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Motivation of the equations

Linear waves I

The evolution of an idealized string : assumption that force is
modeled by F = kuxx , with u = u(t, x) the position of piece
of string. By Newton’s laws, this implies

utt = c2uxx

Maxwell’s equations imply that in vacuo, the electric and
magnetic fields obey the same type of equations. Hence
universal significance of the linear wave equation.

Wave equation first studied by d’Alembert, who explicitly
solves initial value problem in 1− d :
If �u = −∂2t u + c2∂2xu = 0 and u(0, ·) = f , ut(0, ·) = g , then

u(t, x) =
1

2
(f (x − ct) + f (x + ct)) +

1

2c

∫ x+ct

x−ct
g(y) dy
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Motivation of the equations

Linear waves II

Implication : the solution decouples into two parts propagating
left and right, respectively, but each maintaining its shape.
The amplitude does not decay toward zero as t → ±∞.

In higher dimensions, n ≥ 2, the solutions of
�u = −utt +4u = 0 (from now on c = 1) do decay for
sufficiently nice data. Comes from dispersion, i. e. the fact
that the solution decouples into traveling waves moving in
infinitely many different directions.

‖u(t, ·)‖L∞ . t−
n−1
2 , (t, x) ∈ Rn+1

This is of utmost importance for the nonlinear waves we’ll
consider soon. The soliton phenomena there are a result of a
delicate balancing between dispersion and the nonlinear
effects.
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Motivation of the equations

Nonlinear waves

Abstract approach : free wave equation is a simple Lagrangian
field theory :

L(u,∇t,xu) =

∫
Rn+1

(−u2
t + |∇xu|2) dxdt (1)

Critical ’points’ u for this functional are characterized by
Euler-Lagrange equations, which in this case are given exactly
by

d

dε
L(u + εφ, . . .)|ε=0 = 0,→ �u = −∂2t u +4u = 0

Natural generalizations of (1) lead to important nonlinear
wave equations :
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Motivation of the equations

Wave Maps

First, one can replace the scalar-valued function u by one
which takes values in a Riemannian manifold. Then formally,
the Lagrangian stays the same :

L(u,∇t,xu) =

∫
Rn+1

(−|ut |2g + |∇xu|2g ) dxdt (2)

Here one views the target manifold M as Riemannian
submanifold of some RN .

The resulting Euler-Lagrange equations are now nonlinear,
and their solutions are ’Wave Maps’ :

�u + Γi
jk(u)∂αuj∂αuk = 0

For M = Sk , get �u = u(−|ut |2 + |∇xu|2).
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Motivation of the equations

Another example : NLW

Another way to change L is to add extra terms, for example a
polynomial term :

L =

∫
Rn+1

(−u2
t + |∇xu|2 + λ|u|p+1) dxdt, p > 1

The corresponding EL-eqns. are given by

�u = −utt +4u = λ|u|p−1u

By scaling, one may reduce to λ = ±1, corresponding to the
defocussing (λ = +1) as well as the focussing (λ = −1)
cases. These display radically different behavior. Although it is
not apparent at first, there is a somewhat similar classification
into foc./defoc. for Wave Maps, depending on target.
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Motivation of the equations

Basic questions for the nonlinear problems

Local well-posedness. This is by now very well-understood
both for WM and NLW in all dimensions. Optimal Sobolev
spaces Hs known.

Global existence. This is much more difficult, and depends on
whether one is in the sub-critical, critical or super-critical
range (to be discussed) as well as the focussing/defocussing
character of the problem. Of course, there is also distinction
between small/large data.

Blow up dynamics. If the solution breaks down in finite time,
give description of the singularity formation. We’ll see that in
some cases soliton like solutions play an important role here.

Behavior at Infinity/Scattering. If a solution exists for all
t > 0, describe the behavior at t = +∞. Does solution
approach a free wave (in suitable sense) ?
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Motivation of the equations

The criticality distinction I

Due to their underlying Lagrangian, both (WM) as well as
(NLW) have Hamiltonians giving a preserved energy :∫

Rn

1

2
(|ut |2 + |∇xu|2) dx (WM),

∫
Rn

[
1

2
(|ut |2 + |∇xu|2) +

λ

p + 1
|u|p+1] dx (NLW ),

Both model equations also have a natural underlying scaling :

u(t, x)→ u(λt, λx) (WM), u(t, x)→ λ
2

p−1 u(λt, λx) (NLW )

If energy left invariant under scaling, model is energy critical.
(WM) : n = 2, (NLW) : p = n+2

n−2 , e. g. p = 5 for n = 3.
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Motivation of the equations

The criticality distinction II

The remaining situations are either sub-critical or
super-critical (with respect to energy) :

For (WM), the case n = 1 is sub-critical, while n ≥ 3 is
super-critical.

