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u
t

= u
xx

As you all know, for the heat equation in one space dimension

for an initial value probem with compact support

u(x, t) ! 0 with decay rate 
1p
t

as t!1

you can read it off the explicit solution formula:

pointwise



Consider the large time behaviour of the initial value problem
of the inviscid Burgers equation

periodic

DECAY RATE OF DEGENERATE CONVECTION DIFFUSION
EQUATIONS IN BOTH ONE AND SEVERAL SPACE

DIMENSIONS

C. KLINGENBERG, U. KOLEY, AND Y. LU

Abstract. We consider degenerate convection-di↵usion equations in both one
space dimension and several space dimensions. In the first part of the paper,
we are concerned with the decay rate of solutions of one dimension convection
di↵usion equation. On the other hand in the second part of the paper, we are
concerned with a decay rate of derivatives of solution of convection di↵usion
equation in several space dimensions.

1. introduction

First part of this paper is concerned with the decay rate of solutions to the
general degenerate reaction di↵usion convection equation

eq:main_introeq:main_intro (1.1)

(
u

t

+ F (u, x, t)
x

+ H(u, x, t) = G(u)
xx

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x) x 2 R.

The basic assumption on G(u) is that it is nonlinear, nodecreasing, depends ex-
plicitely on x, t and g(u) = G0(u) � 0, and thus (1.1) is a strongly degenerate
parabolic equation. F is a nonlinear flux function which depends on u, x and t
and H is the given source term which can also depends on x and t. The basic
assumption on H is that

R
R⇥[0,T ]

H(u, x, t) dx dt  C, where C is a constant. The
equation (1.1) appears in several applications in which u stands for a non-negative
quantity. The scalar conservation law u

t

+ f(u)
x

= 0 is a special example of this
type of problems. Other examples occur in several applications, for instance in
porous media flow [ref] (a special type of di↵usion, i.e., G(u) = um appears to
model a non-stationary flow of a compressible Newtonian fluid in a porous medium
under polytropic conditions) and in sedimentation processes [ref].

If G = H = 0 and the flux function F only depends on u, then the equation
(1.1) becomes the classical conservation laws of the form

eq:main_coneq:main_con (1.2)

(
u

t

+ F (u)
x

= 0,

u(x, 0) = u0(x).

The asymptotic form of the solution of (1.2) for large time is well known in the
literature due to Oleinik [ref]. In fact there are two distinctly di↵erent cases: the
case where the initial data u0 is periodic and the case where the initial data u0

has compact support. In the periodic case u tends to the mean value of u0 (over
one period), at a rate t�1, uniformly in x. On the other hand, if u0 has a compact
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compactly supported
u(x, t) ! 0

with decay rate 
1p
t

with decay rate 
1
t

as t!1

as t!1

u

t

+ (u2)
x

= 0 u(x, 0) = u0(x)

L1(R)

illustrating the effect of “energy dissipation” via the shock waves

or u0(x) 2 L

1
(R)

mean value
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Figure 3.11. N wave solution to Burgers' equation.
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Figure 3.12. Region of integration for shock speed calculation.

N-wave solution to Burgers equation



moving on to the viscous Burgers equation

with compactly supported initial data

u(x, t) ! 0 with decay rate 
1p
t

as t!1
pointwise

this can be seen this with help of the Cole-Hopf transformation resulting in

here two time decay mechanisms are at play:

- dissipation from the parabolic term
- “dissipation” from “within” the shocks coming from the nonlinear flux

joining forces to the same decay rate

u
t

+ (u2)
x

= ⌫u
xx



the large time decay rate depending on exponent q:
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support then u tends uniformly to zero at a rate t�1/2, and tends in L1 norm, to a
particular function called an N -wave, again at a rate t�1/2.

On the other hand, if the di↵usion function is of porous media type, i.e., G(u) =
um with F = H = 0, then the equation (1.1) becomes the degenerate di↵usion
equation of the form

eq:main_diffusioneq:main_diffusion (1.3)

(
u

t

= (um)
xx

,

u(x, 0) = u0(x).

In [ref], author has shown that the decay rate of the solution of (1.3) is given by

ku(t)k
L

1  C1t�1/(m+1)

where C1 is a constant depending on m and the L1 mass of the initial profile u0.
If the di↵usion is linear, i.e., G = u, H = 0 and the flux function F takes a

special form uq, then the equation (1.1) becomes the classical convection di↵usion
equation of the form

eq:main_convectioneq:main_convection (1.4)

(
u

t

+ (uq)
x

= u
xx

,

u(x, 0) = u0(x).

Large time behavior of solutions of (1.4) is well developed in literature [ref]. The
results obtained in the above mentioned papers may be summarized as follows:
There is a critical exponent q = 2 such that, if u0 2 L1(R) is nonnegative with
M = ku0k

L

1 , one has the following
• If q > 2, the profile in L1(R) of the solution of (1.4) with initial data u0 is

the unique solution to the purely di↵usive equation

u
t

= u
xx

, (x, t) 2 R⇥ (0,1),

with initial data M�, where � denotes the Dirac mass centered in zero. In
addition, there exists a constant K1 depending on q and M such that, for
t > 0,

ku(t)k
L

1  K1t�1/2

• If q = 2, then equation (1.4) has a unique nonnegative solution with initial
data M�, which gives the profile in L1(R) of the solution to (1.4) with
initial data u0.

