
Intro ●○ Hyperbolic conservation law

Optimal control of re-entrant manufacturing systems

Matthias Kawski †

School of Mathematical and Statistical Sciences Arizona State University

http://math.asu.edu/~kawski

Based on joint work with Jean-Michel Coron (Paris VI) & Zhiqiang Wang (Fudan), K. Kempff (INTEL), D. Armbruster, C. Ringhofer, D. Marthaler, M. LaMarca (ASU).

[†] This work was partially supported by the National Science Foundation through the grants DMS 05-09030 and 09-08204, the University Pierre and Marie Curie-Paris VI and the Foundation Sciences Mathématiques de Paris.

Hyperbolic conservation law

Outlook

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Semiconductor manufacturing Some background and mathematical problems
- A hyperbolic conservation law

$$\partial_t \rho(t, x) + \partial_x \left(\lambda(W(t)) \rho(t, x)\right) = 0$$

 $W(t) = \int_0^1 \rho(t, x) \, dx$, later specialize to $\lambda(W) = \frac{1}{1+W}$

- Motivation
- Intuitive properties, numerical studies
- Analysis: existence[ZW], optimality, L¹ vs L², minimum-time
- More control problems under investigation

Intro

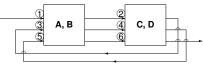
Hyperbolic conservation law 0000 00000 00000

Selected immediately related references

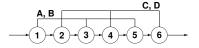
- D. Armbruster, D. Marthaler, C. Ringhofer, K. Kempf, and T.-C. Jo, A Continuum Model For A Re-Entrant Factory, Oper. Res., 54 (2006), 933–950.
- M. La Marca, D. Armbruster, M. Herty, and C. Ringhofer, *Control of continuum models of production systems,* IEEE Trans. Automat. Control **55** (2010), no. 11, 2511–2526.
- J.-M. Coron, M. Kawski, and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 4, 1337–1359.
- R. Colombo, M. Herty, and M. Mercier, *Control of the continuity equation with a non local flow*, ESAIM Control Optim. Calc. Var., **17** (2011), no. 2, 353–379.
- vast body of related literature

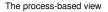
Outlook 000

Semiconductor manufacturing: Distinguishing features


- Product: small size, high value, global supply network
- Volatile demand, difficult to predict yields (processor speed, energy consumption, ...). Stochastics everywhere
- Typical 20 day pure processing time, 60 day start2finish, compare to demand forecast horizon
- Very short product life times, never in equilibrium
- New "fab" every few years & huge capital cost, utilization
- Layered (sandwich) structure: highly re-entrant manufacturing line (e.g., 600 processes, 200 stations)

Supply chains, collaboration ASU and INTEL


- Several new fabs in Chandler, AZ
- 90s: scheduling processes/machines.
 E.g., chaos, queuing models, discrete event systems.
- · Hierarchical control, inner-outer-loop, "model predictive"
- 2000: global supply network, many products
- "downbinning" stochastic optimal control
- early 2000s: fast computation using PDE models compare gas dynamics, traffic flow. (K.Kempff (INTEL), D.Armbruster, C.Ringhofer, D.Marthaler, M.LaMarca, ...)


Hyperbolic conservation law

Toy example: *M* sets of machines, *N* processing steps

The machine-based view

Real world

- approx $N \approx 600$ production steps total, up to 20 loops
- approx $M \approx 200$ work-stations, up to 20 parallel machines
- total processing time approximately 20 days
- total manufacturing time approximately 60 days
- several different products (common: shared initial steps)

Hyperbolic conservation law

Sample data for toy example: queues and idling

Topology *M* machines *N* process steps. $\Phi = (p_{ij})$ where $p_{ij} = 1$ if machine *i* can carry out process *j*, and $p_{ij} = 0$ else.

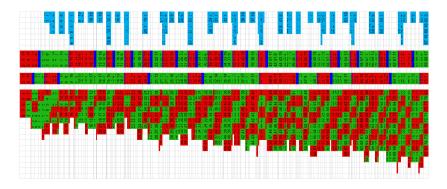
Process times τ_{ij} is the time it takes machine *i* to complete process step *j*.

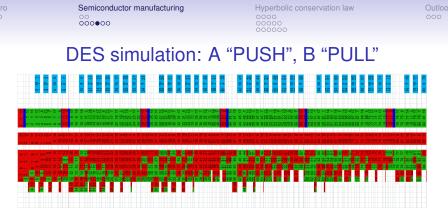
Parallel batching β_{ij} number of parts that must be batched together in machine *i* for process step *j*.

