
Using Geometric Singular Perturbation Theory to
Understand Singular Shocks

Barbara Lee Keyfitz

The Ohio State University
bkeyfitz@math.ohio-state.edu

June 26, 2012

HYPE 2012 Padova

Barbara Keyfitz (Ohio State) GSPT and Singular Shocks HYPE 2012 Padova 1 / 17



Outline

1 Conservation Laws and Their Pathologies

2 The Problem We Would Like to Solve: Two-Component
Chromatography

3 The Problem We Did Solve: Gas Dynamics, Conserving the Wrong
Variables

Barbara Keyfitz (Ohio State) GSPT and Singular Shocks HYPE 2012 Padova 2 / 17



Background

Conservation Laws and Their Pathologies

Our focus, in Ut + F (U)x ≡ Ut + A(U)Ux = 0, λi (A(U)) real

Dependence of characteristic speeds on state U
Example: Burgers equation, ut + uux = 0, λ = u
Systems exhibit more complicated dependence(s) than do scalar
equations

Weak solutions are standard

Weak form of the system
∫
Uφt + F (U)φx = 0

Bounded, piecewise smooth solutions exhibit shocks that satisfy
Rankine-Hugoniot relation s[U] = [F (U)]

Low-regularity solutions: singular shocks

Are not locally bounded
Do not satisfy RH relation
Satisfy the equation in an even weaker sense (theory by Sever)
Some examples can be described by distributions
Are best understood by means of approximations
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Chromatography

Conservation Law Models for Chromatography

Two components (concentration ui for chemical i); total mass conserved

∂

∂t

(
ui + vi (u)

)
+

∂

∂x
ui = 0 , i = 1, 2

Forced at constant velocity through a column packed with a solid
(‘fixed bed’) onto which they are adsorbed

Neglect: heat cond., diffusion, viscosity & finite rate of adsorption

System in thermal and chemical equilibrium

Amount of chemical i adsorbed is vi (u1, u2)

vi obtained from adsorption laws (linear rates) dv
dt = k1c(V − v)− k2v

At equilibrium, dv/dt = 0, non-dimensionalized functions are

vi =
aiui

1 + u1 + u2

Langmuir kinetics: Components compete at different rates, a1 < a2

Classical and well-studied system
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Chromatography

‘Generalized Langmuir’ kinetics of Marco Mazzotti, ETH

New model for v :

vi =
aiui

1− u1 + u2

replaces

vi =
aiui

1 + u1 + u2

Physically represents ‘cooperation’
rather than competition for sites

u

u

1

2

NH

Findings

System not hyperbolic for some (physically realizable) states

Restrict to hyperbolic region near 0

Not all Riemann problems have solutions
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Chromatography

What Happens?

Simulation (phase plane) by Mazzotti

Figure 11b944

71

Barbara Keyfitz (Ohio State) GSPT and Singular Shocks HYPE 2012 Padova 6 / 17



Chromatography

Appearance of Singular Shocks

Simulation (Mazzotti)

Author's personal copy

2004 M. Mazzotti et al. / J. Chromatogr. A 1217 (2010) 2002–2012

Fig. 2. Frontal analysis simulations where species 2 fed at t = 0 displaces species 1
initially saturating the column. The initial concentration of species 1 (red lines in the
figure) and the feed concentration of species 2 (blue lines) can be read directly from
the figure. Lines corresponding to the same simulation are identified because they
are of the same type. There are three simulations without interaction between the
fronts of species 1 and 2, where concentration profiles are plotted as dotted lines,
dash-dotted lines and dashed lines (in order of increasing concentration). There
are three simulations where fronts interact leading to delta-shocks of increasing
strength, where concentrations profiles are plotted as solid lines, dashed lines and
again solid lines for the highest concentration level. Simulations have been carried
out using an equilibrium dispersive model and the adsorption isotherm (1) with
H1 = 2.381, H2 = 3.342, K1 = 0.0155 L/g, and K2 = 0.0162 L/g. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of the article.)

as a result, no classical shock can exist between the initial and the
feed compositions that would allow for mass conservation [3,4].
Thus, matter accumulates at the discontinuity, in an amount that
increases as the front travels along the column, thus resulting in
the traveling spike of increasing size, or strength, that is schemati-
cally illustrated in Fig. 1. The larger the concentrations of species 1
and 2, the stronger the interactions between the desorption front
of species 1 and the adsorption front of species 2, and the larger the
size of the delta-shock at the column outlet, as shown in the calcu-
lated chromatograms in Fig. 2 for concentrations up to c1 = 8.0 g/L
and c2 = 30.0 g/L.

