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As you all know, for the heat equation in one space dimension
Ut = Ugy

for an initial value probem with compact support

1
Vi

u(x,t) — 0 as t—oo with decay rate

pointwise

you can read it off the explicit solution formula:

u(z,t) = / ) ®(xr —y,t)9(y) dy

1 e n
= G2 /Rn e g(y)dy (xeR", t>0)
u=g¢g onR"x {t=0}




Consider the large time behaviour of the initial value problem
of the inviscid Burgers equation

2
ur + (u”)y =0 u(z,0) = ug(x)
yalu®
ed"
N
UQ(ZE) periodic u(a;', t) — U as t— o0
1
with decay rate p
L'(R)
up(x) compactly supported w(xz,t) — 0 as t— o0
or UQ(ZE) - Ll(R) 1
with decay rate \/E

illustrating the effect of “energy dissipation” via the shock waves



N-wave solution to Burgers equation



moving on to the viscous Burgers equation

Ut T+ (u2>az — Vlgy

with compactly supported initial data

1
w(z,t) — 0 as t— o0 with decay rate

pointwise \/%

this can be seen this with help of the Cole-Hopf transformation resulting in

'

. 0 .. 12 [ C (=21 [T,
ulxr,t) = —2v—In {( davt) " exp | —- " ulx”,0)dx” |dx }
o dx | i dut 2V Jq S

By - x

here two time decay mechanisms are at play:

- dissipation from the parabolic term
- “dissipation” from “within” the shocks coming from the nonlinear flux

joining forces to the same decay rate



What happens if we use a more general flux but keep strictly positive diffusion!?

consider a viscous conservation law with a non-Burgers flux

Uy + (uCI)x = Uy for wug(z) € L' (R)

the large time decay rate depending on exponent q:

for q > 2 Ju(t)] oo < Koot ™7

for | <q <2 [u(t)]l o < Koot ™V/2

faster than i

Vi
case q = 2 is the viscous Burgers equation



the last result also holds true without viscosity

U+ —+- uq — O for wug(z) € L' (R)

we obtain — decay in L'(R) Ph. Laurencot 1998

14

so this large time decay rate is faster than

1
Vi



How does this work if we use degenerate diffusion?  u(x,0) = ug(z) > 0

lets first look at the modified heat equation

Ut = (um)m for wuo(z) € L'(R)
m e N

gives a large time decay rate:

U(t)|| oo < Coot™ M/ (mFD

here (., depends on m and initial data

1
say m=2 Uy = (uQ)m u(x,t) decays liket_; slower than %
3

for m = 1 this is the heat equation result



summary:

let us combine both degenerate diffusion and non-Burgers fluxes



We shall consider a scalar equation of the type

ur + F(u,x,t), + H(u,z,t) = G(U) 44

where G(u) may lead to a degenerate elliptic operator

Thus the solutions are not smooth, they are weak solutions.



our technique requires manipulating with the solutions as if they were
smooth

we deal with degenerary of the parabolic term by considering a
regularisation of type

ug + f(u)e = ((g(u) + €)ug) s g(u) >0

this gives uniform parabolicity

one can get regularity estimates of the solution independent of epsilon



For

ur + F(u,x,t), + H(u,z,t) = G(U) 44

we identify conditions on F H and G for which we obtain
large time behaviour of the form

ulz, t)|[L>= <

Vi

G(u) may be pointwise degenerate

This includes all the above cases and includes new one’s.



our strategy

® find bounds for u of the type U, < M(u, €, t)

® then obtain time decay for u

u(x,t) <

Vi



our result in more detail:

consider solution to

ur + F(u,x,t), + H(u,z,t) = (g(u)ug)r (z,t) € R x (0,7)

where the coefficients of the PDE satisfy
F(U,QZ,t) — Fl(U,LU,t) T FQ(U,ZC,t)

(Fl)uu 2 07 (Fl)azu 2 Oa (Fl)a:a: Z O; f2 2 07 (fQ)t 2 O)
Hyfo — (f2)uH =0, (f2)u(F1)e — (F1)u(f2)z < 0.

