Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
000	0000000	00000000	0000000	000000	00

Split-explicit time integration methods in numerical weather prediction

Oswald Knoth, Jörg Wensch

HYP 2012

Padova

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
000	0000000	00000000	000000	000000	00

Introduction

- Motivation
- Dry Euler equations
- Linearized equations
- 2 Splitting methods
 - Splitting

Split explicit methods Methods

- Generalized Runge-Kutta
 - Approach
 - Order conditions

5 Numerische Tests

- Test case of Klein
- Nonhydrostatic Case of Blossey/Durran
- Gravity waves with WRF

6 Conclusion

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
000	0000000	00000000	0000000	000000	00

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 Introduction

- Motivation
- Dry Euler equations
- Linearized equations

2 Splitting methods• Splitting

Split explicit methodsMethods

④ Generalized Runge-Kutta

- Approach
- Order conditions

5 Numerische Tests

- Test case of Klein
- Nonhydrostatic Case of Blossey/Durran
- Gravity waves with WRF

6 Conclusion

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
00					
Motivation					

- Motivation:
 - Atmospheric models contain slow (advection) and fast (gravity and sound wave) modes.
 - Meteorologically important: Medium and low frequencies
 - CFL-number of fast waves restricts time step
 - Pure advection allows larger step sizes

 $\textit{CFL}_{\textit{ADVECTION}}/\textit{CFL}_{\textit{SOUND}} \leq 1/10$

- Apply multirate strategy
 - slow processes are integrated by large time steps
 - fast processes are integrated by small time steps where the slow (advective) tendencies are fixed
- The linearized, discretized, one-dimensional compressible Euler equations serve as the model equation set for examining the stability of the integration schemes

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Conclusion
000				
Dry Euler equations				

• Dry 2D Euler equations in conservative form:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho w}{\partial z}$$
$$\frac{\partial \rho u}{\partial t} = -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho w u}{\partial z} - \frac{\partial p}{\partial x}$$
$$\frac{\partial \rho w}{\partial t} = -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho w w}{\partial z} - \frac{\partial p}{\partial z} - \rho g$$
$$\frac{\partial \rho \theta}{\partial t} = -\frac{\partial \rho u \theta}{\partial x} - \frac{\partial \rho w \theta}{\partial z}$$

• Prognostic variables are density ρ and the products of density with winds u, w and potential temperature θ . Pressure p is a diagnostic variable from the equation of state

$$p = \left(\frac{R
ho\theta}{p_0^\kappa}
ight)^{rac{1}{1-\kappa}},$$

with $\kappa = \frac{R}{c_p}$, R gas constant for dry air, c_p the heat capacity of dry air at constant pressure and p_0 the pressure at ground, g is the acceleration of gravity.

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
000					
Linearized equations					

- Test equations for linear stability analysis
- The approximate, quasi-Boussinesq linearized equations

$$u_t = -c_s p_x - Uu_x$$

$$w_t = -c_s p_z - Uw_x - N\theta$$

$$\theta_t = -Nw - Uu_x$$

$$p_t = -c_s (u_x + w_z) - Up_x$$

where $c_s >> U$.

• One dimensional acoustic advection system

$$u_t = -c_s p_x - U u_x$$
$$p_t = -c_s u_x - U p_x$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
000	0000000	00000000	000000	000000	00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction

- Motivation
- Dry Euler equations
- Linearized equations

2 Splitting methods• Splitting

Split explicit methodsMethods

④ Generalized Runge-Kutta

- Approach
- Order conditions

5 Numerische Tests

- Test case of Klein
- Nonhydrostatic Case of Blossey/Durran
- Gravity waves with WRF

6 Conclusion

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Conclusion
	000000			
Splitting				

• Time integration methods for

 $\dot{y} = f(y) + g(y)$ with $y(0) = y_0$

- where f represents the energetically relevant slow mode (advection, Rossby waves)
- and g the fast mode (sound waves, gravity waves).
- To integrate the fast system, the forward-backward or Stoermer-Verlet method is used. For a symplectic structure

$$\dot{u} = g_u(p)$$

 $\dot{p} = g_p(u)$

the FB scheme reads

$$u^{n+1} = u^n + \Delta \tau g_u(p^n)$$

 $p^{n+1} = v^n + \Delta \tau g_p(u^{n+1})$

• FB is of second order and in connection with staggered central differences is stable for a CFL-condition

$$c_s \frac{\Delta \tau}{\Delta x} \leq 1.$$

・ロト ・ 日下・ ・ 田下・ ・ 日下・ く日下

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
	000000				
Splitting, the lineariz	ed equation				