From a mathematical point of view, a classical shock transition
corresponds to a step function, i.e. a Heavyside function. A delta-
shock can be represented as the superimposition of a Heavyside
function and a Dirac-delta function. Actually, the latter is a gen-
eralized distribution, which is zero almost everywhere but has an
integral over the real axis that equals one; in other words it is zero
everywhere except at its origin where it is undefined or infinitely
large and its integral is one. The Dirac-delta is a mathematical object
that has a finite mass concentrated in a zero volume. Delta-shocks
have been observed previously for a few other systems of nonlinear
hyperbolic equations (see for instance [9] and a recent review [10]).
Their mathematical treatment is very difficult and a general theory
is still missing. Thus, every new mathematical model exhibiting a
delta-shock solution must be dealt with in new, original ways.

In the case of the delta-shock considered here, it was possible
to reach several general conclusions. First, exact criteria for the
occurrence of a delta-shock were derived [3,4]. In the case of the
pure compound 2 fed at concentration c2 and displacing the pure

Fig. 3. Chemical structure of phenetole (a, C8H10O) and of 4-tert-butylphenol (b,
C10H14O).

compound 1 initially present in the column at concentration c1, a
delta-shock occurs if and only if:

n1

c1
= H1

1 − K1c1
>

H2

1 + K2c2
= n2

c2
, (2)

where the adsorbed phase concentrations n1 and n2 are calculated
using Eq. (1) for the initial state (state B in Fig. 1) and for the feed
state (state A in Fig. 1), respectively.

Second, the speed of propagation of the delta-shock was cal-
culated. In the case of the pure compound 2 displacing the pure
compound 1, the delta-shock will exit the column after a time
following the injection of species 2 that is given by [4]:

tds
R = V

Q

�
ε + (1 − ε)

H1K2n2 + H2K1n1

H1K2c2 + H2K1c1

�
, (3)

where all the concentrations in this equation have the same mean-
ing as above, V and ε are the volume and the total porosity of the
column, respectively, and Q is the volumetric flow rate.

Finally, it was also possible to determine explicitly the mass
of component i present in the traveling spike when it reaches the
column outlet [4]:

hds
i =

VHiK3−i(1 − ε)(c2n1 − c1n2)
H2K1(εc1 + (1 − ε)n1) + H1K2(εc2 + (1 − ε)n2)

(i = 1, 2),

(4)

which is always positive thanks to inequality (2). It is easy to
demonstrate that as c1 and c2 increase, while their ratio remains
constant, the delta-shock hold up of species i, i.e. hds

i , increases as
well.

3. Experimental

3.1. Materials and methods

Over the last few years in our laboratories several systems
were tested unsuccessfully for a behavior corresponding to the
one described by the mixed M2 isotherm in a concentration range
that would be wide enough to satisfy the delta-shock prerequisite
conditions. Finally, it was observed that phenetole (ethoxyben-
zene or ethyl-phenyl-ether) and 4-tert-butylphenol (see Fig. 3 for
their chemical structures) exhibit an anti-Langmuir and a Lang-
muir, respectively, adsorption behavior in a methanol–water (2:1,
v/v) solution, at room temperature on a C18 column. Since the for-
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Chromatography

Experimental Appearance of Singular Shocks

Experiments (Mazzotti et al)

Author's personal copy

M. Mazzotti et al. / J. Chromatogr. A 1217 (2010) 2002–2012 2009

Fig. 7. Effect of feed concentration on the interaction between phenetole (comp. 1) and 4-tert-butylphenol (comp. 2) in frontal analysis experiments (Zurich laboratory). (a)
5 cm column, high concentration range; (b) 25 cm column, low concentration range.

Two final remarks are worth making. The first remark refers to
the shape of the peak in the experiment at 100% concentration (see
Fig. 7a, inset), which is in this case clearly different from that exhib-
ited by the peaks obtained at higher concentration. Both before
and after the main sharp peak, the UV profile reaches two plateaus,
which are above the feed concentrations of the two species; they
elute for a time, namely between 0.2 and 0.3 min, which is compa-
rable to the elution time of the main peak itself, i.e. about 0.2 min.

