DECAY RATE OF DEGENERATE **CONVECTION DIFFUSION** EQUATIONS

Christian Klingenberg Mathematics Dept., Würzburg University, Germany

joint work with:

Ujjwal Koley, Würzburg Univ., Germany

Yunguang Lu, Hangzhou Normal Univ., China

where is Würzburg?



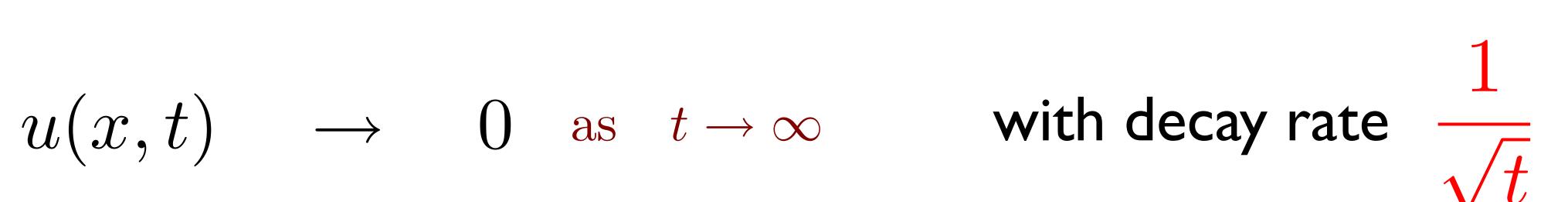
As you all know, for the heat equation in one space dimension $u_t = u_{xx}$

for an initial value probem with compact support

pointwise

you can read it off the explicit solution formula:

$$\begin{split} u(x,t) &= \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) \, dy \\ &= \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y) \, dy \quad (x \in \mathbb{R}^n, \ t > 0) \end{split}$$



u = g on $\mathbb{R}^n \times \{t = 0\}$

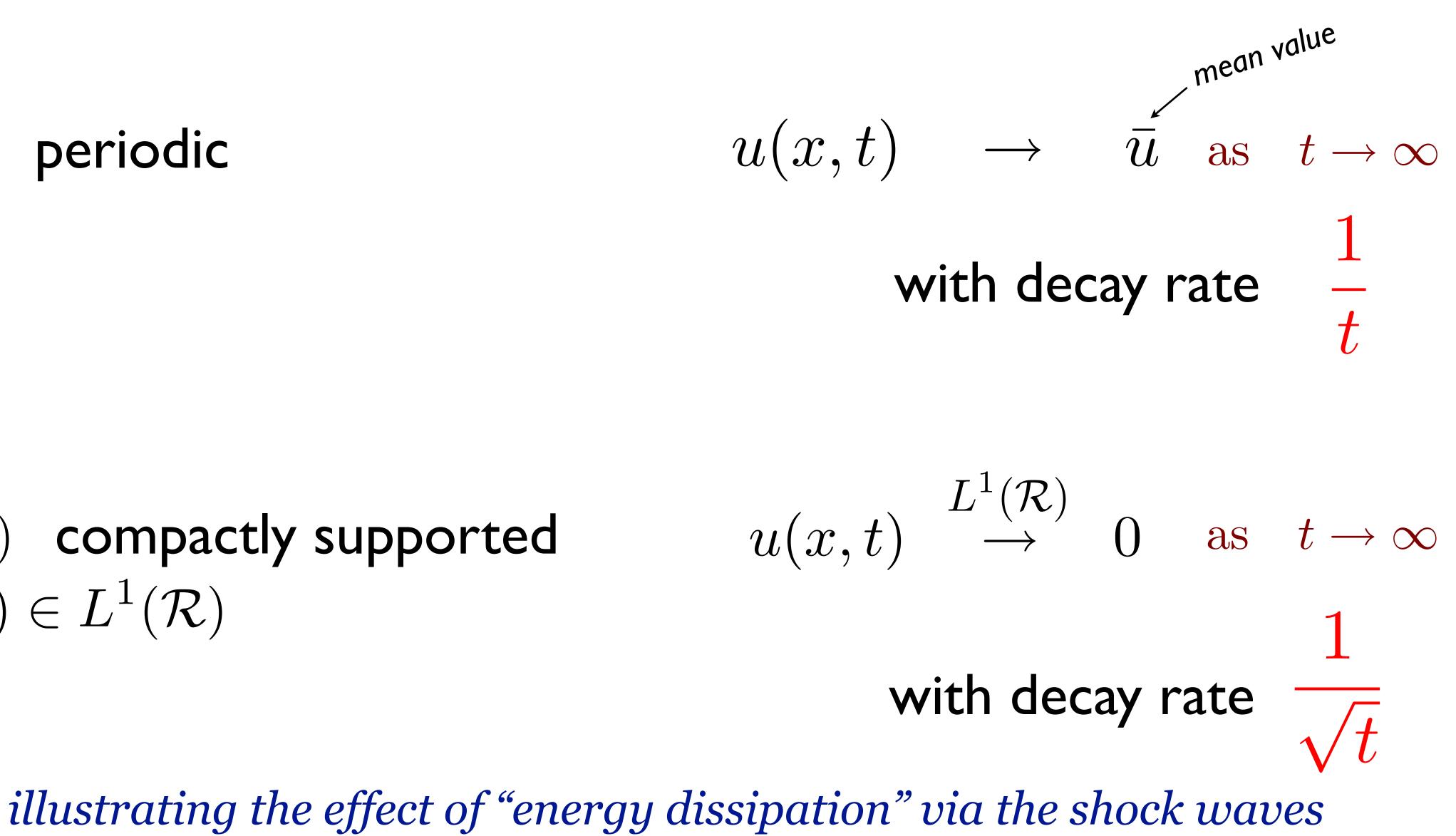
Consider the large time behaviour of the initial value problem of the inviscid Burgers equation