Set-up times For each machine *i* let $\sigma^{i} = (\sigma_{jk}^{i})$ set-up time after process step *j* before process step *k* may start

$$\Phi = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{200 \times 600}$$

$$\tau = \left(\begin{array}{rrr} 11 & 17\\ 11 & 17 \end{array}\right)$$


$$\beta = \left(\begin{array}{rrr} \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{2} \end{array}\right)$$


$$\sigma^1 = \sigma^2 = \left(\begin{array}{cc} 0 & 3\\ 0 & 0 \end{array}\right)$$

ヘロマ ヘ動 マイロマー

Playground (and careers!), DES simulation

A FIFO, B FIFO ("first in first out"): Here, start rate below capacity, but queues grow due to *chaotic* switchings, requiring too many set-ups

popular policies: if oven door is open, work on (if available)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

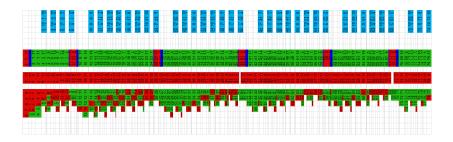
product that is least finished [PUSH], and product that is closest to being finished [PULL]

Intro 00 Semiconductor manufacturing

Hyperbolic conservation law

Outlook

DES simulation: A "PUSH", B "PULL"


	第一部 第二部 第二部 第二部 第二部 第二部 第二部 第二部 第二部 第二部 第二		
² Journa ataboo e units 6 5 13 Junit atabata 8 (2013) ¹ ultra eleveno e vita e o tatticatatore 8 (2013) Il 11 Dienoro e vita el o tatticatatore 9 defini Il 12 Dienoro e atabato 8 de anticotector o antic	「「「「「「「」」」 「「」」」 「」」 「」」 「」」 「」」 「」」 「」	anii (1997) (1 (2 (2 (2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	191 <mark>5 - 2</mark> 16998 - 2019년 1898년 8월 2017년 21년 1898 - 21년 18 - 21년 1898 - 2108 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 2168 - 218 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188 - 2188
		antina (1996) (a second se se s antina (1996) (a se second se second se second se se second se se se second se second se second se second se s antina (1996) (a se second se antina (1996) (a se second se s antina (1996) (a second se	
	248 2 월 15 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	1 12111 R 81 10 10 10 1 5 5 2 20 10 20 2 1 1 10 8 10 10 10 10 1		
anna a anna a stata an anna a chuara a stata a statata anna a anna a stata a chuara a chuara a statata anna a anna a statata a chuara a statata	n a fain an an an an an ann an ann an an An an an an an an an an ann an ann an an An an an an an an an ann an ann an an	n an	n grach, en dont gant versten dont i vate en die 18 maart ander 19 generaanse verste en die en de eerste en de eerste 19 maart ander 19 geen en die termente en de eerste en de eerste en de eerste 19 maart en de eerste geen de en de eerste eerst

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()・

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

DES simulation: idling is better!

machine A: step 1 or wait, machine B: PULL

Real simulation: 600 steps, 400 machines, multiple products

Hyperbolic conservation law 0000 00000 000000

Outlook

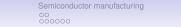
Flow models

- popular: model the flow of parts through the fab by a PDE justified by very large number of parts and process stages supposedly superior numerical algorithms for simulation
- First: single product, single fab, M = 1 machine, $N = \infty$ reentries. speed depends on total load ("work in progress")

$$\partial_t \rho(t,x) + \partial_x \left(\lambda(W(t)) \rho(t,x)\right) = 0, \quad W(t) = \int_0^1 \rho(t,x) \, dx,$$

 speed model λ(W) = 1/(1+W) supported by fab data after much heated discussion. W = 0 possible ???