We do not have an explanation for this effect, which is common
to all three columns, but is not so evident or not at all exhibited at
higher concentration.

The second remark refers to the two sharp fronts exhibited by
all delta-shocks’ spikes. It is well known that sharp fronts in non-
linear chromatography exhibit a constant pattern behavior, which
is called shock layer, when they separate two constant states and
propagate through long enough columns [11–13]. Although there

Components phenetole (C8H10O) and 4-tert-butylphenol (C10H14O)
Selected to give (1) cooperation in adsorption rather than competition and
(2) linear adsorption rates at experimental concentrations
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A Solved Problem

The Velocity-Entropy System of Isentropic Gas Dynamics

Joint work with Charis Tsikkou, to appear in QAM (following Schecter){
ρt + (u1ρ)x = 0
(ρu1)t + (ρu2

1 + Aργ)x = 0,

q(ρ) = Aγ
ργ−1

γ − 1
= ργ−1

u2 =
2− γ

2
u2

1 − q

1 < γ < 5/3




u1t + ( (3−γ)
2 u2

1 − u2)x = 0

u2t + [ (2−γ)(5−3γ)
6 u3

1 + (γ − 1)u1u2]x = 0.

B

U
A

U
B

R
2
(U

L
)R

1
(U

L
)

U
L

  S
1

S
2

S
1

S
2
  

Nonhyperbolic region (above B)

Compact Hugoniot locus
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A Solved Problem

Region of Classical Riemann Solutions

B

 U
A

R
2
(U

L
)

R
1
(U

L
)

U
L

S
1

S
2
  U

D
J

1U
C

R
2
(U

C
)

1

2 3 
↓

4

↓
5

6

Region 1: 1-shock ⇒ 2-shock

Region 2: 1-rarefaction ⇒ 2-rarefaction

Region 3: 1-rarefaction ⇒ 2-shock

Region 4: 1-shock ⇒ 2-rarefaction

Region 5: 1-rarefaction ⇒ vacuum
state ⇒ 2-rarefaction
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A Solved Problem

Approximation by Dafermos Regularization

εtUxx = Ut + F (U)x

ξ =
x

t

ε
d2U

dξ2
=

(
DF (U)− ξI

)
dU

dξ

BC U(−∞) = UL , U(+∞) = UR

U(ξ) =




1
εp y1( ξ−sεq )

1
εr y2( ξ−sεq )




η = ξ−s
εq ; p = 1, q = 2 = r ;

dY

dη
= F (Y )

y
2
=c

+
y

1
2

y
2
=c

−
y

1
2

y
1

y
2

Inner part/Outer part
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A Solved Problem

Existence of Profiles via Geometric Singular Perturbation
Theory: Krupa, Szmolyan & Schecter
GSPT answers questions:

How is the singular part of the solution (the homoclinic orbit)
connected to the outer part (constant states)?
What happens to the RH relation?
What is limiting process ε→ 0?

Ut + F (U)x = εtUxx

Self-similar ξ = x
t

εU ′′ = −ξU ′ + F (U)′

= (−ξU)′ + U + F (U)′

Define

W ≡ F (U)− ξU − εU ′

then W ′ = −U and system is

εU ′ = F (U)− ξU −W

W ′ = −U
ξ′ = 1

Example of a fast-slow system

εx ′ = f (x , y , ε)

y ′ = g(x , y , ε)
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A Solved Problem

The Idea

Fast time τ = θ/ε

System

{
εx ′ = f (x , y , ε)
y ′ = g(x , y , ε)

1 Solve in slow time

ε = 0

{
0 = f (x , y , 0)
y ′ = g(x , y , 0)

2 Solve in fast time

ε = 0

{
ẋ = f (x , y , 0)
ẏ = 0

3 Show that these singular orbits
are connected if ε > 0

4 To use ‘Fenichel Theory’, which
requires normally hyperbolic
invariant manifolds (orbits),
‘blow up’ some orbits if
necessary

Our system uses τ :

U̇ = F (U)− ξU −W

Ẇ = −εU
ξ̇ = ε

with invariant sets

{W = F (U)− ξU}

and scaling with η = τ/ε and
Y = diag{ε, ε2}U:

Y ′ = F (Y )