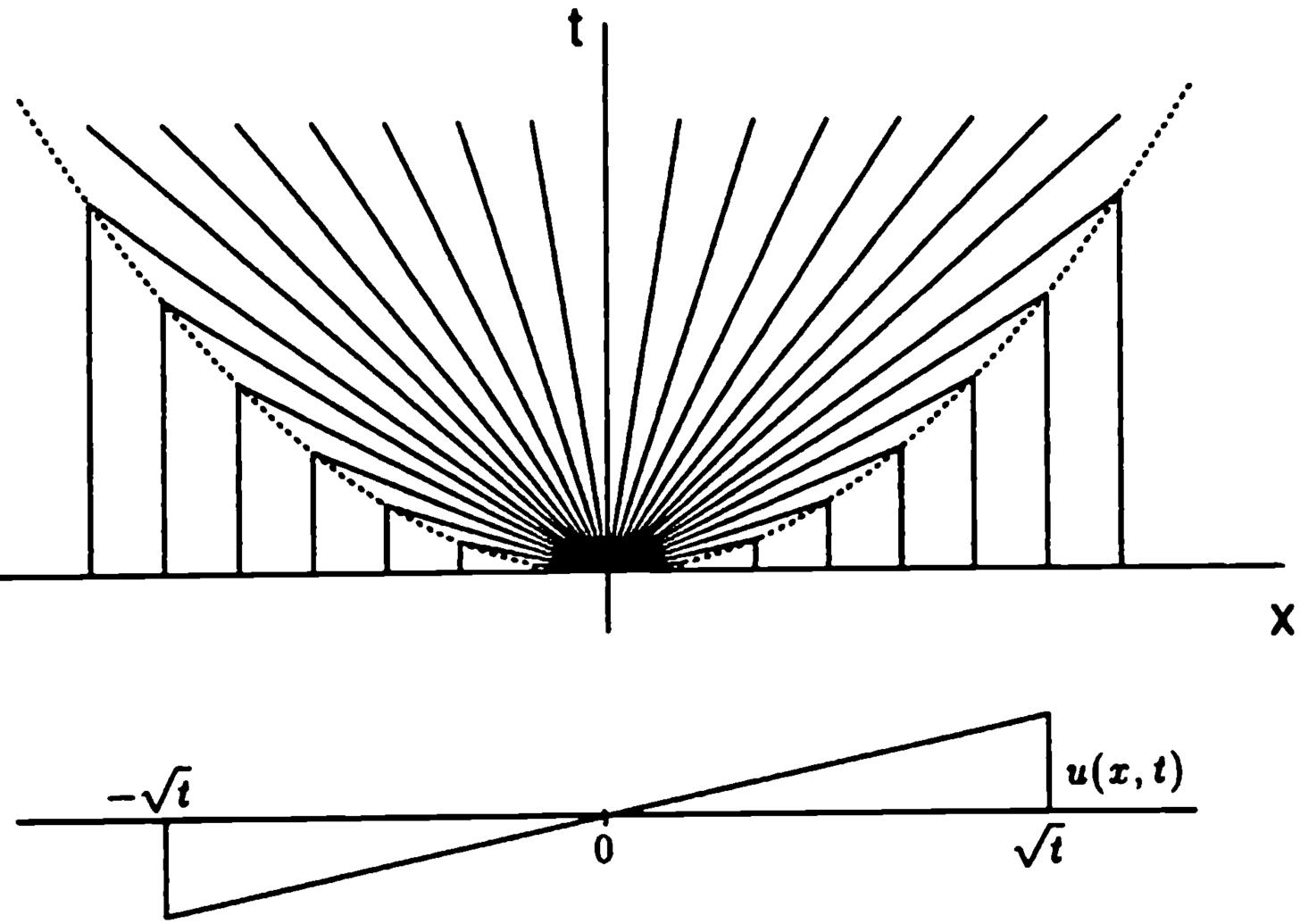
 $u_t + (u^2)_x = 0$

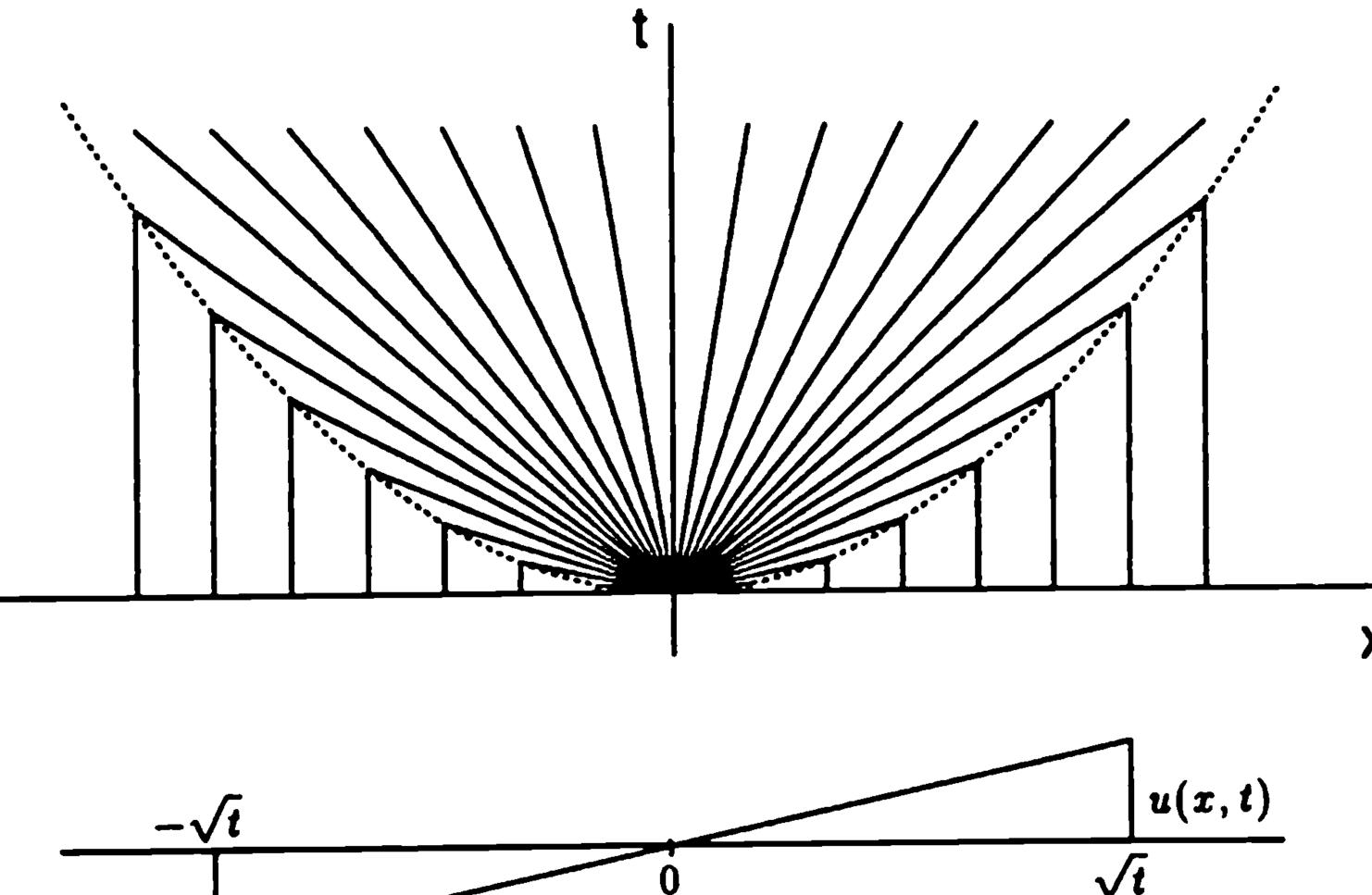
$u_0(x)$ periodic

$u_0(x)$ compactly supported or $u_0(x) \in L^1(\mathcal{R})$

$$u(x,0) = u_0(x)$$







N-wave solution to Burgers equation

moving on to the viscous Burgers equation $u_t + (u^2)$

with compactly supported initial data

 $u(x,t) \rightarrow 0$ as $t \rightarrow \infty$ with decay rate $\frac{1}{\sqrt{t}}$ pointwise