• If 1 < q < 2, the profile in L1(R) of the solution to (1.4) with initial data
u0 is the unique nonnegative entropy solution to the conservation law

u
t

+ (uq)
x

= 0, (x, t) 2 R⇥ (0,1),

with initial data M� (uniqueness and existence of such solution is proved
in [ref liu]). In addition, there exists a constant K1 depending on q and
M such that, for t > 0,

ku(t)k
L

1  K1t�1/q

In this paper, we show that the L1 decay rate of solutions of (1.1) is given by

ku(t)k
L

1  K1t�↵/2, ↵ 2 (0, 1),

under certain condition on the flux function and the source. For a more precise
statement see section [ref]. The whole analysis depends on the following Lax Oleinik
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consider a viscous conservation law with a non-Burgers flux 

for q > 2

for 1 < q < 2

What happens if we use a more general flux but keep strictly positive diffusion?

for u0(x) 2 L

1
(R)

case q = 2 is the viscous Burgers equation

faster than 1p
t



the last result also holds true without viscosity

u
t

+ uq

x

= 0
for 1 < q < 2

for u0(x) 2 L

1
(R)

we obtain 
1
tq

decay in L1(R)

so this large time decay rate is faster than 
1p
t

Ph. Laurencot 1998



lets first look at the modified heat equation
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gives a large time decay rate:
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here         depends on m and initial data
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How does this work if we use degenerate diffusion?

for u0(x) 2 L

1
(R)

for m = 1 this is the heat equation result

m 2 N

say m=2 u
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= (u2)
xx

slower than
1p
t

u(x, 0) = u0(x) � 0

u(x, t) decays like
1
t

1
3
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We shall consider a scalar equation of the type

DECAY RATE OF DEGENERATE CONVECTION DIFFUSION
EQUATIONS IN BOTH ONE AND SEVERAL SPACE

DIMENSIONS

C. KLINGENBERG, U. KOLEY, AND Y. LU

Abstract. We consider degenerate convection-di↵usion equations in both one
space dimension and several space dimensions. In the first part of the paper,
we are concerned with the decay rate of solutions of one dimension convection
di↵usion equation. On the other hand in the second part of the paper, we are
concerned with a decay rate of derivatives of solution of convection di↵usion
equation in several space dimensions.

1. introduction

First part of this paper is concerned with the decay rate of solutions to the
general degenerate reaction di↵usion convection equation

eq:main_introeq:main_intro (1.1)

(
u

t

+ F (u, x, t)
x

+ H(u, x, t) = G(u)
xx

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x) x 2 R.

The basic assumption on G(u) is that it is nonlinear, nodecreasing, depends ex-
plicitely on x, t and g(u) = G0(u) � 0, and thus (1.1) is a strongly degenerate
parabolic equation. F is a nonlinear flux function which depends on u, x and t
and H is the given source term which can also depends on x and t. The basic
assumption on H is that

R
R⇥[0,T ]

H(u, x, t) dx dt  C, where C is a constant. The
equation (1.1) appears in several applications in which u stands for a non-negative
quantity. The scalar conservation law u

t

+ f(u)
x

= 0 is a special example of this
type of problems. Other examples occur in several applications, for instance in
porous media flow [ref] (a special type of di↵usion, i.e., G(u) = um appears to
model a non-stationary flow of a compressible Newtonian fluid in a porous medium
under polytropic conditions) and in sedimentation processes [ref].

If G = H = 0 and the flux function F only depends on u, then the equation
(1.1) becomes the classical conservation laws of the form

eq:main_coneq:main_con (1.2)

(
u

t

+ F (u)
x

= 0,

u(x, 0) = u0(x).

The asymptotic form of the solution of (1.2) for large time is well known in the
literature due to Oleinik [ref]. In fact there are two distinctly di↵erent cases: the
case where the initial data u0 is periodic and the case where the initial data u0

has compact support. In the periodic case u tends to the mean value of u0 (over
one period), at a rate t�1, uniformly in x. On the other hand, if u0 has a compact
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Oleinik type inequality.
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where G(u) may lead to a degenerate elliptic operator

Thus the solutions are not smooth, they are weak solutions.



our technique requires manipulating with the solutions as if they were 
smooth

we deal with degenerary of the parabolic term by considering a 
regularisation of type

g(u) � 0

this gives uniform parabolicity

one can get regularity estimates of the solution independent of epsilon

u
t

+ f(u)
x

= ((g(u) + ✏)u
x

)
x
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we identify conditions on F, H and G for which we obtain 
large time behaviour of the form

This includes all the above cases and includes new one’s.