Fo(u, x,t)
g(u)

folu,x,t) :=

we conclude that the solution satisfies

Uy < f2(u7$7t>



now suppose the solution to

u + F(u,x,t), + H(u,x,t) = (g(u)uy ),

where the conditions on the previous in particular satisfy

M
Uy S "
we can conclude
(n,) < =
wlx,t) <
Vit

pointwise



sketch of the proof

|.) gradient decay: Ur < fo (u, T, t)

here the bound is a combination of the coefficients of the PDE.
set U — Uy —fz(u,$,f)
assume that at initial time this is negative

and then proceed to show that
Ve < 0

this uses properties of the PDE plus the assumptions on the
coefficients we made



2.) obtain a particular gradient decay of the solution in time:

for our PDE we introduce the new variable

w = ut
we get an evolution for w
w
we — - FF(w, ), + Hw,x) = Way

applying our result in part |.) to this equation we conclude

W, < const. because fo9 < const.

Hence w, =u,.t<C or Um(a%t) < %



3.) form this time decay of the gradient conclude decay of solution
we use the fact that we are in one space dimension

POS.

fix t and xz9 put A= u(xg,t) (weknow u.(z,t) <

1
u(z,t) >

Xr —
\ \/%( 1)
pos. in the inetrval (Z1, Zo

integrating gives
At 2
t A
M:/u(a’;,t)dazzf = dr =
R 0 t 2

which implies

¢
~ )

for 0<x—21 < At

r1 = xo — At




Now we consider time decay of the solution to porous media type
equations with degenerate diffusion in higher space dimensions

N
uy = Au'" + Z fi(w)z, — S(u)
i=1

non-negative initial data

UJ(ZU,O) — uO(ajlva?'” 733]\7) > ()

Because of parabolic degeneracy the solution may fail to be smooth.

So we perturb both the initial data to be strictly positive
ut > €

and also the equation to be strictly parabolic.

One can get uniform bounds on the solution independent of £ .

This allows us to manipulate the equation.



N
uy = Au™ + Z fi(w)z, — S(u)
i=1

under certain assumptions on the coefficients of this PDE

we can prove bounds on the gradient of the solution

5 M
(U7) e, < 1103

any o > 1

An example for which this holds true is

uy = Au'” u(x,0) >0



the proof consists of long calculations

the idea is to do several changes of variables

first change of variables: UV =1U

which gives an evolution of v

;Ut = nu" A (U™) Z fl(uw) vy, —nu™ S (u)




then set

N
e - .
W= E vy next change of variables

which gives an evolution of w

\wt/: 2h' (v) (Av)w + h(v)Aw — Z h(v)vs. .

2,]

| 2m(m—n)v(m n 1)/nzv$.w$. | 4m(m_n>(27n_n_ 1)U(m—2n—1)/nw2
(/ (/ n

n .
(

num— LY U

DITIES B L =20~ 15 28wy



then set

Lo ) next change of variables

which gives an evolution of {

/ 1 m—2n— n 1
Bu+ (2 )e < 20 (0) (A0 + h(0)AG — (™2 D/m

- dm(m —n)(m —n — 1) oy (m—2n—1)/n 2

n , n?
(/

 2m(m — n) (m—n—1)/n Z .

applying the maximum principle and our assumptions gives the desired
gradient bound on u



lets summarize:

for degenerate convection diffusion equations in one space dimension

ur + F(u,x,t), + H(u,x,t) = (g(u)ug)y

we 1dentified a certain class for which we can obtain time decay

M
u(x,t) < 7i

for several space dimensions
N
up = Au™ + Y fi(u)z, — S(u)
i=1
we 1dentified equations for which we can show time decay of the derivative

M
(uxi)Q < ;




Thank you for your attention!



here are examples of the type of equations for which
we can show time decay of this type



