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Intro Semiconductor manufacturing Hyperbolic conservation law Outlook

Outline

• Semiconductor manufacturing
Some background and mathematical problems

• A hyperbolic conservation law

∂tρ(t , x) + ∂x (λ(W (t)) ρ(t , x)) = 0

W (t) =

∫ 1

0
ρ(t , x) dx , later specialize to λ(W ) =

1
1 + W

• Motivation
• Intuitive properties, numerical studies
• Analysis: existence[ZW], optimality, L1 vs L2, minimum-time

• More control problems under investigation
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Semiconductor manufacturing: Distinguishing features

• Product: small size, high value, global supply network

• Volatile demand, difficult to predict yields (processor
speed, energy consumption, . . . ). Stochastics everywhere

• Typical 20 day pure processing time, 60 day start2finish,
compare to demand forecast horizon

• Very short product life times, never in equilibrium

• New “fab” every few years & huge capital cost, utilization

• Layered (sandwich) structure: highly re-entrant
manufacturing line (e.g., 600 processes, 200 stations)
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Supply chains, collaboration ASU and INTEL

• Several new fabs in Chandler, AZ

• 90s: scheduling processes/machines.
E.g., chaos, queuing models, discrete event systems.

• Hierarchical control, inner-outer-loop, “model predictive”

• 2000: global supply network, many products

• “downbinning” – stochastic optimal control

• early 2000s: fast computation using PDE models
compare gas dynamics, traffic flow. (K.Kempff (INTEL),
D.Armbruster, C.Ringhofer, D.Marthaler, M.LaMarca, . . . )
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Toy example: M sets of machines, N processing steps

A, B C, Dii
i

ii
i1

3
5

2
4
6

-

-

-

-

-

- -

�
�

��
������

The machine-based view

������������������������- - - - -- -1 2 3 4 5 6

A, B
C, D

The process-based view

Real world
• approx N ≈ 600 production steps total, up to 20 loops
• approx M ≈ 200 work-stations, up to 20 parallel machines
• total processing time approximately 20 days
• total manufacturing time approximately 60 days
• several different products (common: shared initial steps)
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Sample data for toy example: queues and idling

Topology M machines N process steps.
Φ = (pij) where pij = 1 if machine i can
carry out process j , and pij = 0 else.

Process times τij is the time it takes ma-
chine i to complete process step j .

Parallel batching βij number of parts that
must be batched together in machine i for
process step j .

Set-up times For each machine i let σi =
(σi

jk ) set-up time after process step j be-
fore process step k may start

Φ=

(
1 1
1 1

)
∈ R200×600

τ =

(
11 17
11 17

)

β =

(
1 1
2 2

)

σ1 = σ2 =

(
0 3
0 0

)
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Playground (and careers!), DES simulation

A FIFO, B FIFO (“first in first out”):
Here, start rate below capacity, but queues grow due
to chaotic switchings, requiring too many set-ups
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DES simulation: A “PUSH”, B “PULL”

popular policies: if oven door is open, work on (if available)

product that is least finished [PUSH], and
product that is closest to being finished [PULL]
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DES simulation: A “PUSH”, B “PULL”

popular policies: if oven door is open, work on (if available)

product that is least finished [PUSH], and
product that is closest to being finished [PULL]
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DES simulation: idling is better!

machine A: step 1 or wait, machine B: PULL

Real simulation: 600 steps, 400 machines, multiple products
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Flow models

• popular: model the flow of parts through the fab by a PDE
justified by very large number of parts and process stages
supposedly superior numerical algorithms for simulation

• First: single product, single fab, M = 1 machine, N =∞
reentries. speed depends on total load (“work in progress”)

∂tρ(t , x)+∂x (λ(W (t)) ρ(t , x)) = 0, W (t) =

∫ 1

0
ρ(t , x) dx ,

• speed model λ(W ) = 1
1+W supported by fab data

after much heated discussion. W = 0 possible ???
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Mathematical model (INTEL, Armbruster, Kempff)

• “Observed”: Any increase in the total load (at any stage)
slows down the entire fabrication line.