G(u) may be pointwise degenerate

||u(x, t)||L1 
Cp
t



our strategy

•  find bounds for u of the type                   

•  then obtain time decay for u

u

x

< M(u, x, t)

u(x, t)  Cp
t
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� b(t)H 0(u)f2 + f 0
2(u) (a(t)F 0
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= �a(t)F 00
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2 + F 00
2 (u)f2

2 + f 0
2(u)b(t)H(u)� b(t)H 0(u)f2

Assume the followings

F 00
1 (u)  0, F 00

2 (u)  0, a(t) < 0, c(t) > 0,

H 0(u)f2(u)� f 0
2(u)H(u) � 0.

Then the lemma is proved. ⇤
Lemma 2.2. Let u be a solution of

eq:1decaysub25eq:1decaysub25 (2.8)

(
u

t

+ F (u, x, t)
x

+ H(u, x, t) = ((g(u) + ")u
x

)
x

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x), x 2 R,

Moreover, if

F (u, x, t) = F1(u, x, t) + F2(u, x, t),

f2(u, x, t) =
F2(u, x, t)
g(u) + "

where

eq:label15eq:label15 (2.9)
(F1)uu

� 0, (F1)xu

� 0, (F1)xx

� 0, f2 � 0, (f2)t

� 0,

H
u

f2 � (f2)u

H � 0, (f2)u

(F1)x

� (F1)u

(f2)x

 0.

then

u
x

 f2(u, x, t),

provided the initial data also satisfy the same estimate.

Proof. Since we know that

F (u, x, t) = F1(u, x, t) + F2(u, x, t),

and

f2(u, x, t) =
F2(u, x, t)
g(u) + "

,

then the equation (2.8) becomes,

eq:decay_21eq:decay_21 (2.10) u
t

+ F1(u, x, t)
x

+ H(u, x, t) = ((g(u) + ")v)
x

,

where v is given by:

v(u, x, t) = u
x

� f2(u, x, t).

Our aim is to prove the following estimate:

u
x

 f2(u, x, t)

Next, we see that

v
t

= u
xt

� (f2)u

u
t

� (f2)t

.

Then we continue as before

v
t

= �(F1)uu

u2
x

� 2(F1)xu

u
x

� (F1)xx

� (F1)u

u
xx

�H
u

u
x

�H
x

consider solution to

where the coefficients of the PDE satisfy

we conclude that the solution satisfies

u
t

+ F (u, x, t)
x

+ H(u, x, t) = (g(u)u
x

)
x
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our result in more detail:
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now suppose the solution to

where the conditions on the previous in particular satisfy

we can conclude

pointwise

u
t

+ F (u, x, t)
x

+ H(u, x, t) = (g(u)u
x

)
x

u
x

 M

t

u(x, t)  Mp
t



sketch of the proof

1.) gradient decay: 
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� f 0
2(u) (�a(t)F 0

1(u)u
x

� (a(t)� 1)F 0
2(u)u

x

� b(t)H(u))

= �a(t)[F 00
1 (u)f2

2 + F 0
1(u)f 0

2(u)u
x

]� (a(t)� 1)[F 00
2 (u)f2

2 + F 0
2(u)f 0

2(u)u
x

]

� b(t)H 0(u)f2 + f 0
2(u) (a(t)F 0

1(u)u
x

+ (a(t)� 1)F 0
2(u)u

x

+ b(t)H(u))

= �a(t)F 00
1 (u)f2

2 � (a(t)� 1)F 00
2 (u)f2

2 + f 0
2(u)b(t)H(u)� b(t)H 0(u)f2

= �a(t)F 00
1 (u)f2

2 � a(t)F 00
2 (u)f2

2 + F 00
2 (u)f2

2 + f 0
2(u)b(t)H(u)� b(t)H 0(u)f2

Assume the followings

F 00
1 (u)  0, F 00

2 (u)  0, a(t) < 0, c(t) > 0,

H 0(u)f2(u)� f 0
2(u)H(u) � 0.

Then the lemma is proved. ⇤
Lemma 2.2. Let u be a solution of

eq:1decaysub25eq:1decaysub25 (2.8)

(
u

t

+ F (u, x, t)
x

+ H(u, x, t) = ((g(u) + ")u
x

)
x

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x), x 2 R,

Moreover, if

F (u, x, t) = F1(u, x, t) + F2(u, x, t),

f2(u, x, t) =
F2(u, x, t)
g(u) + "

where

eq:label15eq:label15 (2.9)
(F1)uu

� 0, (F1)xu

� 0, (F1)xx

� 0, f2 � 0, (f2)t

� 0,

H
u

f2 � (f2)u

H � 0, (f2)u

(F1)x

� (F1)u

(f2)x

 0.

then

u
x

 f2(u, x, t),

provided the initial data also satisfy the same estimate.

Proof. Since we know that

F (u, x, t) = F1(u, x, t) + F2(u, x, t),

and

f2(u, x, t) =
F2(u, x, t)
g(u) + "

,

then the equation (2.8) becomes,

eq:decay_21eq:decay_21 (2.10) u
t

+ F1(u, x, t)
x

+ H(u, x, t) = ((g(u) + ")v)
x

,

where v is given by:

v(u, x, t) = u
x

� f2(u, x, t).

