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@ Conservation Laws and Their Pathologies

© The Problem We Would Like to Solve: Two-Component
Chromatography

© The Problem We Did Solve: Gas Dynamics, Conserving the Wrong
Variables
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Conservation Laws and Their Pathologies

e Our focus, in Uy + F(U)x = Us + A(U)U, = 0, N(A(U)) real
e Dependence of characteristic speeds on state U
o Example: Burgers equation, u; + uuy =0, A =u
o Systems exhibit more complicated dependence(s) than do scalar
equations

@ Weak solutions are standard
o Weak form of the system [ U¢: + F(U)px =0
e Bounded, piecewise smooth solutions exhibit shocks that satisfy
Rankine-Hugoniot relation s[U] = [F(U)]
@ Low-regularity solutions: singular shocks

Are not locally bounded

Do not satisfy RH relation

Satisfy the equation in an even weaker sense (theory by Sever)
Some examples can be described by distributions

Are best understood by means of approximations
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Conservation Law Models for Chromatography

Two components (concentration u; for chemical i); total mass conserved

gt(u,- + vi(u)) + iu,- =0, =12

@ Forced at constant velocity through a column packed with a solid
(‘fixed bed') onto which they are adsorbed

@ Neglect: heat cond., diffusion, viscosity & finite rate of adsorption

@ System in thermal and chemical equilibrium

@ Amount of chemical i adsorbed is v;(uz, u2)

@ v; obtained from adsorption laws (linear rates) 9% = kyc(V — v) — kov

@ At equilibrium, dv/dt = 0, non-dimensionalized functions are

. a;juj

1t um+w

@ Langmuir kinetics: Components compete at different rates, a; < a»

o Classical and well-studied system
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Chromatography

‘Generalized Langmuir' kinetics of Marco Mazzotti, ETH

e New model for v: U

ajuj

Vi —m ———

T l-wmtwm

replaces

aju;

Vi = —————

1+u +uw

@ Physically represents ‘cooperation’
rather than competition for sites

Findings

NH
.
1

@ System not hyperbolic for some (physically realizable) states

@ Restrict to hyperbolic region near 0

@ Not all Riemann problems have solutions
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What Happens?

Simulation (phase plane) by Mazzotti
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Appearance of Singular Shocks

Simulation (Mazzotti)
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Experimental Appearance of Singular Shocks

Experiments (Mazzotti et al)
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Components phenetole (CgH100) and 4-tert-butylphenol (C10H140)
Selected to give (1) cooperation in adsorption rather than competition and
(2) linear adsorption rates at experimental concentrations
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The Velocity-Entropy System of Isentropic Gas Dynamics

Joint work with Charis Tsikkou, to appear in QAM (following Schecter)

{ pr+ (u1p)x =0
(pun)e + (pu3 + Ap?)x =0,

Pt y—1
q(p) = (it
2 —
iy = 27U2—Cl
1<vy<5/3

U1t+(( )U%_UZ)X—O

e + [EEUEZN 3 4 (y — 1)uy ] = 0.

e Nonhyperbolic region (above B)

@ Compact Hugoniot locus
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Region of Classical Riemann Solutions

Region 1: 1-shock = 2-shock

Region 2: 1-rarefaction = 2-rarefaction
Region 3: 1-rarefaction = 2-shock
Region 4: 1-shock = 2-rarefaction

Region 5: 1-rarefaction = vacuum
state = 2-rarefaction

Barbara Keyfitz (Ohio State) GSPT and Singular Shocks HYPE 2012 Padova 10 / 17



Approximation by Dafermos Regularization

etUp = Ur + F(U)x

-
d’U du
“dgz < A= 5’) dg
BC U(—OO) = UL, U( OO) = UR
5Py1(£ S)
u(g) =
gry2(£ 5)

n=" Fip=1lg=2=r

dy
P = F(Y) Inner part/Outer part
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Existence of Profiles via Geometric Singular Perturbation
Theory: Krupa, Szmolyan & Schecter