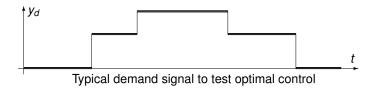
Mathematical model (INTEL, Armbruster, Kempff)


- "Observed": Any increase in the total load (at any stage) slows down the entire fabrication line.
- Hyperbolic conservation law

 $\partial_t \rho(t, x) + \partial_x \left(\lambda(W(t)) \rho(t, x)\right) = 0$

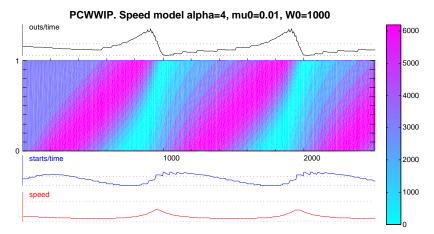
- $0 \le t \le T$ time, $0 \le x \le 1$ degree of completion
- $\rho : [0, 1] \times [0, T] \mapsto \mathbb{R}$ WIP-density ("work in progress")
- $W(t) = \int_0^1 \rho(t, x) dx$ total load (WIP)
- $\lambda(W)$ global speed, later specialize to $\lambda(W) = \frac{1}{1+W}$

Control, outputs, practical objectives


- Control: influx u(t) = ρ(t, 0)λ(W(t)) later: PUSH-PULL-point, allow varying local speeds
- Key objective: track desired output $y_d(t)$ by the outflux $y(t) = \rho(t, 1)\lambda(W(t))$ [perishable demand]
- Usual: backlogs allowed but penalized track cumulative demand $Y(t) = \int_0^t y_d(\tau) d\tau$ by accumulated outflux $Y(t) = \int_0^t y(\tau) d\tau$
- controllability: What demands y_d or Y_d can be tracked? Initial load ρ(0, x) matters (reversed time system?) [ZW]
- optimal control: minimize tracking error $\int_0^T |y(\tau) - y_d(\tau)|^p d\tau \quad \text{or} \quad \int_0^T \left| \int_0^t (y(\tau) - y_d(\tau)) d\tau \right|^p dt$

Outlook 000

Earlier simulation results (M.LaMarca, D. Marthaler)


 For piecewise constant demand y_d to be tracked numerically calculate piecewise constant optimal input

- formulate max principle, numerically solve adjoint equation
- results appear reasonable and useful for strategic planning (very outer loop), especially *inverse response*: Increasing start rate initially decreases output rate!

Simulation (MK, tracking characteristics)

pcw const density. Note: increased steepness, but NO shocks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

J.-M Coron, MK, and Zhiqiang Wang (DCDS 2010)

Provide analytic foundations for simulations

- For L¹ data prove existence of unique weak L¹ solution
- For L² data & objective prove existence of optimal control
- For minimum-time transfer between equilibria using L¹ control prove optimality of natural candidate.

Hyperbolic conservation law

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The hyperbolic conservation law with BC [ZW]

$$0 = \partial_t \rho(t, x) + \partial_x \left(\lambda(W(t)) \rho(t, x)\right)$$

$$W(t) = \int_0^1 \rho(t, x) \, dx,$$
(1)

on $[0, T] \times [0, 1]$ or $[0, \infty) \times [0, 1]$. Assume that $\lambda(\cdot) \in C^1([0, +\infty); (0, +\infty))$.

$$\begin{array}{lll} \rho(0,x) & = & \rho_0(x), & \text{for } & 0 \le x \le 1, \text{ and} \\ \rho(t,0)\lambda(W(t)) & = & u(t), & \text{for } & t \ge 0. \end{array}$$

$$(2)$$

Intro 00 Semiconductor manufacturing

Hyperbolic conservation law

Outlook

Weak solution - standard definition [ZW]

Definition

Let T > 0, $\rho_0 \in L^1(0, 1)$ and $u \in L^1(0, T)$ be given. A weak solution of the Cauchy problem (1) and (2) is a function $\rho \in C^0([0, T]; L^1(0, 1))$ such that, for every $\tau \in [0, T]$ and every $\varphi \in C^1([0, \tau] \times [0, 1])$ such that

$$\varphi(\tau, x) = 0, \forall x \in [0, 1] \text{ and } \varphi(t, 1) = 0, \forall t \in [0, \tau],$$
 (3)

one has

$$\int_0^\tau \int_0^1 \rho(t,x)(\varphi_t(t,x) + \lambda(W(t))\varphi_x(t,x))dxdt + \int_0^\tau u(t)\varphi(t,0)dt + \int_0^1 \rho_0(x)\varphi(0,x)dx = 0.$$
(4)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Intro 00 Semiconductor manufacturing

Hyperbolic conservation law

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Existence of weak *L*¹-solution [ZW], (measures ?) Theorem

If $\rho_0 \in L^1(0, 1)$ and $u \in L^1(0, T)$ are nonnegative almost everywhere, then the Cauchy problem (1) and (2) admits a unique weak solution $\rho \in C^0([0, T]; L^1(0, 1))$, which is also nonnegative almost everywhere in $Q = [0, T] \times [0, 1]$.