Our aim is to prove the following estimate:

u
x

 f2(u, x, t)

Next, we see that

v
t

= u
xt

� (f2)u

u
t

� (f2)t

.

Then we continue as before

v
t

= �(F1)uu

u2
x

� 2(F1)xu

u
x

� (F1)xx

� (F1)u

u
xx

�H
u

u
x

�H
x

here the bound is a combination of the coefficients of the PDE.

v = u

x

� f2(u, x, t)set

assume that at initial time this is negative

and then proceed to show that

vt < 0
this uses properties of the PDE plus the assumptions on the 

coefficients we made



2.) obtain a particular gradient decay of the solution in time: 

for our PDE we introduce the new variable

we get an evolution for w

w
x

< const.

Hence or

w
t

� w

t↵
+ F (w, x)

x

+ H(w, x) = w
xx

applying our result in part 1.) to this equation we conclude

w = ut

w
x

= u
x

t  C

because f2  const.

u

x

(x, t)  C

t



3.) form this time decay of the gradient conclude decay of solution

u(x, t)  M

p
t

↵

we use the fact that we are in one space dimension
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� (f2)u

(�(F1)u

u
x

� (F1)x

�H(u, x, t))� (f2)t

= �(F1)uu

(f2)2 � 2(F1)xu

f2 � (F1)xx

� (F1)u

((f2)u

u
x

+ (f2)x

)
�H

u

f2 �H
x

+ (f2)u

(F1)u

u
x

+ (f2)u

(F1)x

+ (f2)u

H � (f2)t

= �(F1)uu

(f2)2 � 2(F1)xu

f2 � (F1)xx

� (F1)u

(f2)x

�H
u

f2 �H
x

+ (f2)u

(F1)x

+ (f2)u

H � (f2)t

Assume the followings we have the required result.

(F1)uu

� 0, (F1)xu

� 0, (F1)xx

� 0,

f2 � 0, (f2)t

� 0, H
u

f2 � (f2)u

H � 0,

(f2)u

(F1)x

� (F1)u

(f2)x

 0.

⇤

lemma:lemma-3 Lemma 2.3. Let u be any solution of (1.1) which satisfies

u
x

 M

t↵
,

for some constants M and ↵. Then we have the following decay rate of u

u(x, t)  M

t↵/2
, for all x and t.

Proof. First, we fix a time t > 0 and let us consider a point x0 and put A = u(x0, t).
Now since we know that u

x

 M

t

↵ , we have to the left of x0

u(x, t) � A� 1
t↵

(x0 � x)

Hence u will be positive in the interval (x1, x0), with x1 = x0 � At↵ and we can
rewrite the above inequality as

u(x, t) � 1
t↵

(x� x1), for 0  x� x1  At↵.

Integration of this inequality gives

M =
Z

R
u(x, t) dx �

Z
At

↵

0

x

t↵
dx =

t↵A2

2
,

which concludes the claim. ⇤

We are in a position to state the theorem’s of this section. First, we are interested
in the following equation where flux function depends on u only.

eq:1decaysub1eq:1decaysub1 (2.11)

(
u

t

+ F (u)
x

+ H(u) = G(u)
xx

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x), x 2 R.

Theorem 2.1. There exist a weak solution of the Cauchy problem (2.11) which

satisfies the follwoing decay estimate:

• CASE-I: Let the flux function F (u) be a polynomial in u, Then under con-

ditions (2.5)

u(x, t)  M

t
,

where M is a constant.
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• CASE-I: Let the flux function F (u) be a polynomial in u, Then under con-
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fix t and x0

integrating gives

which implies

u(x, t) � 1p
t

(x� x1) for 0  x� x1  At

x1 = x0 �At

u

x

(x, t)  C

t

( we know                                  )
pos.

pos. in the inetrval (x1, x0)



Now we consider time decay of the solution to porous media type 
equations with degenerate diffusion in higher space dimensions
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The second part of the paper deals with degenerate convection di↵usion equation
in several space dimensions, which of the form

eq:main_porous_1eq:main_porous_1 (1.5) u
t

= �um +
NX

i=1

f
i

(u)
xi � S(u),

with the initial data

eq:main_porous_initial_1eq:main_porous_initial_1 (1.6) u(x, 0) = u0(x1, x2, · · · , x
N

) � 0.

Where N denotes the space dimension. The equation (1.5) arises in several appli-
cations in which u stands for a nonnegative quantity. For example if f

i

= S = 0,
then the equation (1.5) becomes the degenerate di↵usion equation of the form

eq:main_diffusion_4eq:main_diffusion_4 (1.7)

(
u

t

= �um,

u(x, 0) = u0(x).