GSPT answers questions:
@ How is the singular part of the solution (the homoclinic orbit)
connected to the outer part (constant states)?
@ What happens to the RH relation?
@ What is limiting process ¢ — 07
then W/ = —U and system is

Ut + F(U)x = etUy
eV =FU)-¢U—-W

Self-similar § = % W = _U
EUI/:—§U/+F(U)/ é'/:]_
= (=EU) + U+ F(U) Example of a fast-slow system
Define ex' = f(x,y,¢)
y' - g(Xay7 6)

— /
W= F(U)—¢U—eU
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A Solved Problem

The Idea
Fast time 7 =6/¢ Our system uses 7:
ex' = f(x,y,¢€) .
SyStem{ Y = glxy.e) U=FU)-cUu-w
@ Solve in slow time( ) W= —-cU
0 = f(x,y,0 :
g = 0 o =
y' = g(xy,0) c=e
@ Solve in fast time with invariant sets
c_ol X = f(x,y,0)
y =0 {w=F(U)-¢U}
© Show that these singular orbits
are connected if € > 0 and sc.aling Wi;fh n=7/e and
@ To use ‘Fenichel Theory', which Y = diag{e, "} U:
requires normally hyperbolic Y = F(Y)

invariant manifolds (orbits), , _
‘blow up’ some orbits if W' = —diag{0,1}Y

'=0
necessary £~
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A Solved Problem

Reduced System

Blow up of eq’'m E :iY =0,e =0} Coord chart on blown up surface:
Y =diag(F,7?)Y, e =2

2 =2 __ _ N _ N _ u
[Y[*+2&c=1 az— \{}?—_\/)72_\4317
! r "y =Y =¢€"Up

_ & _ & _ 1

b=m=m=7=

=(2—7)a 2_1_ (2—7)(5—37) 24

+g( £a—2bwy + b2aW2)

Outer system U — oo in finite time = ((2 ) 5 37) 3 — 3b¢

,
6
Inner system Y = homoclinic orbit +3(y — 1)3 — 3b3w2)

0 w, =—rab, wj=—r, & =rb?
W1 =
[ ] { fy2 b = g(w 3 — 3b¢
3
so one RH cond holds, not both +3(y—1)a—3b W2)

Barbara Keyfitz (Ohio State) GSPT and Singular Shocks HYPE 2012 Padova 14 /17



A Solved Problem

Overview of the Singular Trajectories

az & ap: equilibria of
WHTO(UL)), ’ \{/37 .117:7 I’} system
erify
@ normal
hyperbolicity

W (NP (UR)), &> Ssingutar

@ transversality

@ hypotheses of
corner lemma

@ role of strict
overcompressibil-

ity
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The Result

In the velocity-entropy system with 1 < v < 5/3, assume that Ug is in the
interior of region 7 with respect to U, so that with

F1(UL) — F2(Ur)

Ssingular( UL7 UR) = o o )
L1 — UR1

we have
0 < Fo(UL) — F2(UR) — Ssingutar(ur2 — ur2) ,
and the strict inequalities
Q Ssinguiar(UL, Ur) < M1(UL)
Q \2(UR) < Ssingutar(UL, Ur)
hold. Then there exists a singular shock connecting U; and Ug; that is, a

solution U of the Dafermos regularization which becomes unbounded as
e — 0.
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Summary

@ Original model problem (isothermal gas dynamics, v = 1) led to
discovery of weak solutions of very low regularity (measures)

@ Theory developed by Sever for systems with this structure
@ Sever's theory is based on distributions (d-functions)

@ GSPT, developed by Fenichel, Kopell, Kaper, Jones, Krupa,
Szmolyan, and others, provides insight into structure of singular
solutions (more detail than distributions)

@ Other approaches given by generalized distribution theory of
Colombeau et al

@ Recent model from chromatography has physical significance, and
cannot be analysed via classical distributions

@ Analysis of chromatography system using GSPT is in progress (with
Ting-Hao Hsu, Martin Krupa, and Charis Tsikkou)
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