this can be seen this with help of the Cole-Hopf transformation resulting in

$$\begin{split} u(x,t) &= -2\nu \frac{\partial}{\partial x} \ln \left\{ (4\pi\nu t)^{-1/2} \int_{-\infty}^{\infty} \exp \left[-\frac{(x-x')^2}{4\nu t} - \frac{1}{2\nu} \int_{0}^{x'} u(x'',0) dx'' \right] dx' \right\}. \end{split}$$
 ne decay mechanisms are at play:

here two tim

- dissipation from the parabolic term

$$(2)_x = \nu u_{xx}$$

- "dissipation" from "within" the shocks coming from the nonlinear flux

joining forces to the same decay rate

consider a viscous conservation law with a non-Burgers flux

$$u_t + (u^q)_x = u_{xx} \qquad \text{for} \quad u_0(x) \in L^1$$

for q > 2

for l < q < 2

case q = 2 is the viscous Burgers equation

What happens if we use a more general flux but keep strictly positive diffusion?

the large time decay rate depending on exponent q:

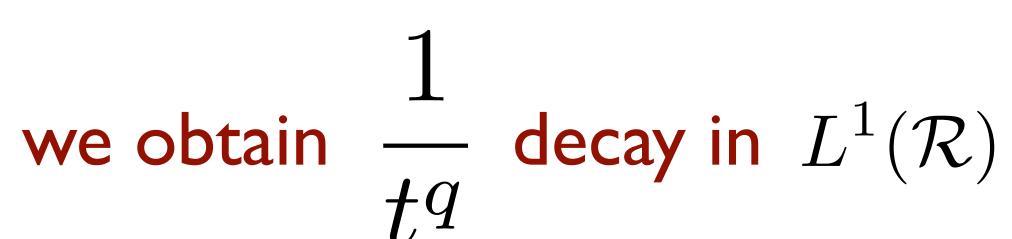
$$\|u(t)\|_{L^{\infty}} \le K_{\infty} t^{-1/2}$$