In fact this equation models the non-stationary flow of a compressible Newtonian
fluid in a porous medium under polytropic conditions. If the flow is not polytropic,
(1.3) is replaced by the more general equation of Newtonian filtration

eq:main_diffusion_1eq:main_diffusion_1 (1.8)

(
u

t

= �G(u),
u(x, 0) = u0(x),

where G(u) is a nondecreasing smooth function. If the medium has also heat
sources, then (1.8) is replaced by an equation of the form

eq:main_diffusion_2eq:main_diffusion_2 (1.9)

(
u

t

= �G(u)� S(u),
u(x, 0) = u0(x).

It is well known that degenerate parabolic equations do not possess a classical
solution. The solution u in general fails to be smooth at the interface between
a parabolic region and a region of parabolic degeneracy. The regularity of such
solutions has been studied by Lu. et.al in [ref].

2. Decay rate

In this section, we are interested to find the decay rate of solutions of most
general degenerate convection di↵usion equation of the form

eq:decayrate1eq:decayrate1 (2.1)

(
u

t

+ F (u, x, t)
x

+ H(u, x, t) = G(u)
xx

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x) x 2 R.

Note that since the nonlinear di↵usion G(u) can be degenerate we cannot expect,
in general, smooth solutions of (2.1). Consequently, we are not entitled to calculate
derivatives of G(u). To overcome this di�culty, as usual we first regularize the
equation (2.1) by adding small di↵usion and then find the estimates independent
of " which in turn help us to estimate the decay rate of solutions of (2.1).

In what follows, we first consider the viscous equation corresponding to (2.1),
given by

eq:decay_viscouseq:decay_viscous (2.2) u
t

+ F (u, x, t)
x

+ H(u, x, t) = ((g(u) + ")u
x

)
x

,

together with the initial data

eq:main_initialeq:main_initial (2.3) u(x, 0) = u"

0(x) = u0 ⇤ J" =
Z

R
u0(x� y)J"(y) dy,
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derivatives of G(u). To overcome this di�culty, as usual we first regularize the
equation (2.1) by adding small di↵usion and then find the estimates independent
of " which in turn help us to estimate the decay rate of solutions of (2.1).

In what follows, we first consider the viscous equation corresponding to (2.1),
given by

eq:decay_viscouseq:decay_viscous (2.2) u
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+ F (u, x, t)
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x

,

together with the initial data
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non-negative initial data

Because of parabolic degeneracy the solution may fail to be smooth.

So we perturb both the initial data to be strictly positive
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Proof. To prove the above theprem, one can add a small positive constant " to the
initial data and consider the problem in uniformly parabolic region u" � ". After
obtaining all the necessary bound on u", which will be independent of ", one can
pass to the limit in order to conclude that those results are indeed tru for u. This
is quite a standard proceedure and we will omit these steps. Here we only give the
proof of the uniform estimates.

To begin with, let us make the following transformation

v = un.

Then, it follows that

eq:est_1eq:est_1 (4.3)

(um)
xx

= (um�nv)
xx

= um�nv
xx

+ 2(um�n)
x

v
x

+ v(um�n)
xx

= um�nv
xx

+ 2(m� n)um�n�1u
x

v
x

+ v((m� n)um�n�1u
x

)
x

= um�nv
xx

+
2(m� n)

n
um�2nv2

x

+
m� n

n
v(um�2nv

x

)
x

= um�nv
xx

+
2(m� n)

n
um�2nv2

x

+
m� n

n
um�2nvv

xx

+
(m� n)(m� 2n)

n
vv

x

um�2n�1u
x

=
m

n
um�nv

xx

+
m(m� n)

n2
um�2nv2

x

,

and consequently,

eq:est_2eq:est_2 (4.4) �(um) =
m

n
um�n�v +

m(m� n)
n2

um�2n

X

i

v2
xi

.

Since our aim is to first get an estimate of derivative of u, so we will make the
following transformation

w =
1
2

NX

i=1

v2
xi

.

Then it follows from (4.3) and (4.4) that
eq:est_3eq:est_3 (4.5)

v
t

= nun�1�(um) +
X

i

f 0
i

(u)v
xi � nun�1S(u)

= mv(m�1)/n�v +
2m(m� n)

n
v(m�n�1)/nw +

X

i

f 0
i

(u)v
xi � nun�1S(u).

In order to calculate the di↵usion term more neatly, we let h(v) = mv(m�1)/n.
Then it can be shown that (we are not going to specify the range of i and j to avoid

and also the equation to be strictly parabolic.

One can get uniform bounds on the solution independent of     .
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This allows us to manipulate the equation.



we can prove bounds on the gradient of the solution

0 < ↵  1

under certain assumptions on the coefficients of this PDE
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+ H(u, x, t) = G(u)
xx
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In what follows, we first consider the viscous equation corresponding to (2.1),
given by

eq:decay_viscouseq:decay_viscous (2.2) u
t

+ F (u, x, t)
x

+ H(u, x, t) = ((g(u) + ")u
x

)
x

,

together with the initial data

eq:main_initialeq:main_initial (2.3) u(x, 0) = u"

0(x) = u0 ⇤ J" =
Z

R
u0(x� y)J"(y) dy,

An example for which this holds true is 
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= �F 0
1(u)a(x)

@f2

@x

1
t
� F 00

1 (u)a(x)
f2
2

t2
� 2F 0

1(u)a0(x)
f2

t
� F1(u)a00(x)

+
f2(u, x)

t2
+

f 02(u, x)F1(u)a0(x)
t

Hence, we need the following conditions:

F1(u)a00(x) � 0,

f2 � F 00
1 f2

2 a(x)  0,

f 02F1a
0(x)� 2F 0

1a
0(x)f2 � F 0

1a(x)
@f2

@x
 0.