Proof strategy:

- First prove the existence of weak solution for small times
- Strategy: Analyze the characteristic curve ξ = ξ(t) with ξ(0) = 0, use it to construct solution to the Cauchy problem.
- Tool: Contraction mapping
- Key step: Change order of integration.

Hyperbolic conservation law

Contraction for characteristics [ZW], (measures ?)

Define $F : \Omega_{\delta,M} \to C^0([0,\delta]), \xi \mapsto F(\xi), \forall \xi \in \Omega_{\delta,M}, \forall t \in [0,\delta]$ by

$$F(\xi)(t) = \int_0^t \lambda(\int_0^s u(\sigma)d\sigma + \int_0^{1-\xi(s)} \rho_0(x)dx)ds.$$

Prove that, for $\delta > 0$ small, *F* is a contraction on

$$\Omega_{\delta,M} = \left\{ \xi \in C^{0}([0,\delta]) \colon \xi(0) = 0, \\ \widetilde{\lambda}(M) \le \frac{\xi(s) - \xi(t)}{s - t} \le \overline{\lambda}(M), \forall s, t \in [0,\delta] \right\}$$

with C^0 norm and $M = ||u||_{L^1(0,T)} + ||\rho_0||_{L^1(0,1)}$. Key step: change order of integration. Build candidate solution ρ from ξ , verify it is weak solution, and extend to large times. Note L^ρ and hidden regularity.

Hyperbolic conservation law

Outlook

L²-optimal control for demand tracking problem

For $y_d \in L^2_+(0, T)$ and $\rho_0 \in L^2_+(0, 1)$, let $\rho \in C^0([0, T], L^2(0, 1)) \cap C^0([0, 1], L^2(0, T))$ be the unique weak solution of the Cauchy problem (1) and (2), write $y(t) = \rho(t, 1)\lambda(W(t))$, and define $J: L^2_+(0, T) \mapsto \mathbb{R}$ by

$$J(u) = \int_0^T |u(t)|^2 dt + \int_0^T |y(t) - y_d(t)|^2 dt.$$

Theorem There exists $u^* \in L^2_+(0, T)$ that minimizes J over $L^2_+(0, T)$

$$J(u^*) = \inf_{u \in L^2_+(0,T)} J(u).$$
(5)

Proof of existence of optimal L^2 -solution

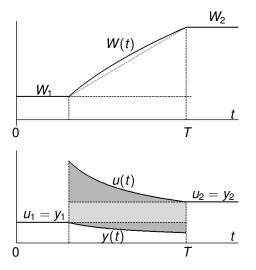
- Consider minimizing sequence $\{u_n\}_{n=1}^{\infty} \subseteq L^2_+(0, T)$
- Use uniform boundedness to extract converging subsequence {*u_{n_k}*}[∞]_{k=1}
- From corresponding sequence of characteristics {ξ_{n_k}}[∞]_{k=1} extract converging subsequence with limit ξ_∞
- Construct associated weak solution ϱ_∞ of Cauchy problem
- Prove that y_n(t) = λ(W_n(t))ρ_n(t, 1) converges weakly in L²(0, T) to y_∞(t) = λ(W_∞(t))ρ_∞(t, 1)
- Verify u∞ minimizes J in L²₊(0, T) and note u_n → U_∞ strongly in L²₊(0, T).

Intro 00 Semiconductor manufacturing

Hyperbolic conservation law

A D F A 同 F A E F A E F A Q A

Time-optimal transition between equilibria

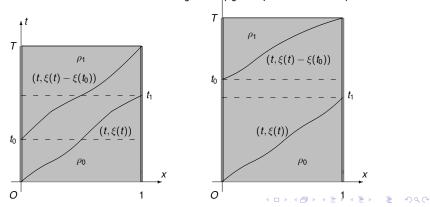

- Special case $\lambda(W) = \frac{1}{1+W}$
- Suppose $\rho_1 \ge \rho_0 \ge 0$ are constant, and for $x \in [0, 1]$ $\rho(0, x) = \rho_0$ desired: $\rho(T, x) = \rho_1$ and some minimal T > 0.
- Note, backlog is not considered here.
- A natural choice $\rho(t, 0) = \rho_1$ for $t \ge 0$. This determines $u(t) = \rho_1 \lambda(W(t))$ and $y(t) = \rho_0 \lambda(W(t))$, where *W* is a solution of

$$W'(t) = rac{
ho_1 -
ho_0}{1 + W(t)}, \quad W(0) = \int_0^1
ho(0, x) \, dx =
ho_0.$$

Easy calculations yield transfer time $T = 1 + \frac{\rho_0 + \rho_1}{2}$.