For (NLW), the case p < n+2
n−2 is sub-critical, while p > n+2

n−2 is
super-critical.

Basis philosophy : the sub-critical case is easier for local and
global existence questions as well as for classification of blow
ups. It is harder for questions relating to the behavior at
infinity, such as scattering. The supercritical case is harder for
global existence and blow up classification. The critical case is
borderline.

Large data supercritical problems up to now untouched,
except perturbatively or explicit blow up solutions.
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Motivation of the equations

Case in point : quick review of Wave Maps

Subcritical case n = 1 : global well-posedness for arbitrary
(nice enough) targets (Gu ’80).

Critical case was resolved recently in ’defocussing case’
(Sterbenz-Tataru(’09), K.-Schlag(’09), Tao(’09)). In the
focussing case, blow up solutions constructed by
K.-Schlag-Tataru(’06) as well as Rodniansky-Sterbenz (’06)
(both with target S2). Method of K.-Schlag-Tataru(’06) has
been generalized to wider variety of targets by C. Carstea(’09)
as well as curved background by S. Shashahani (’12).
Result of Rodniansky-Sterbenz much improved by
Raphael-Rodnianski ’10.

In the supercritical case n ≥ 3, self-similar singular solutions
of the form u(t, x) = v( xt ) have been known since work by
Shatah in 1988 for suitable targets, such as S3. These have
recently been shown to be stable under suitable small
perturbations by R. Donninger (’11).
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Motivation of the equations

Case in point : the NLW for n = 3

The range p < 5 is sub-critical, p > 5 is super-critical.
Distinguish between defocussing/focussing

Defocussing : −utt +4u = |u|p−1u. Global existence for
p < 5 (Joergens 1960’s), global existence also for p = 5
(Struwe, Grillakis early 1990s after ealier work on small data
by J. Rauch in the 80’s), completely unknown for p > 5.

Focussing : −utt +4u = −|u|p−1u. Here one has finite-time
blow-up solutions for any p > 1, by using simple ODE-type
solutions :

u(t, x) =
C

(T − t)
2

p−1

These have been shown for p ≤ 3 (in the sub-critical range)
to give the general blow up rate (Merle-Zaag 2003).

Conjectured to be true for all p < 5.
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Motivation of the equations

NLW for n = 3, critical focussing case

The super-critical case p > 5 appears out of reach of current
understanding/technology. This brings us to the borderline
case p = 5.

Key new feature in critical focussing case : existence of
static solutions (balancing of dispersion/nonlinear growth).

W (x) =
1

(1 + |x |2
3 )

1
2

, Wλ(x) = λ
1
2 W (λx)

W (x) is called the ground state.

The ground states play a pivotal role in the global dynamics
of the solutions for the critical focussing NLW.
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The ground states play a pivotal role in the global dynamics
of the solutions for the critical focussing NLW.
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Motivation of the equations

The role of static solutions for critical NLW, n = 3.

A celebrated result of Kenig-Merle(2006) states that solutions
u with E (u) < E (W ) are governed by simple dichotomy :
(i) : If ‖∇xu(x , 0)‖L2x < ‖∇xW ‖L2x , then solutions exist
globally and scatter like free waves at infinity.
(ii) ‖∇xu(x , 0)‖L2x > ‖∇xW ‖L2x , then finite time blow-up both
for t >< 0.
The blow up is most likely of the ODE type, but this is not
proved yet.

Key question arises : what happens for solutions whose energy
is strictly above that of W .

Recent work has demonstrated the existence of a number of
new types of dynamics with energies arbitrarily close to but
strictly above that of W . From now on all solutions radial.
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Motivation of the equations

Dynamics with E (u) > E (W ) I.

Can one construct globally existing solutions with energy
above that of W ?