• The approximate, quasi-Boussinesq linearized equations

$$u_t = -c_s p_x - Uu_x$$

$$w_t = -c_s p_z - Uw_x - N\theta$$

$$\theta_t = -Nw - Uu_x$$

$$p_t = -c_s(u_x + w_z) - Up_x$$

• One dimensional acoustic advection system

$$u_t = -c_s p_x - U u_x$$
$$p_t = -c_s u_x - U p_x$$

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
	000000				
Splitting, the nonline	ar equation				

• Splitting in the dry 2D Euler equation:

۲

۲

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho w}{\partial z}$$
$$\frac{\partial \rho u}{\partial t} = -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho w u}{\partial z} - \frac{\partial p}{\partial x}$$
$$\frac{\partial \rho w}{\partial t} = -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho w w}{\partial z} - \frac{\partial p}{\partial z} - \rho g$$
$$\frac{\partial \rho \theta}{\partial t} = -\frac{\partial \rho u \theta}{\partial x} - \frac{\partial \rho w \theta}{\partial z}$$

 $\dot{y} = F(\mathbf{y}, y)$

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
	0000000				
Splitting, the nonline	ar "linearizedëquation				

• Splitting in the dry "pressure linearized" 2D Euler equation:

۲

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho w}{\partial z}$$
$$\frac{\partial \rho u}{\partial t} = -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho w u}{\partial z} - \frac{\partial p}{\partial \rho \theta} \frac{\partial \rho \theta}{\partial x}$$
$$\frac{\partial \rho w}{\partial t} = -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho w w}{\partial z} - \frac{\partial p}{\partial \rho \theta} \frac{\partial \rho \theta}{\partial z} - \rho g$$
$$\frac{\partial \rho \theta}{\partial t} = -\frac{\partial \rho u \theta}{\partial x} - \frac{\partial \rho w \theta}{\partial z}$$

 $\dot{y} = F(y) + A(y)y$

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion				
	0000000								
Linearized test equat	Linearized test equation for stability considerations								

- Discretize linear one-dimensional acoustic equation in space
- Advection: Third order upwinding, Acoustic: Central differences
- Apply Fourier decomposition
- We obtain a 2 by 2 linear ODE for each Fourier component $\dot{y} = Ly + Ny$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Eigenvalues of L

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Eigenvalues of N+L

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		00000000			
Split explicit methods	s, Wicker/Skamarock				

• Wicker and Skamarock (MWR 2002) used a three-stage Runge-Kutta method as slow integrator:

$$u^{n+1/3} = u^{n} + \frac{\Delta t}{3} f_{u}(u^{n})$$

$$p^{n+1/3} = p^{n} + \frac{\Delta t}{3} f_{p}(p^{n})$$

$$u^{n+1/2} = u^{n} + \frac{\Delta t}{2} f_{u}(u^{n+1/3})$$

$$p^{n+1/2} = p^{n} + \frac{\Delta t}{2} f_{p}(p^{n+1/3})$$

$$u^{n+1} = u^{n} + \Delta t f_{u}(u^{n+1/2})$$

$$p^{n+1} = p^{n} + \Delta t f_{p}(p^{n+1/2})$$

・ロト・日本・モト・モート ヨー うへで

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		00000000			
Split explicit method	s, Wicker/Skamarock				

• Resulting splitting scheme:

$$\begin{array}{ll} u = u^{n}, & p = p^{n} \\ \text{for } k = 1: n_{s}/3 \\ & u = u + \Delta \tau g_{u}(p) + \Delta \tau f_{u}(u^{n}) \\ & p = p + \Delta \tau g_{p}(u) + \Delta \tau f_{p}(p^{n}) \\ \text{end} \\ u^{n+1/3} = u, & p^{n+1/3} = p, \quad u = u^{n}, \qquad p = p^{n} \\ \text{for } k = 1: n_{s}/2 \\ & u = u + \Delta \tau g_{u}(p) + \Delta \tau f_{u}(u^{n+1/3}) \\ & p = p + \Delta \tau g_{p}(u) + \Delta \tau f_{p}(p^{n+1/3}) \\ \text{end} \\ u^{n+1/2} = u, \qquad p^{n+1/2} = p, \qquad u = u^{n}, \qquad p = p^{n} \\ \text{for } k = 1: n_{s} \\ & u = u + \Delta \tau g_{u}(p) + \Delta \tau f_{u}(u^{n+1/2}) \\ & p = p + \Delta \tau g_{p}(u) + \Delta \tau f_{p}(p^{n+1/2}) \\ \text{end} \\ u^{n+1} = u, \qquad p^{n+1} = p \end{array}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Splitting met	hods	oplit explicit methods	Gene	ralized Runge-Kutta	Numerisc	he Tests 0	Conclusion
General Runge-K	utta Methods			000	.0000	00000		00
G	for $i = 1$: y := y for k y end $y_i :=$	s + 1 $y_0, F :=$ $= 1 : c_i n_i$ y := y + 1	$= \sum_{i=1}^{\frac{a_{ij}}{c_i}} f(y_j)$, Δτ := ∆τF	$=\frac{\Delta t}{n_s}$			
	end							
٥	Underlying 0 c ₂ a ₂₁	, Runge–	Kutta metho	od:				
	$\begin{array}{c} c_i & a_{i1} \\ c_s & a_{s1} \end{array}$		a_{ii-1}	a₅s−1				
	$1 a_{s+1}$	1		ä	s_{s+1s}			
•	RK3 after Elastic Mc	L.J. Wic dels Usir	ker and W.C Ig Forward T	C. Skama Time Sch	rock: Time- emes, MWF	Splitting Me R, 2002.	ethods for	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		00000000			
General fast integrat	or				

• Assume that we can solve the fast part of

$$\dot{y} = f(y) + g(y)$$

analytically

• Then a split Runge-Kutta method reads:

$$Z_{ni}(0) = y_n$$

$$\frac{\partial}{\partial \tau} Z_{ni}(\tau) = \frac{1}{c_i} \sum_{j=1}^{i-1} a_{ij} f(Y_{nj}) + g(Z_{ni}(\tau))$$

$$Y_{ni} = Z_{ni}(c_i h), \qquad y_{n+1} = Y_{n,s+1}$$

• For the nonlinear case

$$Z_{ni}(0) = y_n$$

$$\frac{\partial}{\partial \tau} Z_{ni}(\tau) = \frac{1}{c_i} \sum_{j=1}^{i-1} a_{ij} F(Y_{nj}, Z_{ni}(\tau))$$

$$Y_{ni} = Z_{ni}(c_ih), \qquad y_{n+1} = Y_{n,s+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		00000000			
General fast integ	grator				

$$y^{n+1} = My^n$$

- *M* depends on:
 - wave number k
 - Number of small time steps n_s
 - CFL number for advection $U\frac{\Delta t}{\Delta x}$
 - CFL number for sound $c_s \frac{\Delta t}{\Delta x}$
- Spectral radius of M as a function of the two CFL numbers by $n_s = 10$ or $n_s = \inf$.

• Line has slope 1/4, below the line $U < \frac{c_s}{4} \approx 85 \text{m/s} \approx 340 \text{m/s}.$

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		000000000			
General fast integrat	or				

• Stability plot for RK3, exact fast integration:

• Resulting CFL restrictions:

$$U\frac{\Delta t}{\Delta x} \le 1.7 \qquad \rightarrow \qquad \Delta t \le 6.8s$$

$$c_s \frac{n_s \Delta \tau}{\Delta x} \le 3.1 \qquad \rightarrow \qquad \Delta t \le 1.8s$$

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		000000000			
General fast integra	itor				

- To enlarge stability there are the following possibilities
 - Introduce divergence damping, helps for some methods.
 - Use other integration methods for the fast part.
 - Look for other methods for the slow part.