W ′ = −diag{0, 1}Y
ξ′ = 0

Barbara Keyfitz (Ohio State) GSPT and Singular Shocks HYPE 2012 Padova 13 / 17



A Solved Problem

Reduced System

Blow up of eq’m E = {Y = 0, ε = 0}
Y = diag(r̄ , r̄2)Y , ε = r̄ ε̄

|Y |2 + ε̄2 = 1
y

2
=c

+
y

1
2

y
2
=c

−
y

1
2

y
1

y
2

Outer system U →∞ in finite time
Inner system Y ⇒ homoclinic orbit

[W ] =

{
0∫
y2

so one RH cond holds, not both

Coord chart on blown up surface:





a = ȳ1√
ȳ2

= y1√
y2

= u1√
u2

r2 = r̄2ȳ2 = y2 = ε2u2

b = ε̄√
ȳ2

= ε√
y2

= 1√
u2

a′ =(2− γ)a2 − 1− (2−γ)(5−3γ)
12 a4

+b
2

(
− ξa− 2bw1 + b2aw2

)

r ′ = r
6

( (2−γ)(5−3γ)
2 a3 − 3bξ

+3(γ − 1)a− 3b3w2

)

w ′1 =− rab, w ′2 = −r , ξ′ = rb2

b′ =− b
6

( (2−γ)(5−3γ)
2 a3 − 3bξ

+3(γ − 1)a− 3b3w2

)
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A Solved Problem

Overview of the Singular Trajectories
22 BARBARA LEE KEYFITZ AND CHARIS TSIKKOU

ε̄

y2

u

ξ

r

a

b

a4 a3

ξ = ssingular

qL

a2, ξ = ssingular, qR

a1

S0

S2

ξ < λ1(U)

λ2(U) < ξ

UL

UR

Wu(T 0
0 (UL)), ξ < ssingular

Wu(N0
0 (UL)), ξ < ssingular

W s(qL)

Wu(C3)

W s(C2)

Wu(qR)

W s(N0
2 (UR)), ξ > ssingular

W s(T 0
2 (UR)), ξ > ssingular

Figure 4.1. Chart 1 and 2.

As might be expected, we require r = 0 (which corresponds to ε = 0) to find invariant

manifolds. In addition, in the region of interest we must set b = 0, and then we have

an equilibrium of (4.3.2) when da
dτ = 0; that is, when a is a root of the equation (4.2.4)

introduced in the definition of qL and qR. The four roots of (4.2.4) are

a1 = −
√

2

(5 − 3γ)
[3 +

√
3√

2 − γ
], a2 = −

√
2

(5 − 3γ)
[3 −

√
3√

2 − γ
],

a3 =

√
2

(5 − 3γ)
[3 −

√
3√

2 − γ
], a4 =

√
2

(5 − 3γ)
[3 +

√
3√

2 − γ
].

a3 & a2: equilibria of
{a, b, r} system
Verify

normal
hyperbolicity

transversality

hypotheses of
corner lemma

role of strict
overcompressibil-
ity
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A Solved Problem

The Result

Theorem

In the velocity-entropy system with 1 < γ < 5/3, assume that UR is in the
interior of region 7 with respect to UL, so that with

ssingular(UL,UR) ≡ F1(UL)− F2(UR)

uL1 − uR1
,

we have
0 < F2(UL)− F2(UR)− ssingular(uL2 − uR2) ,

and the strict inequalities

1 ssingular(UL,UR) < λ1(UL)

2 λ2(UR) < ssingular(UL,UR)

hold. Then there exists a singular shock connecting UL and UR ; that is, a
solution Uε of the Dafermos regularization which becomes unbounded as
ε→ 0.
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A Solved Problem

Summary

Original model problem (isothermal gas dynamics, γ = 1) led to
discovery of weak solutions of very low regularity (measures)

Theory developed by Sever for systems with this structure

Sever’s theory is based on distributions (δ-functions)

GSPT, developed by Fenichel, Kopell, Kaper, Jones, Krupa,
Szmolyan, and others, provides insight into structure of singular
solutions (more detail than distributions)

Other approaches given by generalized distribution theory of
Colombeau et al

Recent model from chromatography has physical significance, and
cannot be analysed via classical distributions

Analysis of chromatography system using GSPT is in progress (with
Ting-Hao Hsu, Martin Krupa, and Charis Tsikkou)
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