Theorem

(K.-Schlag ’04) There exists a co-dimension 1 manifold (’stable
manifold’) of initial data passing through (W , 0) within a small
neighborhood of W (with respect to sufficiently strong topology)
resulting in solutions which decouple into dynamically rescaled W
and an error scattering to zero like free wave :

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t)→ λ∞ > 0

Thus solution scatters to re-scaled ground state.

Are other types of ’bubbling off’ dynamics possible, e. g. more
violent dynamics for λ(t) ?
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Motivation of the equations

Dynamics with E (u) > E (W ) II.
Indeed, finite time bubbling-off blow up solutions are
possible.

Theorem

(K.-Schlag-Tataru ’07) For each ν > 1
2 , there exists a finite time

blow up solution of the form

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t) = t−1−ν

on some interval [t0, 0) for t0 sufficiently small. Hence we have
continuum of blow-up rates ! Energy may be arbitrarily close to
that of W .

These solutions are type II, which means

lim sup
t→0

‖u(t, ·)‖H1 <∞

Not the case for ODE-type blow up solutions.
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Motivation of the equations

Dynamics with E (u) > E (W ) III.

The continuum of blow up rates is related to the fact that
these solutions are not of C∞-class, but indeed only of
H1+ν−-class. The data experience a small ’kink’ across the
boundary of light cone (for high enough derivatives).

Current work in progress (Donninger-K.) establishes existence
of an infinite set of quantized blow up rates ν = 2k + 1 and
sufficiently large) corresponding to type II blow up solutions of
C∞-class.

The previous examples may lead one to believe that all type II
solutions either blow up in finite time of the form

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t)(T − t)→∞

or else exist globally (e. g. toward t = +∞) and scatter
toward rescaled ground state or zero : strong soliton
resolution.
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Motivation of the equations

Dynamics with E (u) > E (W ) IV.
This is not true, however :

Theorem

(Donninger-K. ’11) For ν sufficiently close to −1, there exist
solutions of the form

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t) = t−1−ν

on [t0,∞) for t0 sufficiently large. Thus one may have vanishing/
blow-up at infinity, again with continuum of rates !

Expected that the above solutions are C∞ (not proved yet).
Hence no quantization of blow-up at infinity.
Recent work by Duyckaerts-Kenig-Merle shows : for type II
solutions, either one has finite time bubbling-off blow-up or
else they decouple as

u(t, x) =
∑
i

µiWλi (t)(x) + ε(t, x), λi (t)t →∞

Threshold phenomena for critical wave equations. preprint 2011



Motivation of the equations

Dynamics with E (u) > E (W ) IV.
This is not true, however :

Theorem

(Donninger-K. ’11) For ν sufficiently close to −1, there exist
solutions of the form

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t) = t−1−ν

on [t0,∞) for t0 sufficiently large. Thus one may have vanishing/
blow-up at infinity, again with continuum of rates !

Expected that the above solutions are C∞ (not proved yet).
Hence no quantization of blow-up at infinity.

Recent work by Duyckaerts-Kenig-Merle shows : for type II
solutions, either one has finite time bubbling-off blow-up or
else they decouple as

u(t, x) =
∑
i

µiWλi (t)(x) + ε(t, x), λi (t)t →∞

Threshold phenomena for critical wave equations. preprint 2011



Motivation of the equations

Dynamics with E (u) > E (W ) IV.
This is not true, however :

Theorem

(Donninger-K. ’11) For ν sufficiently close to −1, there exist
solutions of the form

u(t, x) = Wλ(t)(x) + ε(t, x), λ(t) = t−1−ν

on [t0,∞) for t0 sufficiently large. Thus one may have vanishing/
blow-up at infinity, again with continuum of rates !

Expected that the above solutions are C∞ (not proved yet).
Hence no quantization of blow-up at infinity.
Recent work by Duyckaerts-Kenig-Merle shows : for type II
solutions, either one has finite time bubbling-off blow-up or
else they decouple as

u(t, x) =
∑
i

µiWλi (t)(x) + ε(t, x), λi (t)t →∞

Threshold phenomena for critical wave equations. preprint 2011



Motivation of the equations

Contrast to subcritical models

The blow up at infinity phenomenon is a threshold
phenomenon for critical problems which does not seem to
occur for subcritical situations. For example, a recent result of
Nakanishi-Schlag(’10) for the subcritical nonlinear
Klein-Gordon equation

−utt +4u − u = u3

on R3+1 shows that the strong resolution conjecture (i. e.
trichotmoy between finite time blow up, infinite time
scattering to zero or infinite time convergence to ground
state) is correct for solutions of energy sufficiently close to the
ground state.