۲

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho w}{\partial z} \\ \frac{\partial \rho u}{\partial t} &= -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho w u}{\partial z} - \frac{\partial p}{\partial x} + \nu \frac{\partial D}{\partial x} \\ \frac{\partial \rho w}{\partial t} &= -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho w w}{\partial z} - \frac{\partial p}{\partial z} - \rho g + \nu \frac{\partial D}{\partial z} \\ \frac{\partial \rho \theta}{\partial t} &= -\frac{\partial \rho u \theta}{\partial x} - \frac{\partial \rho w \theta}{\partial z} \end{aligned}$$

where the divergence D

$$D = \frac{\partial \rho u}{\partial x} + \frac{\partial \rho w}{\partial z}$$

 $\bullet\,$ The smoothing parameter ν is choosen in the FB-method for the fast part by

$$\alpha = 0.025 = \frac{\nu \Delta \tau}{\Delta x^2}$$

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		000000000			
General fast integ	grator				

• Stability plot for RK3, FB fast integration, divergence damping:

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
		00000000			
General fast integra	tor				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Comparison of stability plot for RK3

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
			000000		
Approach					

- Wensch et al. generalized the splitting Runge-Kutta ansatz:
- We generalise the exact integration procedure in two directions:
 - arbitrary starting points based on preceeding stages

$$Z_{ni}(\mathbf{0}) = y_n + \sum_{j=1}^{i-1} \alpha_{ij} (Y_{nj} - y_n)$$

• increments in the constant term F based on preceeding stages

$$\frac{\partial}{\partial \tau} Z_{ni}(\tau) = \frac{1}{\alpha_i} \left(\frac{1}{h} \sum_{j=1}^{i-1} \gamma_{ij} (Y_{nj} - y_n) + \sum_{j=1}^{i-1} \beta_{ij} f(Y_{nj}) \right) + g(Z_{ni}(\tau))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Jörg Wensch, Oswald Knoth, Alexander Galant: Multirate infinitesimal step methods for atmospheric flow simulation, BIT Numerical Mathematics, 2009, Volume 49, Number 2, 449-473

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
			000000		
Order conditions					

- Expand numerical solution in a Taylor series. Note: Z_{ni} is a function of τ and h.
- 3 different recursions for derivatives of Z_{ni}
- For order three four classical order conditions

$$b^{\mathsf{T}} 1 = 1, b^{\mathsf{T}} c = 1/2, b^{\mathsf{T}} c^2 = 1/3, b^{\mathsf{T}} A c = 1/6$$

- and five additional order conditions
- No 3rd order method for $\alpha = \gamma = 0$ (classic splitting like RK3)
- We search for 3 stage 2rd order method
- And for a 4 stage 3rd order method
- Search is done by solving a large nonlinear optimization problem
- Constraints are order conditions and stability constraints
- Optimization goal: Small number of fast steps
- We found several methods

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Conclusion
			000000	
Runge-Kutta metho	ds			

- Three stage second order method
- Length of small time step intervals: 1.18

$\beta =$	$\begin{pmatrix} 0.126848494553D + 00 \\ -0.784838278826D + 00 \\ -0.456727081749D - 01 \end{pmatrix}$	0.0000000000D + 00 0.137442675268D + 00 -0.875082271190D - 0	$\begin{array}{cccc} 0 & 0.0000000000D + 00 \\ 1 & 0.0000000000D + 00 \\ 02 & 0.524775788629D + 00 \end{array}$
$\alpha =$	$ \begin{pmatrix} 0.000000000D + 00 \\ 0.000000000D + 00 \\ 0.000000000D + 00 \\ 0.000000000D + 00 \end{pmatrix} $	$\begin{array}{l} 0.000000000D + 00\\ 0.536946566710D + 00\\ 0.480892968551D + 00 \end{array}$	$ \begin{array}{c} 0.00000000000D + 00\\ 0.00000000000D + 00\\ 0.500561163566D + 00 \end{array} \right) $
$\gamma =$	$\begin{pmatrix} 0.0000000000D + 00 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.000000000D+00\\ 0.652465126004D+00\\ -0.732769849457D-01 \end{array}$	$ \begin{array}{c} 0.000000000D + 00 \\ 0.0000000000D + 00 \\ 0.144902430420D + 00 \end{array} \right) \\$
A =	$\begin{pmatrix} 0.126848494553D + 00 \\ -0.633963196202D + 00 \\ -0.403167397375D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.137442675268D + 01 \\ 0.878391608746D + 00 \end{array}$	$ \begin{array}{c} 0.0000000000D + 00 \\ 0.0000000000D + 00 \\ 0.524775788629D + 00 \end{array} \right) $

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Splitting methods	Split explicit methods	Generalized Runge-Kutta		Conclusion
			0000000		
Runge-Kutta methods					