$$\|u(t)\|_{L^{\infty}} \le K_{\infty} t^{-1/q}$$

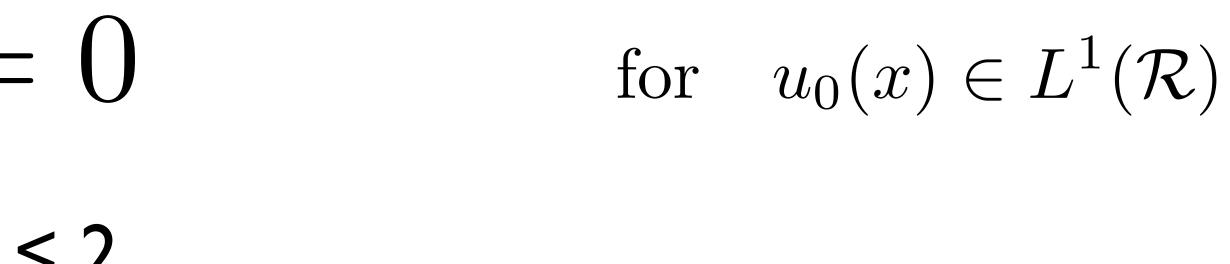


 $u_t + u_x^q = 0$

for 1 < q < 2



the last result also holds true without viscosity



Ph. Laurencot 1998

so this large time decay rate is faster than $\frac{-}{\sqrt{t}}$

How does this work if we use degenerate diffusion?

$$u_t =$$

 $\|u(t)\|_{L^{\infty}}$

say m=2

$$u_t = (u^2)_{xx}$$

$$u(x,0) = u_0(x)$$

lets first look at the modified heat equation

$$(u^m)_{xx} \qquad \text{for} \quad u_0(x) \in L^1 \\ m \in \mathcal{N}$$

gives a large time decay rate:

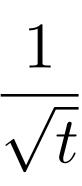
$$\leq C_{\infty} t^{-1/(m+1)}$$

here C_{∞} depends on m and initial data

$$u(x,t)$$
 decays like $\frac{1}{t^{\frac{1}{3}}}$ slower than

for m = 1 this is the heat equation result

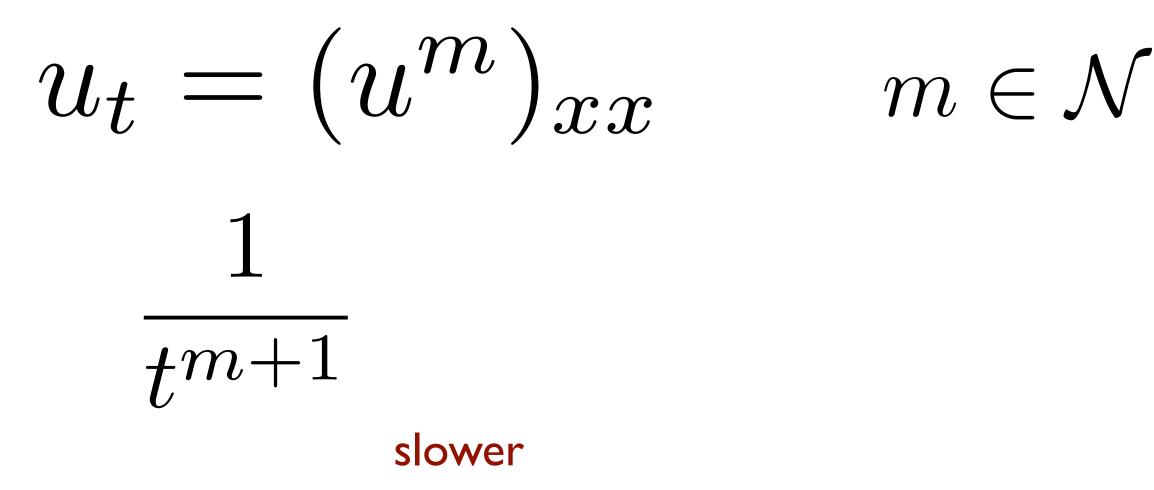




summary:

 $u_t + (u^q)_x = u_{xx}$ \sqrt{t} for $q \ge 2$ $\frac{1}{t^q}$ for I < q < 2 faster

let us combine both degenerate diffusion and non-Burgers fluxes



We shall consider a scalar equation of the type

$u_t + F(u, x, t)_x +$

where G(u) may lead to a degenerate elliptic operator

Thus the solutions are not smooth, they are weak solutions.

$$H(u, x, t) = G(u)_{xx}$$

we deal with degenerary of the parabolic term by considering a regularisation of type

$$u_t + f(u)_x = ((g(u) + \epsilon)u_x)_x \qquad g(u) \ge 0$$

this gives uniform parabolicity

our technique requires manipulating with the solutions as if they were smooth

one can get regularity estimates of the solution independent of epsilon

For

we identify conditions on F, H and G for which we obtain large time behaviour of the form

||u(x,t)||

G(u) may be pointwise degenerate

This includes all the above cases and includes new one's.

 $u_t + F(u, x, t)_x + H(u, x, t) = G(u)_{xx}$

$$_{L^{\infty}} \leq rac{C}{\sqrt{t}}$$

our strategy

- find bounds for u of the type $u_x < M(u, x, t)$
- then obtain time decay for u

 $u(x,t) \le \frac{C}{\sqrt{t}}$

our result in more detail:

consider solution to

 $u_t + F(u, x, t)_x + H(u, x, t)_x$

where the coefficients of the PD $F(u, x, t) = F_1(u, x, t)$ $(F_1)_{uu} \ge 0, \quad (F_1)_{xu} \ge 0,$ $H_u f_2 - (f_2)_u H \ge 0, \quad (f_2)_u$

 $f_{2}(u,x,t):=$

we conclude that the solution satisfies

$$u_x \leq f_2(u, x, t)$$

$$(t, t) = (g(u)u_x)_x \quad (x, t) \in \mathbb{R} \times (0)$$

$$(t) = \mathbf{Satisfy}$$

$$(t) + F_2(u, x, t)$$

$$(F_1)_{xx} \ge 0, \quad f_2 \ge 0, \quad (f_2)_t \ge 0,$$

$$(F_1)_x - (F_1)_u (f_2)_x \le 0.$$

$$= \frac{F_2(u, x, t)}{g(u)}$$

now suppose the solution to

$$u_t + F(u, x, t)_x + H(u$$

where the conditions on the previous in particular satisfy

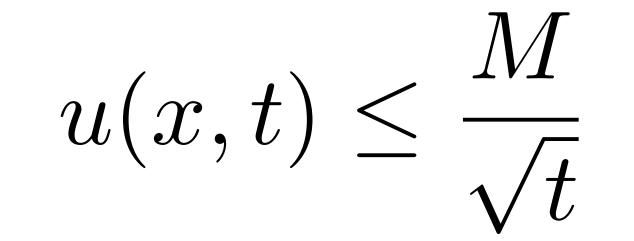
 $U_{\mathcal{X}}$

we can conclude

pointwise

 $u, x, t) = (g(u)u_x)_x$

$$\leq \frac{M}{t}$$



sketch of the proof

I.) gradient decay:

here the bound is a combination of the coefficients of the PDE.

set $v = u_x -$

assume that at initial time this is negative

and then proceed to show that $v_t < 0$

this uses properties of the PDE plus the assumptions on the coefficients we made

 $u_x \leq f_2(u, x, t)$

$$-f_2(u,x,t)$$

2.) obtain a particular gradient decay of the solution in time: for our PDE we introduce the new variable u = ut

we get an evolution for w

 $w_t - \frac{w}{t} + F(w, x)_x + H(w, x) = w_{xx}$ applying our result in part 1.) to this equation we conclude

 $w_r < cor$

Hence $w_x = u_x t \leq C$

nst. because
$$f_2 \leq \text{const}$$

or $u_x(x,t) \leq \frac{C}{t}$

U.