The same seems true for the analogous Schrodinger equation

iut +4u = −|u|2u

on R3+1 according to suggestive work by T. Tao (’04).
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Motivation of the equations

Dynamics with E (u) > E (W ) V.

Key question : how stable are these type II solutions ? What
role do they play for the general dynamics ?

Expectation is that they are unstable (in energy topology).
Computer simulations show either finite time ODE-blow up or
scattering toward zero.

Intuition behind this : data which are not in the co-dimension
one manifold constructed by K.-Schlag in ’04 will leave a
’small tube’ around the one-parameter family {Wλ}λ>0 of
ground states. This is due to one negative unstable eigen
mode in the linearization around W .

A recent (’10) result by K.-Nakanishi-Schlag shows that upon
leaving this ’tube’, the solution either blows up in finite time
(certainly an ODE-type blow up) or else scatters to zero like a
free wave.
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Motivation of the equations

Dynamics with E (u) > E (W ) VI.

One may wonder how the exotic type II blow up solutions
(finite time and at t = ±∞) fit into this framework. The key
is that they are far away from the ’tube of re-scaled ground
states’ with respect to the topology in which one can
construct the stable manifold which divides scattering from
ODE-like blow up (conjecturally at this time).

This raises the question whether there is some co-dimension
one set within a small neighborhood in the energy topology
around (W , 0) which comprises the data of all type II
dynamics, and divides the data space into those resulting in
finite time ODE blow up and those scattering to zero, as in
the following picture :
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Motivation of the equations

Conjectural general threshold dynamics

Vanishing/Blow−up and  

ODE Blow−up

Scattering

Finite time Bubbling off blow−up
possibly other dynamics at 

t = +\infty

   Scattering toward W_a
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Motivation of the equations

Beyond the model case : critical Wave Maps I.

It is natural to enquire to what extent the preceding results
are an artifact of the equation �u = −u5 on R3+1.

Consider for example the critical Wave Maps u : R2+1 → M.

There is a also a focussing/defocussing case, depending on
whether or not nontrivial finite energy static solutions exist.
These are of course nothing else but harmonic maps

Q : R2 → M

Basic examples : if M = S2(standard sphere), then
stereographic projection Q : R2 → S2 is the ground state.
If M = H2(hyperbolic plane), then no such static map exists.
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Motivation of the equations

Beyond the model case : critical Wave Maps I.

It is now known that in the defocussing case, no singularities
may form (Sterbenz-Tataru ’09). Indeed, by work of
(K.-Schlag ’09), for M = H2, critical Wave Maps exist
globally, satisfy Strichartz estimates, scatter like free waves,
and moreover admit profile decompositions in a suitable sense,
analogously to the defocussing critical �u = u5 in 3 + 1− d .

This leads to the question as to what happens in focussing
case. To simplify the discussion, one reduces to symmetric
targets M admitting a SO(2)-action. One can then talk about
equivariant Wave Maps.

For example, when M = S2, so-called co-rotational Wave
Maps lead to the scalar equation

−utt + urr +
ur

r
=

sin(2u)

2r2

Static soln. (ster. proj.) : Q(r) = 2 arctan r .
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Motivation of the equations

Beyond the model case : critical Wave Maps II.
Can we produce some of the same strange dynamics as for the
critical NLW ?

Theorem

(K.-Schlag-Tataru ’06) For each ν > 1
2 , there exists a blow up

solution of the form

u(t, x) = Qλ(t)(x) + ε(t, x), λ(t) = t−1−ν

Energy may be chosen arbitrarily close to that of ground state.

For solutions with energy strictly below that of Q, one has
global existence and scattering (Struwe, Cote-Kenig-Merle,
Sterbenz-Tataru).
Not clear that there is an analogue of the stable manifold of
(K.-Schlag ’04) since no negative eigenvalue in spectrum of
linearization.
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Motivation of the equations

Beyond the model case : critical Wave Maps II.

However, as for critical NLW, it is expected that there is a
quantized set of blow up rates corresponding to smooth data,
in this case of the form ν ∈ N up to logarithmic corrections.

We note that unlike for the critical NLW, there are no
ODE-type blow up solutions for critical Wave Maps, and so
there are probably stable type II solutions even under
non-equivariant perturbations. This is poorly understood at
this time.
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Motivation of the equations

Beyond the model case : still more general critical
problems.

