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Poroelasticity theory

• Poroelasticity: study of mechanics of
fluid-filled porous solids

• Originally developed by Maurice Biot in
1930s-1960s for soil and rock

• Major early interest from oil industry
• Recent interest for monitoring

underground fluid injection (e.g.
carbon sequestration)

• Recently applied to bone as well
• Understanding wave propagation in

bone is original motivator for this work

Pumice stone.

Transverse section of cortical

bone. Images courtesy Wikimedia

Commons.
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Equations of poroelasticity

Glossing over a lot of details, can model poroelasticity as a
first-order linear system of PDEs:

∂tQ+A∂xQ+B ∂zQ = DQ,

Q =
[
p σxx σzz σxz vx vz qx qz

]T
• p is fluid pressure; σ is solid stress tensor; v is solid

velocity; q is fluid flow rate
• These are in principal coordinates of orthotropic (not

isotropic) material.
• Left side is classic hyperbolic system
• Right side introduces dissipation, through viscous drag as

fluid flows through pores

Show system matrices
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Poroelastic waves

Poroelasticity equations look like elastodynamics + acoustics.
Three families of propagating waves:

1 Fast P-waves, where fluid and solid move (roughly)
parallel to propagation direction and in phase

2 S-waves, where fluid and solid move transverse to
propagation direction

3 Slow P-waves, where fluid and solid move (roughly)
parallel to propation direction but 180 degrees out of phase

Slow P-waves involve large motions of fluid relative to solid –
heavily damped by viscosity
System also supports non-wave-like “diffusive slow mode”
where fluid seeps through pores due to pressure gradient

Grady Lemoine, University of Washington Simulation of Poroelastic Wave Propagation Using CLAWPACK



Wave structure of viscous orthotropic poroelasticity

Source term DQ causes dissipation and dispersion
Anisotropy also causes wave speeds to differ depending on
propagation direction
Plots below: phase velocity vs. frequency and direction for
orthotropic layered sandstone
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Energy density

• Poroelasticity system has some useful properties
• Several are associated with the energy density E , which is

a quadratic form,

E =
1

2
QTEQ

• Hessian E is a symmetric positive-definite matrix
• E symmetrizes the system: EA, EB, and ED are

symmetric
• Easy proof poroelasticity system is hyperbolic

• Eigenvalues and eigenvectors of Ă = nxA+ nzB satisfy
symmetric-definite generalized eigenproblem EĂv = λEv

• ⇒ Have all real eigenvalues, full set of independent
(E-orthogonal) eigenvectors, therefore hyperbolic

Show energy matrix
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Block structure of poroelasticity system

Aside: poroelasticity system has stress-velocity block structure
• Have grouped stress and velocity variables in state vector

to emphasize this:

Q =
[
p σxx σzz σxz vx vz qx qz

]T
=

[
Qs

Qv

]
• A, B matrices — stress gradients produce velocity

changes, velocity gradients produce stress changes:

A =

[
0 Asv

Avs 0

]
, B =

[
0 Bsv

Bvs 0

]
• Energy divides neatly into kinetic and potential:

E =

[
Es 0
0 Ev

]
This will be useful later
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Stiffness of relaxation term

∂tQ+A∂xQ+B ∂zQ = DQ

• Source term DQ has its own intrinsic time scales
• May be stiff depending on problem solved
• Can expect difficulties with solution, need to check for

possibility of incorrect wave speeds
• Source term is of relaxation type, so expect solution to be

close to reduced system,

∂tu+Ar ∂xu+Br ∂zQ = 0

obtained by restricting to null space N (D)
• Ar = ΠAG, where G maps reduced variables to full

variables and Π maps full to reduced
• Conjecture (Pember 1993): Need reduced system to

satisfy subcharacteristic condition – wave speeds not
faster than full system
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Entropy function and subcharacteristic condition

E = 1
2Q

TEQ turns out to be a strictly convex entropy function in
the sense of Chen, Levermore, and Liu (1994).

1 EA and EB are symmetric
2 ED is symmetric negative-semidefinite
3 The following are equivalent:

• Q ∈ N (D)
• QTEDQ = 0
• EQ = ΠT v for some v

4 E is positive-definite

Chen, Levermore, and Liu show this implies a nonstrict
subcharacteristic condition,

λmin(A) ≤ λmin(Ar), λmax(Ar) ≤ λmax(A)

• Can expect to avoid spurious solutions
• Accuracy may still be affected
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CLAWPACK

Solved poroelasticity equations using CLAWPACK

• CLAWPACK: Conservation LAWs PACKage
• Can really handle any hyperbolic system, not just

conservation laws

• High-resolution finite volume package for wave propagation
• Low memory overhead, parallel (multicore, PETSc)
• Supports logically rectangular mapped grids
• Source terms handled by operator splitting
• Adaptive mesh refinement available too

(Berger-Colella-Oliger approach, AMRCLAW)
• Handles code that is common across all high-resolution

FVM solvers
• User only needs to write routines for Riemann solve, source

terms
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Riemann solver

Writing an efficient Riemann solver for this system looks hard:
• 8× 8 system with 3 wave families – lots of computation per

solve
• For applications, want to handle material heterogeneity
• Also want to handle mapped grids, arbitrary interface

direction
• Can’t use geometric symmetry – anisotropic material!