• Hyperbolic conservation law

∂tρ(t , x) + ∂x (λ(W (t)) ρ(t , x)) = 0

• 0 ≤ t ≤ T time, 0 ≤ x ≤ 1 degree of completion

• ρ : [0,1]× [0,T ] 7→ R WIP-density (“work in progress”)

• W (t) =
∫ 1

0ρ(t , x) dx total load (WIP)

• λ(W ) global speed, later specialize to λ(W ) = 1
1+W
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Control, outputs, practical objectives

• Control: influx u(t) = ρ(t ,0)λ(W (t))
later: PUSH-PULL-point, allow varying local speeds

• Key objective: track desired output yd (t) by the outflux
y(t) = ρ(t ,1)λ(W (t)) [perishable demand]

• Usual: backlogs allowed but penalized
track cumulative demand Y (t) =

∫ t
0 yd (τ) dτ

by accumulated outflux Y (t) =
∫ t

0 y(τ) dτ

• controllability: What demands yd or Yd can be tracked?
Initial load ρ(0, x) matters (reversed time system?) [ZW]

• optimal control: minimize tracking error∫ T
0 |y(τ)− yd (τ)|p dτ or

∫ T
0

∣∣∣∫ t
0(y(τ)− yd (τ))dτ

∣∣∣p dt
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Earlier simulation results (M.LaMarca, D. Marthaler)

• For piecewise constant demand yd to be tracked
numerically calculate piecewise constant optimal input

-

6

t

yd

Typical demand signal to test optimal control

• formulate max principle, numerically solve adjoint equation

• results appear reasonable and useful for strategic planning
(very outer loop), especially inverse response: Increasing
start rate initially decreases output rate!
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Simulation (MK, tracking characteristics)

pcw const density. Note: increased steepness, but NO shocks
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J.-M Coron, MK, and Zhiqiang Wang (DCDS 2010)

Provide analytic foundations for simulations
• For L1 data prove existence of unique weak L1 solution

• For L2 data & objective prove existence of optimal control

• For minimum-time transfer between equilibria using
L1 control prove optimality of natural candidate.
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The hyperbolic conservation law with BC [ZW]

0 = ∂tρ(t , x) + ∂x (λ(W (t)) ρ(t , x))

W (t) =
∫ 1

0ρ(t , x) dx ,
(1)

on [0,T ]× [0,1] or [0,∞)× [0,1].

Assume that λ(·) ∈ C1([0,+∞); (0,+∞)).

ρ(0, x) = ρ0(x), for 0 ≤ x ≤ 1, and

ρ(t ,0)λ(W (t)) = u(t), for t ≥ 0.
(2)
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Weak solution - standard definition [ZW]

Definition
Let T > 0, ρ0 ∈ L1(0,1) and u ∈ L1(0,T ) be given.
A weak solution of the Cauchy problem (1) and (2) is
a function ρ ∈ C0([0,T ]; L1(0,1)) such that,
for every τ ∈ [0,T ] and every ϕ ∈ C1([0, τ ]× [0,1]) such that

ϕ(τ, x) = 0, ∀x ∈ [0,1] and ϕ(t ,1) = 0, ∀t ∈ [0, τ ], (3)

one has∫ τ

0

∫ 1

0
ρ(t , x)(ϕt (t , x) + λ(W (t))ϕx (t , x))dxdt

+

∫ τ

0
u(t)ϕ(t ,0)dt +

∫ 1

0
ρ0(x)ϕ(0, x)dx = 0.

(4)
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Existence of weak L1-solution [ZW], (measures ?)
Theorem
If ρ0 ∈ L1(0,1) and u ∈ L1(0,T ) are nonnegative almost
everywhere, then the Cauchy problem (1) and (2) admits a
unique weak solution ρ ∈ C0([0,T ]; L1(0,1)), which is also
nonnegative almost everywhere in Q = [0,T ]× [0,1].
Proof strategy:
• First prove the existence of weak solution for small times
• Strategy: Analyze the characteristic curve ξ = ξ(t) with
ξ(0) = 0, use it to construct solution to the Cauchy
problem.

• Tool: Contraction mapping
• Key step: Change order of integration.
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Contraction for characteristics [ZW], (measures ?)

Define F : Ωδ,M → C0([0, δ]), ξ 7→ F (ξ), ∀ξ ∈ Ωδ,M , ∀t ∈ [0, δ] by

F (ξ)(t) =

∫ t

0
λ(

∫ s

0
u(σ)dσ +

∫ 1−ξ(s)

0
ρ0(x)dx)ds.

Prove that, for δ > 0 small, F is a contraction on

Ωδ,M =
{
ξ ∈ C0([0, δ]) : ξ(0) = 0,

λ̃(M) ≤ ξ(s)−ξ(t)
s−t ≤ λ(M), ∀s, t ∈ [0, δ]

}
with C0 norm and M = ‖u‖L1(0,T ) + ‖ρ0‖L1(0,1).
Key step: change order of integration.
Build candidate solution ρ from ξ, verify it is weak solution, and
extend to large times. Note Lp and hidden regularity.
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L2-optimal control for demand tracking problem

For yd ∈ L2
+(0,T ) and ρ0 ∈ L2

+(0,1),
let ρ ∈ C0([0,T ],L2(0,1)) ∩ C0([0,1],L2(0,T ))
be the unique weak solution of the Cauchy problem (1) and (2),
write y(t) = ρ(t ,1)λ(W (t)), and define J : L2

+(0,T ) 7→ R by

J(u) =

∫ T

0
|u(t)|2dt +

∫ T

0
|y(t)− yd (t)|2dt .

Theorem
There exists u∗ ∈ L2

+(0,T ) that minimizes J over L2
+(0,T )

J(u∗) = inf
u∈L2

+(0,T )
J(u). (5)
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Proof of existence of optimal L2-solution

• Consider minimizing sequence {un}∞n=1 ⊆ L2
+(0,T )

• Use uniform boundedness to extract converging
subsequence {unk}∞k=1

• From corresponding sequence of characteristics {ξnk}∞k=1
extract converging subsequence with limit ξ∞

• Construct associated weak solution %∞ of Cauchy problem
• Prove that yn(t) = λ(Wn(t))ρn(t ,1) converges weakly

in L2(0,T ) to y∞(t) = λ(W∞(t))ρ∞(t ,1)

• Verify u∞ minimizes J in L2
+(0,T )

and note un −→ U∞ strongly in L2
+(0,T ).
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Time-optimal transition between equilibria

• Special case λ(W ) = 1
1+W

• Suppose ρ1 ≥ ρ0 ≥ 0 are constant, and for x ∈ [0,1]
ρ(0, x) = ρ0
desired: ρ(T , x) = ρ1 and some minimal T > 0.

• Note, backlog is not considered here.
• A natural choice ρ(t ,0) = ρ1 for t ≥ 0. This determines

u(t) = ρ1λ(W (t)) and y(t) = ρ0λ(W (t)), where W is a
solution of

W ′(t) =
ρ1 − ρ0

1 + W (t)
, W (0) =

∫ 1

0
ρ(0, x) dx = ρ0.

Easy calculations yield transfer time T = 1 + ρ0+ρ1
2 .
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Minimum time transfer between equilibria

0 T
t

u1 = y1

u(t)

y(t)

u2 = y2

W1

W (t)

W2

0 T
t

Proposition
The minimum time
to transfer between
equilibria ρ(0, ·) = ρ0,
and ρ(T , ·) = ρ1 > ρ0,
using
u ∈ L1([0,∞), [0,∞))
is T = 1 + ρ0+ρ1

2 .
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Time optimal transfer between equilibrium states
Exists t0 ∈ [0,T ] such that ρ(t ,0) = ρ1 for t0 < t < T .
Characteristic ξ′(t) = λ(

∫ 1
0 ρ(t , x) dx) through ξ through

ξ(0) = 0 defines t1 ∈ (0,T ] such that ξ(t1) = 1.
Various neat estimates for bounds on speed ξ′.
Two cases: show best choice t0 = 0 (t0 > t1 even worse).

-

6

-

6
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Time-optimal transfer between equilibria w/o backlog
• Suppose ρ1 ≥ ρ0 ≥ 0 constant, (ρ0 ≥ ρ1 is different)

still special case λ(W ) = 1
1+W and ρ(0, x) = ρ0

• desired: ρ(T , x) = ρ1 and some minimal T > 0 and
Y (T ) =

∫ tsw
0 (yt − y0) dt +

∫ T
tsw

(yt − y1) dt = 0.
• Numerical simulations and heuristics suggest there does

not exist a minimizing L1 control. Optimal control starts w/
pulse (Dirac delta), causing maximal initial slow-down but
minimum time transition w/ zero backlog

• Note: negative pulses (negative start rates) are not
admissible, hence an optimal step-down is different!

• Alternatives: Consider only L1-inputs with bounded start
rate u(t) ≤ u, or allow Borel measures as inputs
(analogous existence proof for weak solns appears to
work)
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Problems: L1, Cascades, several products, . . .

• Optimality for L1-cost (and inputs in L1 or Borel measures)

J(u) =

∫ T

0
|y(t)−yd (t)|dt . or J(u) =

∫ T

0
|Y (t)−Yd (t)|dt .

• Cascade of systems with shared capacity
added control: allocation of capacity to front/back

(PDE model for PUSH / PULL policies ?)
speed not constant (in x), but still depends on total load

• Location of push-pull-points as control

• Multiple products (vector valued HCL)
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Simulation (MK, tracking characteristics)

piecewise constant density
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