It turns out that some of our observations for critical waves
appear in a more general context, such as nonlinear
Schrodinger type equations.

Critical Schrodinger Maps : u : R2+1 → S2, ut = u ×4u. It
was announced by Ga. Perelman that there is a continuum of
blow up rates (via bubbling off).

Critical focussing NLS : iut +4u = −|u|4u. Again Ga.
Perelman has announced a continuum of blow up rates (via
bubbling off) at t = +∞. Also, it is expected that here is a
continuum of blow up rates for finite time blow up. The
existence of a stable manifold as for the critical NLW remains
to be seen.

It emerges that some of the phenomena revealed for specific
examples have more universal character...
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Motivation of the equations

The method for producing type II solutions
Back to �u = −u5, our method is inspired by the blow-up
constructions of K.-Schlag-Tataru. We recall here the basic
setup. Here we explain how to construct blow up/vanishing at
infinity (Donninger-K. ’11)

Simple attempt u(t, ·) = Wλ(t)(x) + error, λ(t) = t−(1−ν)

leads to principal error term

e0 ∼
λ̈

λ
(x · ∇)Wλ(t)(x)

which is of order of magnitude t−2.

Linearization around W of the form

L = −4− 5W 4

admits a zero energy resonance φ̃ :=
1− r2

3

(1+ r2

3
)
3
2

, r = |x |.

This causes wave parametrix for ∂2t + L to lead to t2 growth :
can’t iterate !
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Motivation of the equations

The construction ; approximate solutions 1

Instead, as for blow up solutions in (K.-Sch.-T.), we first
attempt to construct an approximate solution by adding
’elliptic profile modifiers’ :

uapprox = Wλ(t)(r) + v1(r , t) + . . .+ v2k(r , t)

The odd index vl improve accuracy near r = 0, while the even
index vl improve it near characteristics (in blow up in-coming,
here out-going).

To construct the correction terms vi , introduce the auxiliary
coordinates

R = λ(t)r , τ =

∫ t

t0

λ(s) ds +
1

ν
tν0 =

1

ν
tν

λ(t) = t−(1−ν), t ∈ [t0,∞)
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Motivation of the equations

The construction ; approximate solutions 2

To contrast this with the blow up solutions of (K.-S.-T.),
there we had

R = λ(t)r , τ =

∫ t0

t
λ(s) ds, λ(t) = t−(1+ν),

so from an algebraic view point, we have changed ν to −ν.

For the sequel, we already note that while one can achieve
arbitrary levels of accuracy for approximate blow up solutions
by constructing sufficiently many of the vi -corrections, this is
not the case in our situation : we shall stop after the k = 2
stage, as later stages don’t seem to help anymore.

To see this, we mimic here the procedure of (K.-S.-T.),
encountering more singular expressions.
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Motivation of the equations

The construction ; approximate solutions 3

Denote by ei the error after the i-th correction, i. e.

ei = �ui − u5
i , ui = Wλ(t)(x) +

i∑
k=1

vk

For odd indices, we then inductively define

Lv2k−1 = λ−2e2k−2, k ≥ 1, L = −∂2R −
2

R
∂R − 5W 4

This corresponds to neglecting the effect of the time
derivative ∂2t near the origin R = 0.

For even indices i = 2k , we replace the wave operator by

−∂2t + ∂2r +
2

r
∂r

This gives equation

t2(−∂2t + ∂2r +
2

r
∂r )v2k = t2e2k−1
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Motivation of the equations

The construction ; approximate solutions 4

One then introduces a new coordinate a = r
t ; assuming

v2k = λ
1
2

(λt)β
W2k(a), one finds a singular ODE of the form

LρW2k = F , Lρ = (1− a2)∂aa + 2(a−1 + aρ− a)∂a − ρ2 + ρ

for suitable constant ρ.

Need to give function spaces for the v2k ; singularity at a = 1
is key. Let 1 + β0 = 1−ν

2 . Define

Q = { 1

(λt)2
, (1−a)1+β0q1(a), . . . ,

(1− a)(4k−3)(1+β0)−2(k−1)

(λt)2(k−1)
qk(a), . . .}

Let Qk be the ideal inside Q consisting of linear combinations
of terms of the form with 2l0 +

∑
j λj(2[j − 1] + lj) ≥ 2(k − 1)

q0(a)(1−a)λ0(1+β0)q1(a)
1

(tλ)2l0
ΠN
j=1

[(1− a)(4j−3)(1+β0)−2(j−1)

(λt)2(j−1)+2lj
qj(a)

]λj
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Motivation of the equations

The construction ; approximate solutions 5

Then one can show that the behavior of v2k−1, v2k near a = 1
is modeled by functions in Qk .