- Four stage third order method
- Length of small time step intervals: 1.43

$\beta =$	$\begin{pmatrix} 0.136296478423D + 00 \\ 0.280462398979D + 00 \\ 0.904713355208D + 00 \\ 0.671969845546D - 01 \end{pmatrix}$	$\begin{array}{l} 0.000000000D + 00 \\ -0.16035133596D - 01 \\ -0.104011183154D + 01 \\ -0.365621862610D + 00 \end{array}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.0000000000D + 00 \\ 0.652337563489D + 00 \\ -0.154861470835D + 00 \end{array}$	$0.0000000000D + 00^{2}$ $0.0000000000D + 00^{2}$ $0.0000000000D + 00^{2}$ $0.970362444469D + 00^{2}$
α =	$\begin{pmatrix} 0.00000000000 D + 00 \\ 0.0000000000 D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.914092810304D + 00 \\ 0.114274417397D + 01 \\ 0.112965282231D + 00 \end{array}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.0000000000D + 00 \\ -0.295211246188D + 00 \\ 0.337369411296D + 00 \end{array}$	$ \begin{array}{c} 0.0000000000D + 00\\ 0.0000000000D + 00\\ 0.00000000000D + 00\\ 0.503747183119D + 00 \end{array} \right) \\$
$\gamma =$	$\begin{pmatrix} 0.0000000000D + 00\\ 0.0000000000D + 00\\ 0.0000000000D + 00\\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.678951983291D + 00 \\ - 0.138974164070D + 01 \\ - 0.375328608282D + 00 \end{array}$	$\begin{array}{l} 0.000000000DD + 00\\ 0.0000000000DD + 00\\ 0.503864576302D + 00\\ 0.320925021109D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00\\ 0.0000000000D + 00\\ 0.0000000000D + 00\\ -0.158259688945D + 00 \end{array} \right) $
<i>A</i> =	$\begin{pmatrix} 0.136296478423D + 00 \\ 0.497588794316D + 00 \\ 0.974872029275D + 00 \\ 0.695803814606D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D+00\\ -0.160351333596D-01\\ -0.104345761551D+01\\ -0.736679258484D+00 \end{array}$	$\begin{array}{l} 0.0000000000D+00\\ 0.0000000000D+00\\ 0.652337563489D+00\\ 0.705129993298D-01 \end{array}$	$ \begin{array}{c} 0.0000000000D + 00\\ 0.0000000000D + 00\\ 0.0000000000D + 00\\ 0.970362444469D + 00 \end{array} \right) $

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

0.4

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
			0000000		
Runge-Kutta methods					

- Three stage first order method, after Osher/Shu, TVD scheme
- Implemented in COSMO
- Length of small time step intervals: 1.92

$\beta =$	$\begin{pmatrix} 0.1000000000D + 01 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.25000000000D + 00 \\ 0.0000000000D + 00 \end{array}$	$ \begin{array}{c} 0.0000000000D + 00 \\ 0.00000000000D + 00 \\ 0.6666666666667D + 00 \end{array} \right) $
$\alpha =$	$\begin{pmatrix} 0.000000000D + 00 \\ 0.000000000D + 00 \\ 0.0000000000D + 00 \\ \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.2500000000D + 00 \\ 0.000000000D + 00 \end{array}$	$ \begin{array}{l} 0.000000000D + 00\\ 0.0000000000D + 00\\ 0.666666666667D + 00 \end{array} \right) $
$\gamma =$	$\begin{pmatrix} 0.000000000D + 00 \\ 0.000000000D + 00 \\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.000000000D + 00 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00\\ 0.0000000000D + 00\\ 0.0000000000D + 00 \end{array} \right) \\ \end{array} \\$
A =	$\begin{pmatrix} 0.1000000000D + 01 \\ 0.2500000000D + 00 \\ 0.166666666667D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.25000000000D + 00 \\ 0.166666666667D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00 \\ 0.0000000000D + 00 \\ 0.666666666667D + 00 \end{array} \right) $

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
			0000000		
Runge-Kutta methods					

- Three stage second order method
- Implemented in WRF and COSMO with divergence damping
- Length of small time step intervals: 1.83