3.) form this time decay of the gradient conclude decay of solution we use the fact that we are in one space dimension fix t and x_0 put $A = u(x_0,t)$ (we know $u_x(x,t) \leq rac{C}{t}$) $u(x,t) \ge \frac{1}{\sqrt[n]{t}}(x-x_1) \quad \text{for} \quad 0 \le x-x_1 \le At$

integrating gives

$$M = \int_{\mathbb{R}} u(x,t) \, dx \ge \int_0^{At}$$

which implies

 $x_1 = x_0 - At$

 $\frac{x}{t} dx = \frac{t A^2}{2}$

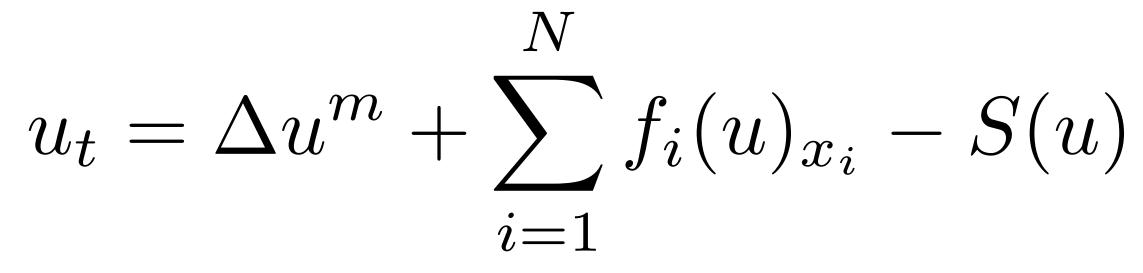
 $u(x,t) \leq \frac{M}{\sqrt{t}}$

$$u_t = \Delta u^m + \sum_{i=1}^{l}$$

- non-negative initial data
- Because of parabolic degeneracy the solution may fail to be smooth.
- So we perturb both the initial data to be strictly positive $u^{\varepsilon} > \varepsilon$
 - and also the equation to be strictly parabolic.
- One can get uniform bounds on the solution independent of \mathcal{E} . This allows us to manipulate the equation.

- Now we consider time decay of the solution to porous media type equations with degenerate diffusion in higher space dimensions
 - $\sum_{i=1} f_i(u)_{x_i} S(u)$

 $u(x,0) = u_0(x_1, x_2, \cdots, x_N) \ge 0$



under certain assumptions on the coefficients of this PDE we can prove bounds on the gradient of the solution

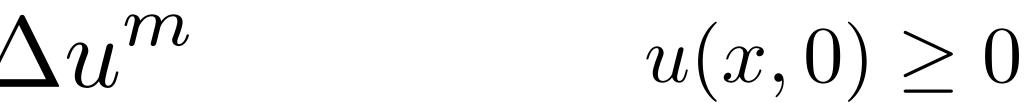
$$(u^2)_{x_i} \le \frac{1}{(1)}$$

An example for which this holds true is

 $u_t = \Delta u^m$

$$\frac{M}{1+t)^{\frac{\alpha}{2}}}$$

any $\alpha \geq 1$



the proof consists of long calculations the idea is to do several changes of variables