Conclusion : this process leads to functions at least as singular

as (1− a)1+β0 = (1− a)
1−ν
2 at a = 1, but with weights

decaying in time. This function fails to be in H1 !

This is not surprising since this phenomenon is exactly at the
root of the strictly slower than self-similar blow up solutions of
bubbling-off type in the critical case.

One also observes that increasing k by two, one pays
(1− a)−2ν but gains (λt)−2 = t−2ν .

This suggests that in contrast to the blow up construction in
K. -S.-T. where iteration leads to arbitrarily accurate
approximate solution, here this process essentially stalls.
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Motivation of the equations

The construction ; getting approximate sol. in light cone

Fortunately, for us it suffices to use only the first two
corrections v1, v2, where v2, the correction near the cone, has
essentially the form

v2 = λ
1
2

R3

(λt)4
(1− a)1+β0

This function is of course not in H1.

To deal with this, we truncate it near the light cone : For
χ(x) ∈ C∞(R) with χ(x) = 1 for |x | > 1, χ(x) = 0 on
|x | < 1

2 , and χC (x) = χ( x
C ), we replace v2 by

χC (t − r)v2

Note that this function does not have energy vanishing as
t →∞ ! This is expected as our solution needs to have energy
strictly above that of W by the results of
Duyckaerts-Kenig-Merle.
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Motivation of the equations

The construction ; getting approximate sol. in light cone

Profile of the cutoff chi.

We first construct an exact solution here.

Finally, we have the following theorem which gives an
approximate solution in the inner forward light cone, albeit
without arbitrary accuracy :
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Motivation of the equations

The construction ; getting approximate sol. in light cone

Theorem

There exist corrections v1, v2 with the bounds

‖∇t,rv1‖L2
r2dr

(K) . τ
− 1

2 , ‖∇t,r [χC (t − r)v2]‖L2
r2dr
. C−

ν
2

such that the functions uapprox = Wλ(t)(x) + v1 + v2 is an
approximate solution with

‖R e2
λ2
‖L1dR + ‖ e2

λ2
‖H2α

R2dr
(K) � τ−3, α ∈ [0,

1

4
], τ � 1

In particular, these approximate solutions have energy
arbitrarily close to that of W if we pick C sufficiently large.
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Motivation of the equations

The construction ; getting exact sol. in light cone

We now strive to construct an exact solution

u(t, x) = uapprox(t, x) + ε(t, x)

on the cone t − r ≥ C .

Here we try to obtain ε via a wave parametrix. It solves the
equation

εtt −4ε− 5λ2(t)W 4(λ(t)r) = N(ε) + e2

Issue : operator �W = �− 5λ2(t)W 4(λ(t)r) is time
dependent.

We deal with this by using τ = 1
ν tν ,R = λ(t)r , and

ε(t, r) = v(τ,R)
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Motivation of the equations

The construction ; distorted Fourier transform
Then v solves the following problem with a time-independent
Schrodinger operator :

(∂τ+
λ̇

λ
R∂R)2v+

λ̇

λ
(∂τ+

λ̇

λ
R∂R)v−4v−5W 4v = λ−2(τ)[N(ε)+e2]

We solve this problem via the Fourier representation
associated with the operator

L := −∂RR − 5W 4(R)

This operator appears when replacing v(τ,R) by
ε̃ := Rv(τ,R).