$\beta =$	$\begin{pmatrix} 0.333333333333D + 00 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.50000000000D + 00 \\ 0.0000000000D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00 \\ 0.0000000000D + 00 \\ 0.1000000000D + 01 \end{array} \right) $
α =	$\begin{pmatrix} 0.0000000000D + 00 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.0000000000D + 00 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00\\ 0.0000000000D + 00\\ 0.0000000000D + 00\\ \end{array} \right) $
$\gamma =$	$\begin{pmatrix} 0.000000000D + 00 \\ 0.000000000D + 00 \\ 0.0000000000D + 00 \end{pmatrix}$	$\begin{array}{l} 0.000000000D + 00 \\ 0.0000000000D + 00 \\ 0.0000000000D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00\\ 0.000000000D + 00\\ 0.000000000D + 00 \end{array} \right) \\ \end{array} \\$
A =	$\begin{pmatrix} 0.33333333333D + 00 \\ 0.0000000000DD + 00 \\ 0.0000000000DD + 00 \end{pmatrix}$	$\begin{array}{l} 0.000000000D + 00 \\ 0.5000000000D + 00 \\ 0.000000000D + 00 \end{array}$	$ \begin{array}{c} 0.000000000D + 00 \\ 0.0000000000D + 00 \\ 0.1000000000D + 01 \end{array} \right) $

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
			000000		
Runge-Kutta methods					

• Order plots overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
				00000	
Test case of Klein					

- Application of the schemes to either pure long wave initial data, or multiscale initial data in a periodic domain x ∈ [0, 1]
- Relationship between pressure and momentum leads to a right running acoustic simple wave
- The pure long wave data is given by

$$p(x,0) = p_0(x - x_0)$$
 and $m(x,0) = p(x,0)/c$

where

$$p_0(x) = \exp(-(\frac{x}{\sigma_0})^2)$$

and $x_0 = 0.75$ and $\sigma_0 = 0.1$.

The multiscale initial data

$$p(x,0) = p_0(x-x_0) + p_1(x-1)$$
 and $m(x,0) = p(x,0)/c$

and

$$p_1(x) = p_0(x) * \cos(kx/\sigma_0)$$

with $x_1 = 0.25$ and $k = 7 \cdot 2\pi$.

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
				00000	
Test case of Klein					

• One dimensional acoustic advection system, U = 0, (f = 0)

$$u_t = -c_s p_x - U u_x$$
$$p_t = -c_s u_x - U p_x$$

≣ • ୬ ۹ (°

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
				00000	
Test case of Klein					

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion	
				000000		
Nonhydrostatic Case of Blossey/Durran						

- Implicit-Explicit Multistep Methods for Fast-Wave Slow-Wave Problems, Dale R. Durran, Peter Blossey, Monthly Weather Review
- Highly nonlinear problem, used to perform order tests (see above)
- Implemented the discretization from the paper

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
				000000	
Gravity waves wit	h WRF				

- Implemented in WRFV3 (thanks to Alexander Smalla)
- Switched on all divergence parameters, FB scheme in all three directions
- RKN4E1

west_east

Range of W: -0.151088 to 0.154341 m s-1 Range of west_east: 0 to 200 Range of bottom_top_stag: 0 to 40 Current Time: 96 Current south_north: 0 Frame 97 in File wrłoutRKN4E1Hill

west_east

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Range of W: -0.149748 to 0.152674 m s-1 Range of west_east: 0 to 200 Range of bottom_top_stag: 0 to 40 Current Time: 96 Current south_north: 0 Frame 97 in File wr/out_d01_0001-01-01_00:00:00

	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion	
				000000		
Gravity waves with WRF						

• RK3 without divergence damping is unstable

(ロ)、(型)、(E)、(E)、 E) の(の)

Range of W: -0.5 to 0.5 m s-1 Range of west_east: 0 to 200 Range of bottom_top_stag: 0 to 40 Current Time: 60 Current south_north: 0 Frame 61 in File wrfout_d01_0001-01-01_00:00:00

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
					00
Conclusion					

- Improved RUNGE-KUTTA like schemes are presented which have larger stability regions than RK3 in the absence of divergence damping
- Proposed idea can be applied in recursive way for including even faster processes like microphysics

- Order conditions are derived for third order methods in time
- Methods are included in the atmospheric codes ASAM and WRF

Introduction	Splitting methods	Split explicit methods	Generalized Runge-Kutta	Numerische Tests	Conclusion
					00
Conclusion					

Thanks for listening!

(ロ)、(型)、(E)、(E)、 E) の(の)