We can choose the following:

F2(u) = g(u), so that f2(u, x) = b(x)

F1(u) � 0, F 0
1(u) � 0, a(x)F 00

1 (u) � 1,

a(x) � 0, a0(x) � 0, b0(x) � 0,

f 02F1 � 2F 0
1f2  0.

4. Decay estimate for cauchy problem in multi-dimensional space
with porous media type degenerate diffusion

In this section, we study the decay rate of solutions to the following degenerate
parabolic equation in the N -dimensional space

eq:main_porouseq:main_porous (4.1) u
t

= �um +
NX

i=1

f
i

(u)
xi � S(u),

with the initial data

eq:main_porous_initialeq:main_porous_initial (4.2) u(x, 0) = u0(x1, x2, · · · , x
N

) � 0.

Theorem 4.1. There exists a weak solution u of the Cauchy problem (4.1), (4.2)
which satisfies the following decay rates:

CASE-I: Let S = 0 and for each i let f
i

= 0.
(a) If 1 < m < 1 + 1p

N

, then (up)
xi(x, t)  M

t

↵
/2 for every i, t > 0, and

↵ 2 (0, 1) is any constant. Also p is given by

p � m� 1
2
�

p
1�N(m� 1)2

2

CASE-II: Let S(u) satisfies

R
R S(u) dx  C, where C is a constant. Also let

|f 00
i

(u)|  C |u|l�2
, |S0(u)|  C |u|l�m

,

����
S(u)

u

����  C |u|l�m

.

(a) If 1 < m < 1 + 1p
N

, then (up)
xi(x, t)  M

t

↵
/2 for every i, t > 0, and ↵ � 1

is any constant. Also p is given by

p � m� 1
2
�

p
1�N(m� 1)2

2

u(x, 0) � 0

(u2)
xi 

M

(1 + t)
↵
2

any ↵ � 1



the proof consists of long calculations 

the idea is to do several changes of variables
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Proof. To prove the above theprem, one can add a small positive constant " to the
initial data and consider the problem in uniformly parabolic region u" � ". After
obtaining all the necessary bound on u", which will be independent of ", one can
pass to the limit in order to conclude that those results are indeed tru for u. This
is quite a standard proceedure and we will omit these steps. Here we only give the
proof of the uniform estimates.

To begin with, let us make the following transformation

v = un.

Then, it follows that

eq:est_1eq:est_1 (4.3)

(um)
xx

= (um�nv)
xx

= um�nv
xx

+ 2(um�n)
x

v
x

+ v(um�n)
xx

= um�nv
xx

+ 2(m� n)um�n�1u
x

v
x

+ v((m� n)um�n�1u
x

)
x

= um�nv
xx

+
2(m� n)

n
um�2nv2

x

+
m� n

n
v(um�2nv

x

)
x

= um�nv
xx

+
2(m� n)

n
um�2nv2

x

+
m� n

n
um�2nvv

xx

+
(m� n)(m� 2n)

n
vv

x

um�2n�1u
x

=
m

n
um�nv

xx

+
m(m� n)

n2
um�2nv2

x

,

and consequently,

eq:est_2eq:est_2 (4.4) �(um) =
m

n
um�n�v +

m(m� n)
n2

um�2n

X

i

v2
xi

.

Since our aim is to first get an estimate of derivative of u, so we will make the
following transformation

w =
1
2

NX

i=1

v2
xi

.

Then it follows from (4.3) and (4.4) that
eq:est_3eq:est_3 (4.5)

v
t

= nun�1�(um) +
X

i

f 0
i

(u)v
xi � nun�1S(u)

= mv(m�1)/n�v +
2m(m� n)

n
v(m�n�1)/nw +

X

i

f 0
i

(u)v
xi � nun�1S(u).

In order to calculate the di↵usion term more neatly, we let h(v) = mv(m�1)/n.
Then it can be shown that (we are not going to specify the range of i and j to avoid
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which gives an evolution of v

first change of variables:
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clumsy notations)
eq:est_4eq:est_4 (4.6)

(h(v)�v)
xivxi = (h(v)(�v)v

xi)xi � h(v)(�v)v
xixi

=
X

j 6=i

(h(v)v
xjxj vxi)xi +

✓
h(v)(

v2
xi

2
)
xi

◆

xi

� h(v)(�v)v
xixi

=
X

j 6=i

�
v

xjxj (h(v)v
xi)xi + h(v)v

xi(vxi)xjxj

�

+ h(v)(
v2

xi

2
)
xixi + (

v2
xi

2
)
xih

0(v)v
xi � h(v)(�v)v

xixi

=
X

j 6=i

✓
v

xjxj h
0(v)v2

xi
+ h(v)v

xjxj vxixi + h(v)
✓

(
v2

xi

2
)
xjxj � v2

xixj

◆◆

+ h(v)(
v2

xi

2
)
xixi + (

v2
xi

2
)
xih

0(v)v
xi � h(v)(�v)v

xixi

=
X

i,j

✓
h0(v)v2

xi
v

xixj + h(v)(
v2

xi

2
)
xjxj � h(v)v2

xixj

◆
.