However, can take advantage of block structure, energy matrix
to simplify
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Riemann solver

• Waves and speeds come from eigenproblem Ăr = λr,
where Ă = nxA+ nzB

• E is nonsingular, so multiply by E to get EĂr = λEr

• From block structure of E and Ă, get

EsĂsvrv = λEsrs, EvĂvsrs = λEvrv

• Since EĂ is symmetric, EvĂvs = (EsĂsv)T . Rewrite
second equation as

ĂT
svEsrs = λEvrv

• Multiply first equation by ĂT
sv from left:

ĂT
svEsĂsvrv = λĂT

svEsrs = λ2Evrv

• Reduced 8× 8 problem to 4× 4 symmetric definite problem
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Riemann solver

• Can reduce to symmetric ordinary eigenproblem by
factorizing Ev to LLT :

L−1ĂT
svEsĂsvL

−Tw ≡M4w = λ2w, w = LT rv

• M4 matrix is complicated but can break down in terms of
nx and nz:

M4 = L−1AT
svEsAsvL

−Tn2x

+ (L−1AT
svEsBsvL

−T + L−1BT
svEsAsvL

−T )nxnz

+ L−1BT
svEsBsvL

−Tn2z

≡M4xxn
2
x +M4xznxnz +M4zzn

2
z

• Can precompute M4∗∗ matrices, only form linear
combination at each solve

• Also know null space of Ăsv, can reduce dimension with
variable substitution

• In the end, get 3× 3 symmetric eigenproblem
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Riemann solver

Finally, need breakdown of ∆Q into waves for Riemann solve

• Want to be able to solve at interface between two materials
• In general, need to solve linear system for wave strengths
• If material is same on both sides, can use E-orthogonality

of eigenvectors instead
• Make eigenvectors E-orthonormal. Want to solve

Rα = ∆Q

• Multiply from left by RTE to get

RTERα = α = RTE∆Q
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Source term

• Source term handled via operator splitting
• Qt = DQ solved exactly with matrix exponential

• Best accuracy available for this part of system
• No stability restriction

• Strang splitting used for all cases presented here
• Expect second-order accuracy, but will see what we

actually get...
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Overview of results

Two general classes of test problems run so far:
1 Qualitative sanity-check problems and “eyeball norm”

comparisons to published solutions
• Advantage: Useful when analytic solution not available,

good for ruling out some types of bug
• Disadvantage: Not very precise

2 Convergence studies comparing against known analytic
solutions

• Advantage: Can quantitatively measure accuracy,
convergence rate

• Disadvantage: Limited library of solutions to compare
against (just used plane waves here)

Both types of test are useful
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Poroelastic code validation: two-material test case

Test case: wave reflections from a material interface, from de la
Puente et al. (2008)

• Excitation is a point source with a Ricker wavelet profile in
time

• Forcing acts on σz and fluid pressure terms with equal
magnitude and opposite sign

• Source is located in shale overlying a sandstone bed
• Material properties taken to be isotropic for this case;

viscosity ignored
• AMR used to capture fine details
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Poroelastic code validation: two-material test case
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288,299 elements, of which 13,850 belong to the porous layer.
Theminimum element size is 100 m. The mesh is coarsened toward
thedomain’s boundaries, as our area of concern is situated at the cen-
ter of the model.

The source that was used is a point explosion situated at xs

� �8000,0,0� m. Its time content is a Ricker wavelet of 10-Hz peak
frequency and time delay t0 � 0.1 s.AnADER-DG�ST� O5 scheme
is used. In addition, the local time-stepping procedure is used to min-
imize the number of iterations necessary �see Dumbser et al., 2008,
for details�. The total simulation time is 5 s. The computation took
20 hours on 550 Intel Itanium 2 1.6 GHz cores. The inversion pro-
cess of the ST system was performed locally at each processor for its
own poroelastic elements in 1.7 hours, a comparatively small time
compared to the rest of the computational cost.