first change of variables: U =

which gives an evolution of v $\dot{v}_t = n u^{n-1} \Delta(u^m) + l$

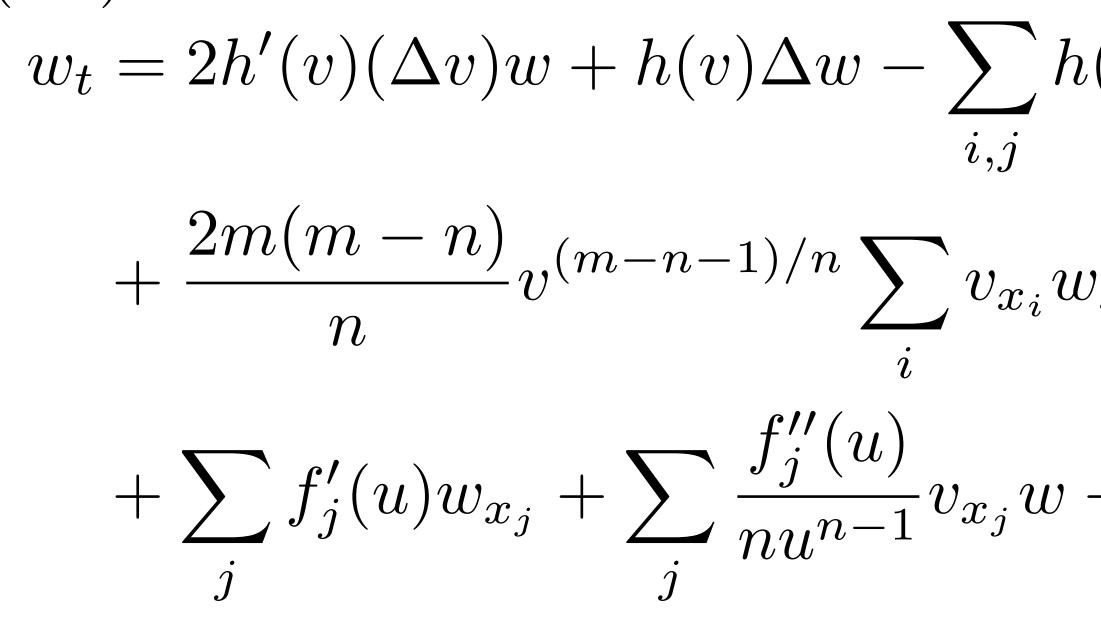
 $v = u^n$

 $v_t = nu^{n-1}\Delta(u^m) + \sum_i f'_i(u)v_{x_i} - nu^{n-1}S(u)$ Ż

then set

$w = \frac{1}{2} \sum_{i=1}^{N} v_{x_i}^2$

which gives an evolution of w



$$h(v)v_{x_ix_j}^2$$

$$v_{x_i} + \frac{4m(m-n)(m-n-1)}{n^2} v^{(m-2n-1)/n}$$

$$-2(n-1)\frac{S(u)}{u}w-2S'(u)w.$$

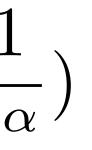
then set

$$\theta = \left(w - \frac{1}{t}\right)$$

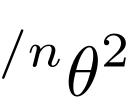
which gives an evolution of θ

$$\begin{aligned} \theta_t + (\frac{1}{t^{\alpha}})_t &\leq 2h'(v)(\Delta v)\theta + h(v)\Delta\theta - cmv^{(m-2n-1)/n}\frac{1}{t^{2\alpha}} \\ &+ \frac{2m(m-n)}{n}v^{(m-n-1)/n}\sum_i v_{x_i}\theta_{x_i} + \frac{4m(m-n)(m-n-1)}{n^2}v^{(m-2n-1)/n} \end{aligned}$$

applying the maximum principle and our assumptions gives the desired gradient bound on u



next change of variables



lets summarize:

$$u_t + F(u, x, t)_x + H(u, x, t) = (g(u)u_x)_x$$

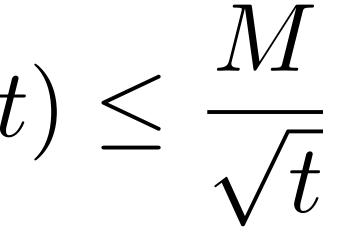
we identified a certain class for which we can obtain time decay

for several space dimensions N $u_t = \Delta u^m + \sum f_i$ i=1

we identified equations for which we can show time decay of the derivative

$$(u_{x_i})^2$$

for degenerate convection diffusion equations in one space dimension



$$S_i(u)_{x_i} - S(u)$$

$$\leq \frac{M}{t}$$

Thank you for your attention!

here are examples of the type of equations for which we can show time decay of this type

 $u_t + (u^3)_x = (u^2)_{xx}$

 $u_t + (u^2 + \frac{u^2 + 1}{t})_x = u_{xx}$ t