In order to obtain a equation for w, we need to calculate the following

eq:est_5eq:est_5 (4.7)

(v
xi)t

v
xi = (h(v)�v)

xivxi +
2m(m� n)

n

⇣
v(m�n�1)/nw

⌘

xi

v
xi

+

0

@
X

j

f 0
j

(u)v
xj

1

A

xi

v
xi � (nun�1S(u))

xivxi

= (h(v)�v)
xivxi +

2m(m� n)
n

v(m�n�1)/nv
xiwxi

+
2m(m� n)(m� n� 1)

n2
v(m�2n�1)/nwv2

xi
+

X

i,j

f 0
j

(u)(
v2

xi

2
)
xj

+
X

i,j

f 00
j

(u)
nun�1

v2
xi

v
xj �

✓
(n� 1)

S(u)
u

v
xi + S0(u)v

xi

◆
v

xi .

So, finally combining (4.4)-(4.7), we conclude that w satisfies the following equation
eq:est_6eq:est_6 (4.8)

w
t

= 2h0(v)(�v)w + h(v)�w �
X

i,j

h(v)v2
xixj

+
2m(m� n)

n
v(m�n�1)/n

X

i

v
xiwxi +

4m(m� n)(m� n� 1)
n2

v(m�2n�1)/nw2

+
X

j

f 0
j

(u)w
xj +

X

j

f 00
j

(u)
nun�1

v
xj w � 2(n� 1)

S(u)
u

w � 2S0(u)w.

To achieve our goal, we need another transformation, mainly the following

✓ = (w � 1
t↵

).

then set

which gives an evolution of w

next change of variables
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✓
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2
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◆
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X
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�
v

xjxj (h(v)v
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xi(vxi)xjxj

�

+ h(v)(
v2

xi

2
)
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v2
xi

2
)
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0(v)v
xi � h(v)(�v)v

xixi

=
X

j 6=i

✓
v
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0(v)v2

xi
+ h(v)v

xjxj vxixi + h(v)
✓

(
v2

xi

2
)
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◆◆

+ h(v)(
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xi

2
)
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v2
xi

2
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✓
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◆
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(v
xi)t

v
xi = (h(v)�v)
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n

⇣
v(m�n�1)/nw

⌘
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v
xi

+

0

@
X

j

f 0
j

(u)v
xj

1

A

xi

v
xi � (nun�1S(u))

xivxi

= (h(v)�v)
xivxi +

2m(m� n)
n

v(m�n�1)/nv
xiwxi

+
2m(m� n)(m� n� 1)

n2
v(m�2n�1)/nwv2

xi
+

X

i,j

f 0
j

(u)(
v2

xi

2
)
xj

+
X

i,j

f 00
j

(u)
nun�1

v2
xi

v
xj �

✓
(n� 1)

S(u)
u

v
xi + S0(u)v

xi

◆
v

xi .

So, finally combining (4.4)-(4.7), we conclude that w satisfies the following equation
eq:est_6eq:est_6 (4.8)

w
t

= 2h0(v)(�v)w + h(v)�w �
X

i,j

h(v)v2
xixj

+
2m(m� n)

n
v(m�n�1)/n

X

i

v
xiwxi +

4m(m� n)(m� n� 1)
n2

v(m�2n�1)/nw2

+
X

j

f 0
j

(u)w
xj +

X

j

f 00
j

(u)
nun�1

v
xj w � 2(n� 1)

S(u)
u
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X
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X

j

f 0
j

(u)w
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X

j
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j
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v
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i.e,
✓

m� n� 1
2

◆2

� 1
4

+
(m� 1)2N

4
 0.

The above inequality implies,

m�
1 +

p
1� (m� 1)2N

2
< n < m�

1�
p

1� (m� 1)2N
2

Using the above informations, equation (4.9) becomes,
eq:est_9eq:est_9 (4.11)

✓
t

+ (
1
t↵

)
t

 2h0(v)(�v)✓ + h(v)�✓ � cmv(m�2n�1)/n

1
t2↵

+
2m(m� n)

n
v(m�n�1)/n

X

i

v
xi✓xi +

4m(m� n)(m� n� 1)
n2

v(m�2n�1)/n✓2.