Lemma

(K.-S.-T. ’07) spec(L) = {ξd} ∪ [0,∞). 0 is a resonance, with

resonant function φ0(R) =
R(1−R2

3
)

(1+R2

3
)
3
2

. Finally, the operator L is in

limit-point case at infinity.
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Motivation of the equations

The construction ; translating to Fourier side

Standard theory for this type of operators then furnishes the
existence of a Fourier basis {φ(R, ξ)} ∪ {φd(R)} such that we
have the associated Fourier transform

F : f → f̂

defined via

f̂ (ξd) =

∫ ∞
0

φd(R)f (R) dR, f̂ (ξ) = lim
b→∞

∫ b

0
φ(R, ξ)f (R) dR, ξ ≥ 0

Fundamental fact : This is isometry from L2(R+) to
L2(R+, ρ), and we have

f (R) = f̂ (ξd)φd(R) + lim
µ→∞

∫ µ

0
φ(R, ξ)f̂ (ξ)ρ(ξ) dξ

Precise asymptotics ρ(ξ) ∼ ξ−
1
2 , ξ � 1, and

ρ(ξ) ∼ ξ
1
2 , ξ →∞ extremely important for us.
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Motivation of the equations

The construction ; translating to Fourier side

R

Phi

The Fourier basis φ(R, ξ) admits expansions of the form
(K.-S.-T. ’07)

φ(R, ξ) = φ0(R)+R−1
∞∑
j=1

(R2ξ)jφj(R2), |φj(u)| ≤ C j

(j − 1)!
|u|〈u〉−

1
2

In particular, they ’behave non-oscillatory’ in the region

Rξ
1
2 ≤ 1 and ’become oscillatory’ in the region Rξ

1
2 > 1.
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Motivation of the equations

The construction ; translating to Fourier side

Write

ε̃(τ,R) = xd(τ)φd(R)+

∫ ∞
0

x(τ, ξ)φ(R, ξ)ρ(ξ) dξ, x =

(
xd
x

)
,

and introducing the operator

Dτ = ∂τ −
3

2

λτ
λ
− λτ

λ

(
0 0

0 2ξ∂ξ + ξρ′(ξ)
ρ(ξ)

)
,

We get the transport equation(
−D2

τ +
λτ
λ
Dτ − ξ

)
x = 2

λτ
λ
KndDτx + (

λτ
λ

)2([Knd ,Kd ] +K2
nd)x

+
(
∂τ (

λτ
λ

)− (
λτ
λ

)2
)
x − b

Here b = F
(
λ−2[N(ε) + e2]

)
.

Threshold phenomena for critical wave equations. preprint 2011



Motivation of the equations

The construction ; translating to Fourier side

Write

ε̃(τ,R) = xd(τ)φd(R)+

∫ ∞
0

x(τ, ξ)φ(R, ξ)ρ(ξ) dξ, x =

(
xd
x

)
,

and introducing the operator

Dτ = ∂τ −
3

2

λτ
λ
− λτ

λ

(
0 0

0 2ξ∂ξ + ξρ′(ξ)
ρ(ξ)

)
,

We get the transport equation(
−D2

τ +
λτ
λ
Dτ − ξ

)
x = 2

λτ
λ
KndDτx + (

λτ
λ

)2([Knd ,Kd ] +K2
nd)x

+
(
∂τ (

λτ
λ

)− (
λτ
λ

)2
)
x − b

Here b = F
(
λ−2[N(ε) + e2]

)
.

Threshold phenomena for critical wave equations. preprint 2011



Motivation of the equations

The construction ; translating to Fourier side

Here the factors λτ
λ ∼ (1− ν)τ−2, so for |ν − 1| � 1, one

gains extra smallness.

The operators Knd are non-local linear operators of the form

Knd =

(
0 Kdc

Kcd K0

)
where K0 is a ’Hilbert-transformation like’ operator given by

K0x(η) = 〈
∫ ∞
0

x(ξ)R∂Rφ(R, ξ)ρ(ξ) dξ, φ(R, η)〉

+ 〈
∫ ∞
0

2ξ∂ξx(ξ)φ(R, ξ)ρ(ξ) dξ, φ(R, η)〉

This means we expect to have good Lp-type bounds for K0.
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Motivation of the equations

The construction ; translating to Fourier side
We solve this problem via iteration in a suitable Banach
space. This space is defined via the norm

‖x(τ, ·)‖S := ‖ ξ
1
2+

〈ξ〉
1
2+

x(τ, ξ)‖LMξ + ‖ξ
1
2 〈ξ〉2αx(τ, ξ)‖L2dρ

where M is sufficiently large depending on 2+. Precisely, we
have

Theorem

The preceding fixed point problem admits a solution x(τ, ξ)
satisfying

‖x(τ, ·)‖S . τ−2+δ, ‖xd(τ)‖S . τ−3+δ

for some small δ > 0 (there is a playoff between the 2+ and the
δ > 0).
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