In Figure 12a and b, we show the seismograms of the vertical ve-
locity component recorded at two receiver lines. The receivers from
1 through 121 are situated along the x-direction every 50 m, from
�6000,0,0� m through �10000,0,0� m. Receivers 242 through 361
are situated parallel to the first receiver line, from �6000,–1000,0� m
through �10000,�1000,0� m. For visualization purposes, each
trace is scaled to amplify later arrivals.

In addition, we performed a second simulation in which we sub-
stituted the poroelastic layer by an elastic equivalent obtained via the
widely used Gassmann formula �Gassmann, 1951�,

KG � Km �
�1 � Km/Ks�2

� /Kf � �1 � ��/Ks � Km/�Ks
2�

, �44�

where KG is the matrix bulk modulus of the elastic equivalent materi-
al. Furthermore, we had to use the volumetric density average
between the solid and fluid parts of the layer. In this way, the elastic
equivalent to the porous layer P has a density of � � 2331.2 kg/
m3 and elastic wave velocities VP � 5400.0 m/s and VS �
3117.7 m/s.

The differences in the seismograms of the poroelastic and the
elastic equivalent simulations are shown as residuals in Figure 12c
and d with renormalized amplitudes. We can observe that before the
arrival of the first reflection from the P-layer �at about 1.3 s�, there is
no visual difference between the elastic and the poroelastic models.
From this time on, the differential seismograms show a much higher
amplitude. This amplitude is, at this region, about 103 times smaller
than ampliltudes of the modeled seismograms.

Nevertheless, the P-layer is highlighted clearly in the differential
seismograms. Notice that the P- and S-wave velocities of the elastic
equivalent layer are identical to the fast P- and S-wave velocities of
the original poroelastic material. However, the elastic model cannot
successfully model the dissipation and solid/fluid energy partition
described by Biot’s poroelastic rheology. One can observe further

a) b)

Figure 9. �a� Snapshot of the y-direction of the solid particle velocity at t � 0.25 s. The source location is indicated by a full circle and the receiv-
ers by empty circles. �b� Zoomed region showing the fine mesh required to capture the slow compressional wave.

T92 de la Puente et al.

Downloaded 02 Jan 2011 to 128.95.104.66. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

z component of matrix velocity field.
Left: CLAWPACK, right: de la Puente.

Rectangular outlines indicate boundaries of AMR grids.
Note: Different value-to-shade maps on each plot.
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Poroelastic code validation: two-material test case
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Figure 10. Seismograms recorded at �a� and �b� xr1 � �950,750� m, �c� and �d� xr2 � �950,650� m, �e� and �f� xr3 � �950,500� m, with the
ADER-DG method �solid curve� and compared to the results with an FD code �dashed curve�. The seismograms �a�, �c�, and �e� correspond to x
motion; whereas those in �b�, �d�, and �f� are plotted y motion. The residuals betweenADER-DG and FD also are included �dotted�.

DG methods for poroelastic media T93

Downloaded 02 Jan 2011 to 128.95.104.66. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

Time-history of matrix z velocity at topmost gauge.
Left: CLAWPACK, right: de la Puente.
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Inclusions of different materials

• Can also use mapped grids to model more interesting
geometry

• Have some quick results with a circular inclusion of a
different poroelastic material (shale in sandstone)

• More complex shapes can be modeled – only requirement
is a mapping function

• Also have fluid-poroelastic interface modeling – will be able
to combine with mapped grids to model:

• Fluid-filled lacunae or canals
• Bone surrounded by fluid
• Poroelastic seabed (if there’s interest)

• Also plan to add poroelastic-nonporous solid interface
modeling
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Sample results for poroelastic inclusion
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Convergence studies

• Conducted convergence studies
against analytic solutions

• Solutions used: plane waves of the
form

Q(x, z, t) = V exp(i(kxx+ kzz − ωt))

with some real ω specified.
• Important to test with waves

propagating in variety of directions
θwave

• Also need to test variety of material
principal directions θmat

• For each (θwave, θmat) pair, need to
sweep over grid size to check
convergence
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Convergence results: inviscid

• First convergence study: ignore viscous dissipation,
validate hyperbolic solver by itself

• Results are generally good
• Slow P wave was underresolved on coarse grids – worse

apparent performance
• Error measured using energy max-norm, relative to

amplitude in energy norm of true solution

Convergence rate Error on finest grid
Wave family Best Worst Best Worst

Fast P 2.02 1.96 5.61× 10−5 1.76× 10−4

S 2.00 1.96 2.80× 10−4 7.98× 10−4

Slow P 1.93 1.67 8.81× 10−3 3.16× 10−2
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Convergence results: viscous frequency sweep

• Frequency wasn’t important for inviscid case because
there’s only one time scale (the wave period itself)