Keeping in mind that n 2 (m � 1, m), we see that v(m�2n�1)/n is bounded. If we
choose 0 < ↵  1 then we see that the following estimate is true for large t

�cv(m�2n�1)/n

1
t2↵

+
↵

t↵+1
 0

This is only valid for large t. Should we state in the theorem that the
decay estimate (b) holds for large t? What happens if v = 0? It will be
good if we show that v(m�2n�1)/n � ↵

CASE II: As before, first we claim that

2h0(v)(�v)
1
t↵
�
X

i,j

h(v)v2
xixj

+
4m(m� n)(m� n� 1)

n2
v(m�2n�1)/n

1
t2↵

 0,

where c is a suitable positive constant and 1 < m < 1+ 1p
N

. The proof of the claim
is a simple computation of the above terms as before. To begin with, let P = �v.
Then it is easy to see that

eq:est_81eq:est_81 (4.12)
NX

i,j=1

h(v)v2
xixj

� h(v)
NX

i=1

v2
xixj

� h(v)
N

 
NX

i=1

v
xixj

!2

=
h(v)
N

P 2.

Now since

2h0(v)(�v)
1
t↵
�
X

i,j

h(v)v2
xixj

+
4m(m� n)(m� n� 1)

n2
v(m�2n�1)/n

1
t2↵

 2h0(v)P
1
t↵
� h(v)

N
P 2 � 4m(m� n)(m� n� 1)

n2
v(m�2n�1)/n

1
t2↵

,

we now choose n 2 (m� 1, m) and assume that

1
N

4(m� n)(n� (m� 1))
n2

>
(m� 1)2

n2
,

i.e,
✓

m� n� 1
2

◆2

� 1
4

+
(m� 1)2N

4
 0.

applying the maximum principle and our assumptions gives the desired 
gradient bound on u

next change of variables



lets summarize:

u
t

+ F (u, x, t)
x

+ H(u, x, t) = (g(u)u
x

)
x

for degenerate convection diffusion equations in one space dimension

we identified a certain class for which we can obtain time decay

for several space dimensions
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The second part of the paper deals with degenerate convection di↵usion equation
in several space dimensions, which of the form

eq:main_porous_1eq:main_porous_1 (1.5) u
t

= �um +
NX

i=1

f
i

(u)
xi � S(u),

with the initial data

eq:main_porous_initial_1eq:main_porous_initial_1 (1.6) u(x, 0) = u0(x1, x2, · · · , x
N

) � 0.

Where N denotes the space dimension. The equation (1.5) arises in several appli-
cations in which u stands for a nonnegative quantity. For example if f

i

= S = 0,
then the equation (1.5) becomes the degenerate di↵usion equation of the form

eq:main_diffusion_4eq:main_diffusion_4 (1.7)

(
u

t

= �um,

u(x, 0) = u0(x).

In fact this equation models the non-stationary flow of a compressible Newtonian
fluid in a porous medium under polytropic conditions. If the flow is not polytropic,
(1.3) is replaced by the more general equation of Newtonian filtration

eq:main_diffusion_1eq:main_diffusion_1 (1.8)

(
u

t

= �G(u),
u(x, 0) = u0(x),

where G(u) is a nondecreasing smooth function. If the medium has also heat
sources, then (1.8) is replaced by an equation of the form

eq:main_diffusion_2eq:main_diffusion_2 (1.9)

(
u

t

= �G(u)� S(u),
u(x, 0) = u0(x).

It is well known that degenerate parabolic equations do not possess a classical
solution. The solution u in general fails to be smooth at the interface between
a parabolic region and a region of parabolic degeneracy. The regularity of such
solutions has been studied by Lu. et.al in [ref].

2. Decay rate

In this section, we are interested to find the decay rate of solutions of most
general degenerate convection di↵usion equation of the form

eq:decayrate1eq:decayrate1 (2.1)

(
u

t

+ F (u, x, t)
x

+ H(u, x, t) = G(u)
xx

, (x, t) 2 R⇥ (0, T ),
u(x, 0) = u0(x) x 2 R.

Note that since the nonlinear di↵usion G(u) can be degenerate we cannot expect,
in general, smooth solutions of (2.1). Consequently, we are not entitled to calculate
derivatives of G(u). To overcome this di�culty, as usual we first regularize the
equation (2.1) by adding small di↵usion and then find the estimates independent
of " which in turn help us to estimate the decay rate of solutions of (2.1).

In what follows, we first consider the viscous equation corresponding to (2.1),
given by

eq:decay_viscouseq:decay_viscous (2.2) u
t

+ F (u, x, t)
x

+ H(u, x, t) = ((g(u) + ")u
x

)
x

,

together with the initial data

eq:main_initialeq:main_initial (2.3) u(x, 0) = u"

0(x) = u0 ⇤ J" =
Z

R
u0(x� y)J"(y) dy,

we identified equations for which we can show time decay of the derivative

(u
xi)

2  M

t↵

u(x, t)  Mp
t



Thank you for your attention!



here are examples of the type of equations for which 
we can show time decay of this type

u
t

+ (u2 +
u2 + 1

t
)
x

= u
xx

u
t

+ (u3)
x

= (u2)
xx


