \lambda Er$
- From block structure of E and  $\breve{A}$ , get

$$E_s \breve{A}_{sv} r_v = \lambda E_s r_s, \quad E_v \breve{A}_{vs} r_s = \lambda E_v r_v$$

Since EĂ is symmetric, E<sub>v</sub>Ă<sub>vs</sub> = (E<sub>s</sub>Ă<sub>sv</sub>)<sup>T</sup>. Rewrite second equation as

$$\breve{A}_{sv}^T E_s r_s = \lambda E_v r_v$$

• Multiply first equation by  $\breve{A}_{sv}^T$  from left:

$$\breve{A}_{sv}^T E_s \breve{A}_{sv} r_v = \lambda \breve{A}_{sv}^T E_s r_s = \lambda^2 E_v r_v$$

• Reduced  $8 \times 8$  problem to  $4 \times 4$  symmetric definite problem

#### **Riemann solver**

• Can reduce to symmetric ordinary eigenproblem by factorizing  $E_v$  to  $LL^T$ :

$$L^{-1}\breve{A}_{sv}^T E_s \breve{A}_{sv} L^{-T} w \equiv M_4 w = \lambda^2 w, \quad w = L^T r_v$$

•  $M_4$  matrix is complicated but can break down in terms of  $n_x$  and  $n_z$ :

$$\begin{split} M_4 &= L^{-1} A_{sv}^T E_s A_{sv} L^{-T} n_x^2 \\ &+ (L^{-1} A_{sv}^T E_s B_{sv} L^{-T} + L^{-1} B_{sv}^T E_s A_{sv} L^{-T}) n_x n_z \\ &+ L^{-1} B_{sv}^T E_s B_{sv} L^{-T} n_z^2 \\ &\equiv M_{4xx} n_x^2 + M_{4xz} n_x n_z + M_{4zz} n_z^2 \end{split}$$

- Can precompute  $M_{4**}$  matrices, only form linear combination at each solve
- Also know null space of  $\breve{A}_{sv}$ , can reduce dimension with variable substitution
- In the end, get  $3\times3$  symmetric eigenproblem

Grady Lemoine, University of Washington

Simulation of Poroelastic Wave Propagation Using CLAWPACK

Finally, need breakdown of  $\Delta Q$  into waves for Riemann solve

- Want to be able to solve at interface between two materials
- In general, need to solve linear system for wave strengths
- If material is same on both sides, can use *E*-orthogonality of eigenvectors instead
- Make eigenvectors *E*-orthonormal. Want to solve

$$R\alpha = \Delta Q$$

• Multiply from left by  $R^T E$  to get

$$R^T E R \alpha = \alpha = R^T E \Delta Q$$

- Source term handled via operator splitting
- $Q_t = DQ$  solved exactly with matrix exponential
  - · Best accuracy available for this part of system
  - No stability restriction
- Strang splitting used for all cases presented here
  - Expect second-order accuracy, but will see what we actually get...

Poroelasticity
 Poroelasticity basics
 Useful structure

2 Solution code



Two general classes of test problems run so far:

- Qualitative sanity-check problems and "eyeball norm" comparisons to published solutions
  - Advantage: Useful when analytic solution not available, good for ruling out some types of bug
  - Disadvantage: Not very precise
- 2 Convergence studies comparing against known analytic solutions
  - Advantage: Can quantitatively measure accuracy, convergence rate
  - Disadvantage: Limited library of solutions to compare against (just used plane waves here)

Both types of test are useful

Test case: wave reflections from a material interface, from de la Puente et al. (2008)

- Excitation is a point source with a Ricker wavelet profile in time
- Forcing acts on  $\sigma_z$  and fluid pressure terms with equal magnitude and opposite sign
- Source is located in shale overlying a sandstone bed
- Material properties taken to be isotropic for this case; viscosity ignored
- AMR used to capture fine details

#### Poroelastic code validation: two-material test case



*z* component of matrix velocity field. Left: CLAWPACK, right: de la Puente.
 Rectangular outlines indicate boundaries of AMR grids. Note: Different value-to-shade maps on each plot.

#### Poroelastic code validation: two-material test case



#### Time-history of matrix *z* velocity at topmost gauge. Left: CLAWPACK, right: de la Puente.

#### Inclusions of different materials

- Can also use mapped grids to model more interesting geometry
- Have some quick results with a circular inclusion of a different poroelastic material (shale in sandstone)
- More complex shapes can be modeled only requirement is a mapping function
- Also have fluid-poroelastic interface modeling will be able to combine with mapped grids to model:
  - Fluid-filled lacunae or canals
  - Bone surrounded by fluid
  - Poroelastic seabed (if there's interest)
- Also plan to add poroelastic-nonporous solid interface modeling

## Sample results for poroelastic inclusion



Results for isotropic shale inclusion in isotropic sandstone, struck by fast P-wave with Gaussian profile. Left: x direction fluid velocity ( $200 \times 200$  grid); right:  $50 \times 50$  grid illustrating mapping Logically rectangular circle map from Calhoun, Helzel, and LeVeque (2007)

### **Convergence studies**

- Conducted convergence studies
  against analytic solutions
- Solutions used: plane waves of the form

$$Q(x, z, t) = V \exp(i(k_x x + k_z z - \omega t))$$

with some real  $\omega$  specified.

- Important to test with waves propagating in variety of directions θ<sub>wave</sub>
- Also need to test variety of material principal directions θ<sub>mat</sub>
- For each (θ<sub>wave</sub>, θ<sub>mat</sub>) pair, need to sweep over grid size to check convergence



Snapshot of plane wave solution

showing  $\theta_{wave}$ , principal axes, and  $\theta_{mat}$ 

#### Convergence results: inviscid

- First convergence study: ignore viscous dissipation, validate hyperbolic solver by itself
- Results are generally good
- Slow P wave was underresolved on coarse grids worse apparent performance
- Error measured using energy max-norm, relative to amplitude in energy norm of true solution

|             | Convergence rate |       | Error on finest grid  |                       |
|-------------|------------------|-------|-----------------------|-----------------------|
| Wave family | Best             | Worst | Best                  | Worst                 |
| Fast P      | 2.02             | 1.96  | $5.61 \times 10^{-5}$ | $1.76\times10^{-4}$   |
| S           | 2.00             | 1.96  | $2.80 \times 10^{-4}$ | $7.98 	imes 10^{-4}$  |
| Slow P      | 1.93             | 1.67  | $8.81 \times 10^{-3}$ | $3.16 \times 10^{-2}$ |

- Frequency wasn't important for inviscid case because there's only one time scale (the wave period itself)
- This won't be true when viscosity is included
  - Viscous dissipation has its own time scale, independent of frequency
  - Unknown how operator splitting will perform
- Worth doing a sweep over frequency to see effect of operator splitting
- Kept domain size at constant multiple of wavelength (or dissipation scale for slow P wave)
  - · Keeps error from hyperbolic solver roughly constant
  - · Isolates effect of operator splitting

#### Convergence results: viscous frequency sweep



Error vs. frequency for  $100 \times 100$  through  $800 \times 800$  grids with Godunov or Strang splitting. Circles: time step

less than characteristic dissipation time; stars: time step greater than dissipation time.

Grady Lemoine, University of Washington Simulation of Poroelastic Wave Propagation Using CLAWPACK

#### Convergence results: viscous high-frequency

- Ran more detailed convergence studies in low-frequency and high-frequency regimes of plot
- High frequency chosen: 10 kHz
- Used Strang splitting for all cases
- Ran slow P waves on different grid from others because of extremely rapid damping
- Results are good, though not as good as inviscid for the fast P and S waves

|             | Convergence rate |       | Error on finest grid  |                       |  |
|-------------|------------------|-------|-----------------------|-----------------------|--|
| Wave family | Best             | Worst | Best                  | Worst                 |  |
| Fast P      | 2.05             | 2.00  | $6.44 \times 10^{-5}$ | $1.81 \times 10^{-4}$ |  |
| S           | 2.03             | 1.99  | $2.99 \times 10^{-4}$ | $7.59 	imes 10^{-4}$  |  |
| Slow P      | 2.03             | 1.96  | $6.53 \times 10^{-6}$ | $2.25\times10^{-3}$   |  |

- Also examined results at low frequency: 10 Hz
- Again ran slow P waves on different grid because of rapid damping
- Used Strang splitting for all cases
- Results are not so good

|             | Convergence rate |       | Error on finest grid  |                      |
|-------------|------------------|-------|-----------------------|----------------------|
| Wave family | Best             | Worst | Best                  | Worst                |
| Fast P      | 1.61             | 1.10  | $3.90 \times 10^{-4}$ | $1.04\times10^{-3}$  |
| S           | 1.83             | 1.36  | $9.63 	imes 10^{-4}$  | $1.92 	imes 10^{-3}$ |
| Slow P      | 2.09             | 1.84  | $2.40 \times 10^{-6}$ | $4.59\times 10^{-4}$ |

What's going on here?

- Trouble only for timesteps comparable to relaxation time or longer
  - Note: asymptotic error estimates only good as  $\Delta t \rightarrow 0$  not inconsistent with bad results for Strang at "large"  $\Delta t$ .
- Literature suggests hyperbolic systems with stiff relaxation terms are hard to model
- Dissipation causes change in structure of Riemann solution at longer times
  - Solution structure approaches that of reduced system, but reduced system waves are "blurred" into erf-shapes
- · May improve accuracy by modeling this explicitly

- Poroelasticity is a rich and complex system, with a wide variety of behaviors
- Have developed poroelasticity solver, validated against known solutions
- Solver capabilities:
  - Multiple materials
  - Fluid-poroelastic interfaces
  - · Mapped grids for moderately complex geometries
  - Parallel execution (thanks to CLAWPACK framework)
- Convergence rate is suboptimal in the stiff regime, but magnitude of error is generally not bad
- Convergence and accuracy are good away from stiff regime

- Deal with convergence problems in stiff regime, possibly via more advanced Riemann solver
- Extend to 3D
- Extend to modeling of fluid/solid/poroelastic systems
- Implement property averaging across material boundaries for geometry too complex for mapped grids
- Look at micro-scale modeling to obtain poroelastic properties

#### Poroelasticity system matrices

$$\begin{split} \check{A} &= n_x A + n_z B = \begin{bmatrix} 0 & \check{A}_{sv} \\ \check{A}_{vs} & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 \\ 0 & D_v \end{bmatrix} \\ \check{A}_{sv} &= -\begin{bmatrix} -n_x \alpha_1 M & -n_z \alpha_3 M & -n_x M & -n_z M \\ n_x c_1^{11} & n_z c_{13}^{12} & n_x \alpha_1 M & n_z \alpha_1 M \\ n_x c_3^{12} & n_z c_{33}^{22} & n_x \alpha_3 M & n_z \alpha_3 M \\ n_z c_5^{15} & n_x c_5^{15} & 0 & 0 \end{bmatrix} \\ \check{A}_{vs} &= -\begin{bmatrix} n_x \frac{\rho_f}{\Delta_1} & n_x \frac{m_1}{\Delta_1} & 0 & n_z \frac{m_1}{\Delta_1} \\ n_z \frac{\rho_f}{\Delta_3} & 0 & n_z \frac{m_3}{\Delta_3} & n_x \frac{m_3}{\Delta_3} \\ -n_x \frac{\rho_f}{\Delta_3} & 0 & -n_z \frac{\rho_f}{\Delta_3} & -n_x \frac{\rho_f}{\Delta_3} \end{bmatrix} \\ D_v &= \begin{bmatrix} 0 & 0 & \frac{\rho_f \eta}{\Delta_1 \kappa_1} & 0 \\ 0 & 0 & 0 & \frac{\rho_f \eta}{\Delta_3 \kappa_3} \\ 0 & 0 & -\frac{\rho \eta}{\Delta_3 \kappa_3} \end{bmatrix} \end{split}$$

Back to main

#### Poroelasticity energy matrix