• This won’t be true when viscosity is included
• Viscous dissipation has its own time scale, independent of

frequency
• Unknown how operator splitting will perform

• Worth doing a sweep over frequency to see effect of
operator splitting

• Kept domain size at constant multiple of wavelength (or
dissipation scale for slow P wave)

• Keeps error from hyperbolic solver roughly constant
• Isolates effect of operator splitting
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Convergence results: viscous frequency sweep
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Convergence results: viscous high-frequency

• Ran more detailed convergence studies in low-frequency
and high-frequency regimes of plot

• High frequency chosen: 10 kHz
• Used Strang splitting for all cases
• Ran slow P waves on different grid from others because of

extremely rapid damping
• Results are good, though not as good as inviscid for the

fast P and S waves

Convergence rate Error on finest grid
Wave family Best Worst Best Worst

Fast P 2.05 2.00 6.44× 10−5 1.81× 10−4

S 2.03 1.99 2.99× 10−4 7.59× 10−4

Slow P 2.03 1.96 6.53× 10−6 2.25× 10−3
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Convergence results: viscous low-frequency

• Also examined results at low frequency: 10 Hz
• Again ran slow P waves on different grid because of rapid

damping
• Used Strang splitting for all cases
• Results are not so good

Convergence rate Error on finest grid
Wave family Best Worst Best Worst

Fast P 1.61 1.10 3.90× 10−4 1.04× 10−3

S 1.83 1.36 9.63× 10−4 1.92× 10−3

Slow P 2.09 1.84 2.40× 10−6 4.59× 10−4
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Convergence results: discussion

What’s going on here?

• Trouble only for timesteps comparable to relaxation time or
longer

• Note: asymptotic error estimates only good as ∆t→ 0 – not
inconsistent with bad results for Strang at “large” ∆t.

• Literature suggests hyperbolic systems with stiff relaxation
terms are hard to model

• Dissipation causes change in structure of Riemann
solution at longer times

• Solution structure approaches that of reduced system, but
reduced system waves are “blurred” into erf-shapes

• May improve accuracy by modeling this explicitly
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Summary

• Poroelasticity is a rich and complex system, with a wide
variety of behaviors

• Have developed poroelasticity solver, validated against
known solutions

• Solver capabilities:
• Multiple materials
• Fluid-poroelastic interfaces
• Mapped grids for moderately complex geometries
• Parallel execution (thanks to CLAWPACK framework)

• Convergence rate is suboptimal in the stiff regime, but
magnitude of error is generally not bad

• Convergence and accuracy are good away from stiff
regime
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Future work

• Deal with convergence problems in stiff regime, possibly
via more advanced Riemann solver

• Extend to 3D
• Extend to modeling of fluid/solid/poroelastic systems
• Implement property averaging across material boundaries

for geometry too complex for mapped grids
• Look at micro-scale modeling to obtain poroelastic

properties
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Poroelasticity system matrices

Ă = nxA + nzB =

[
0 Ăsv
Ăvs 0

]
, D =

[
0 0
0 Dv

]

Ăsv = −


−nxα1M −nzα3M −nxM −nzM
nxc

u
11 nzc

u
13 nxα1M nzα1M

nxc
u
13 nzc

u
33 nxα3M nzα3M

nzc
u
55 nxc

u
55 0 0



Ăvs = −


nx

ρf
∆1

nx
m1
∆1

0 nz
m1
∆1

nz
ρf
∆3

0 nz
m3
∆3

nx
m3
∆3

−nx ρ
∆1

−nx
ρf
∆1

0 −nz
ρf
∆1

−nz ρ
∆3

0 −nz
ρf
∆3

−nx
ρf
∆3



Dv =


0 0

ρf η

∆1κ1
0

0 0 0
ρf η

∆3κ3
0 0 − ρη

∆1κ1
0

0 0 0 − ρη
∆3κ3



Back to main
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Poroelasticity energy matrix

E =

[
Es 0
0 Ev

]

Es =



1
M

+
α2

1c
(m)
33 +α2

3c
(m)
11 −2α1α3c

(m)
13

c
(m)
11 c

(m)
33 −

(
c
(m)
13

)2

α1c
(m)
33 −α3c

(m)
13

c
(m)
11 c

(m)
33 −

(
c
(m)
13

)2

α3c
(m)
11 −α1c

(m)
13

c
(m)
11 c

(m)
33 −

(
c
(m)
13

)2 0

α1c
(m)
33 −α3c

(m)
13

c
(m)
11 c

(m)
33 −

(
c
(m)
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Ev =


ρ 0 ρf 0
0 ρ 0 ρf
ρf 0 m1 0
0 ρf 0 m3
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