Hyperbolic conservation law

Minimum time transfer between equilibria


Proposition

The minimum time to transfer between equilibria $\rho(0, \cdot) = \rho_0$, and $\rho(T, \cdot) = \rho_1 > \rho_0$, using $u \in L^1([0, \infty), [0, \infty))$ is $T = 1 + \frac{\rho_0 + \rho_1}{2}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Hyperbolic conservation law

Time optimal transfer between equilibrium states Exists $t_0 \in [0, T]$ such that $\rho(t, 0) = \rho_1$ for $t_0 < t < T$. Characteristic $\xi'(t) = \lambda(\int_0^1 \rho(t, x) \, dx)$ through ξ through $\xi(0) = 0$ defines $t_1 \in (0, T]$ such that $\xi(t_1) = 1$. Various neat estimates for bounds on speed ξ' . Two cases: show best choice $t_0 = 0$ ($t_0 > t_1$ even worse).

Hyperbolic conservation law

Outlook

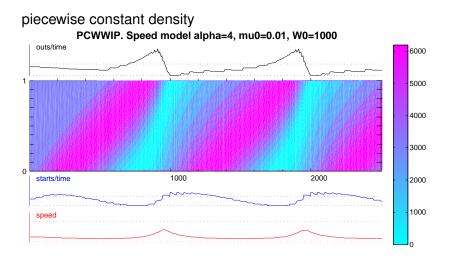
Time-optimal transfer between equilibria w/o backlog

- Suppose $\rho_1 \ge \rho_0 \ge 0$ constant, $(\rho_0 \ge \rho_1 \text{ is different})$ still special case $\lambda(W) = \frac{1}{1+W}$ and $\rho(0, x) = \rho_0$
- desired: $\rho(T, x) = \rho_1$ and some minimal T > 0 and $Y(T) = \int_0^{t_{sw}} (y_t - y_0) dt + \int_{t_{sw}}^T (y_t - y_1) dt = 0.$
- Numerical simulations and heuristics suggest there does not exist a minimizing L¹ control. Optimal control starts w/ pulse (Dirac delta), causing maximal initial slow-down but minimum time transition w/ zero backlog
- Note: negative pulses (negative start rates) are not admissible, hence an optimal step-down is different!
- Alternatives: Consider only L¹-inputs with bounded start rate u(t) ≤ u
 , or allow Borel measures as inputs (analogous existence proof for weak solns appears to work)

Hyperbolic conservation law 0000 00000 00000

Problems: *L*¹, Cascades, several products, ...

• Optimality for L¹-cost (and inputs in L¹ or Borel measures)


$$J(u) = \int_0^T |y(t) - y_d(t)| dt. \text{ or } J(u) = \int_0^T |Y(t) - Y_d(t)| dt.$$

- Cascade of systems with shared capacity added control: allocation of capacity to front/back (PDE model for PUSH / PULL policies ?) speed not constant (in x), but still depends on total load
- Location of push-pull-points as control
- Multiple products (vector valued HCL)

Selected immediately related references

- D. Armbruster, D. Marthaler, C. Ringhofer, K. Kempf, and T.-C. Jo, A Continuum Model For A Re-Entrant Factory, Oper. Res., 54 (2006), 933–950.
- M. La Marca, D. Armbruster, M. Herty, and C. Ringhofer, *Control of continuum models of production systems*, IEEE Trans. Automat. Control **55** (2010), no. 11, 2511–2526.
- J.-M. Coron, M. Kawski, and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 4, 1337–1359.
- R. Colombo, M. Herty, and M. Mercier, *Control of the continuity equation with a non local flow*, ESAIM Control Optim. Calc. Var., **17** (2011), no. 2, 353–379.
- vast body of related literature

Simulation (MK, tracking characteristics)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで