# A Well-Balanced Multi-Dimensional Reconstruction Scheme for Hydrostatic Equilibria

Roger Käppeli

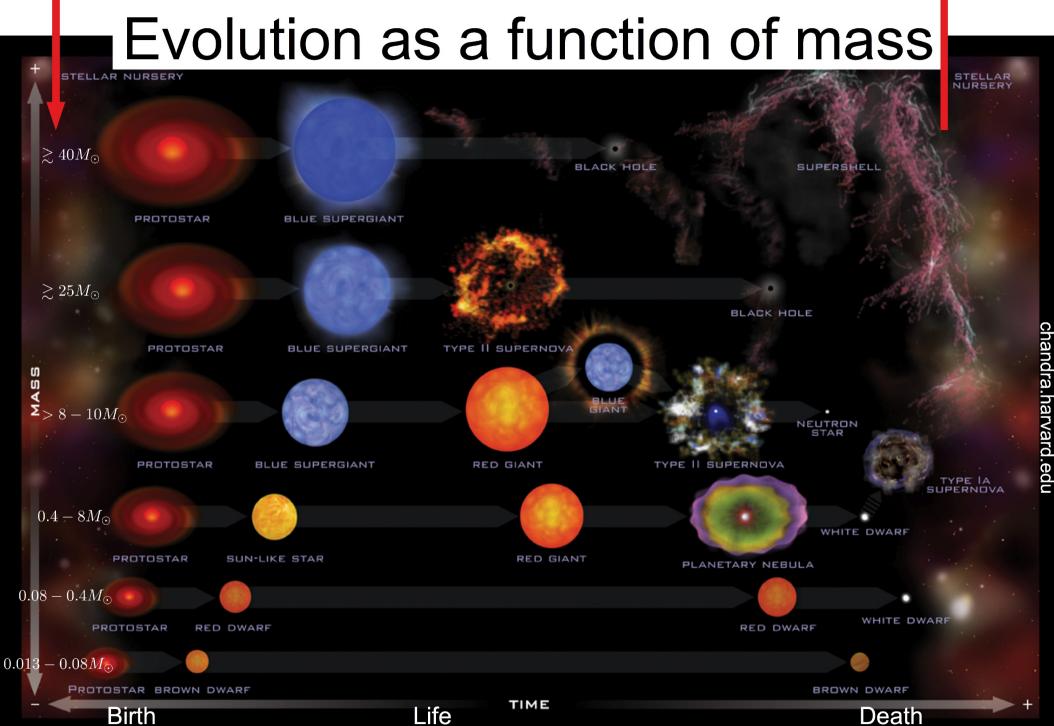


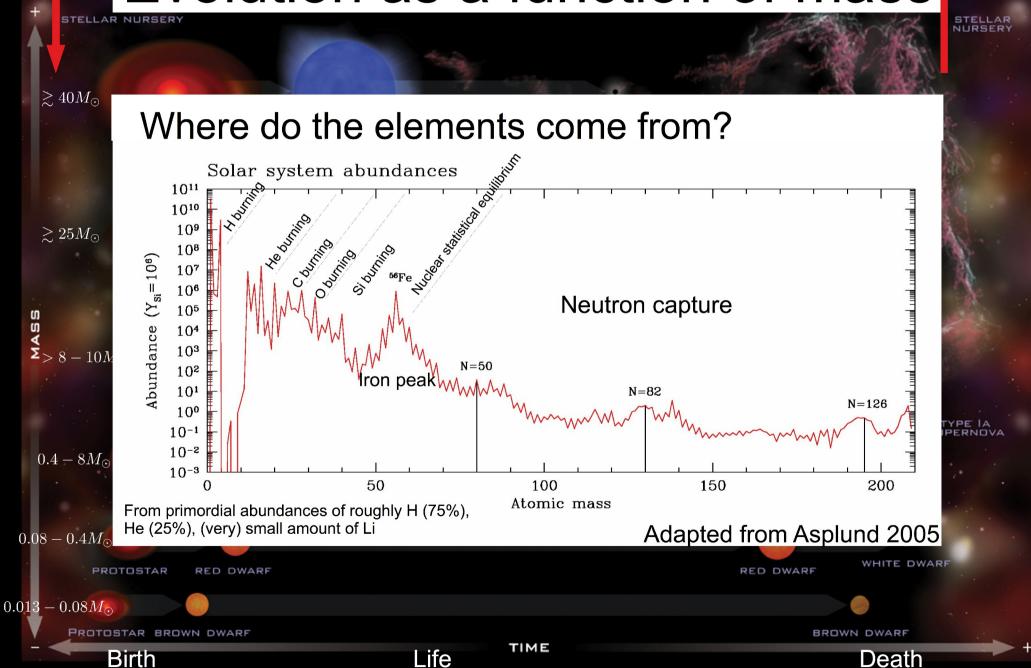


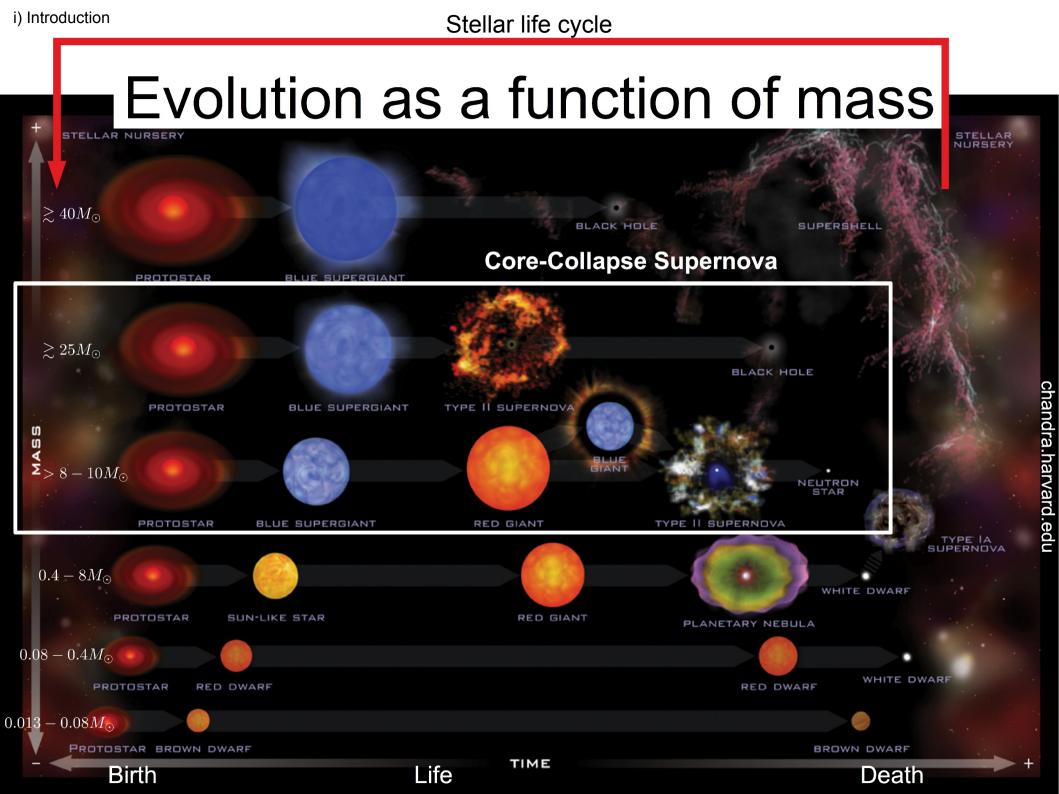
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#### **Outline**

- Introduction
  - (Astro)Physical motivation
- Well-balanced scheme for HydroStatic Equilibrium (HSE)
  - First order
  - Second order
- Multi-dimensional extension
  - Limitations
- Conclusion







## Core-collapse supernova

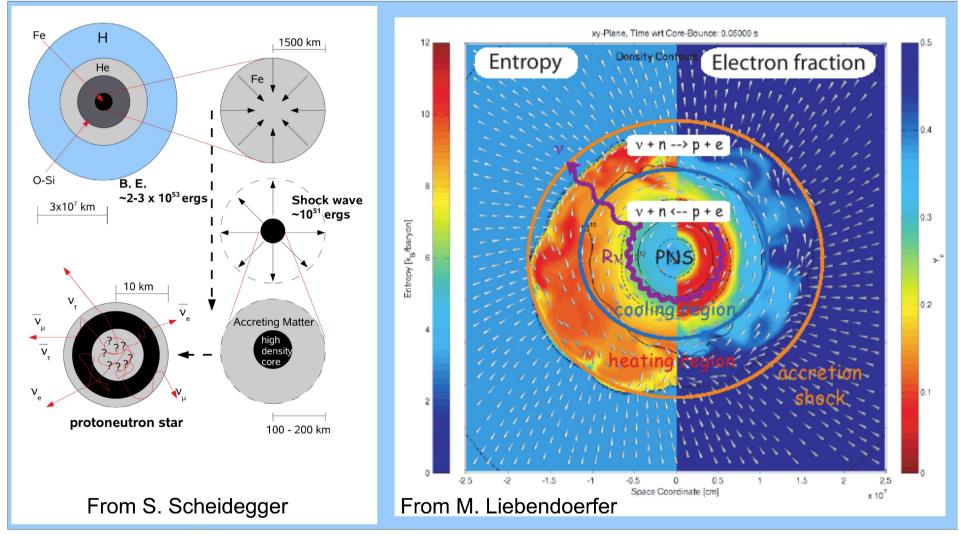
- General idea:
  - Implosion of iron core of massive  $M\gtrsim 8M_{\odot}$  at the end of thermonuclear evolution
  - Explosion powered by gravitational binding energy of forming compact remnant:

$$E_b \approx 3 \times 10^{53} \left(\frac{M}{M_{\odot}}\right)^2 \left(\frac{R}{10 \text{km}}\right)^{-1} \text{erg}$$

**GRAVITY BOMB!** 

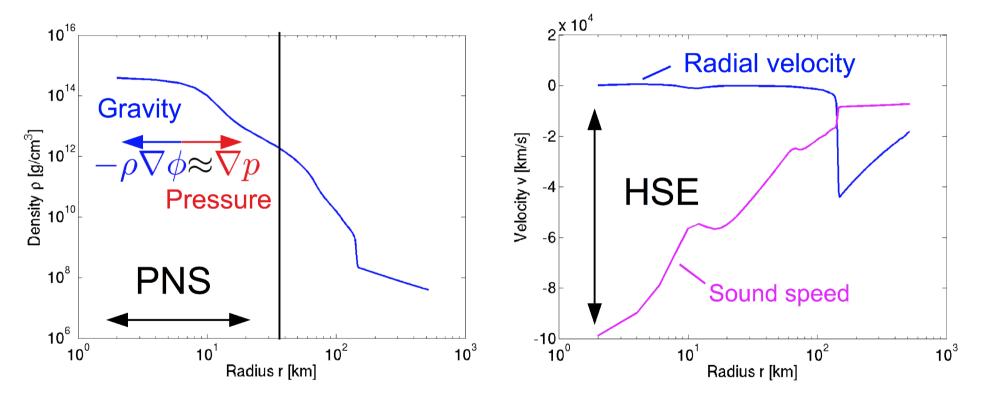
M Mass of remnant R Radius of remnant

## Core-collapse supernova



#### Radial profile

The problem: (in our simulations)



Ability to maintain near hydrostatic equilibrium for a long time!

#### **Outline**

- Introduction
  - (Astro)Physical motivation
- Well-balanced scheme for HydroStatic Equilibrium (HSE)
  - First order
  - Second order
- Multi-dimensional extension
  - Limitations
- Conclusion

Consider 1D hydrodynamics eqs with gravity

$$\frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} = \boldsymbol{S}$$

$$\boldsymbol{u} = \begin{bmatrix} \rho \\ \rho v \\ E \end{bmatrix} \qquad \boldsymbol{F} = \begin{bmatrix} \rho v \\ \rho v^2 + p \\ (E+p)v \end{bmatrix} \qquad \boldsymbol{S} = -\begin{bmatrix} 0 \\ \rho \\ \rho v \end{bmatrix} \frac{\partial \phi}{\partial x}$$

- Classical solution algorithm:
  - Solve homogeneous eqs with Godunov type method (i.e. solve Riemann problem)
  - Account for source term in second step (split/unsplit)

Classical solution algorithm:

$$\boldsymbol{u}_{i}^{n+1} = \boldsymbol{u}_{i}^{n} - \frac{\Delta t}{\Delta x} \left( \boldsymbol{F}_{i+1/2}^{n} - \boldsymbol{F}_{i-1/2}^{n} \right) + \Delta t \boldsymbol{S}_{i}^{n}$$

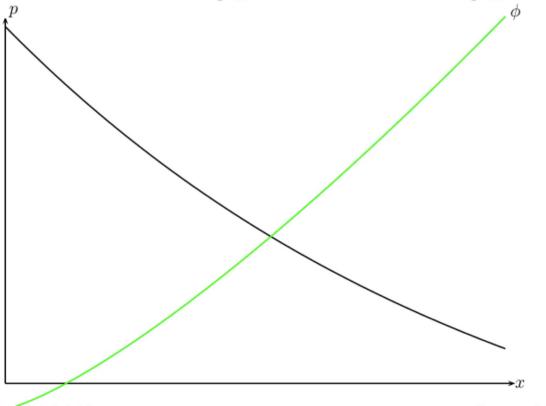
- Numerical flux  $F_{i\pm 1/2}^n = \mathcal{F}(u_{i\pm 1/2}^{n,L}, u_{i\pm 1/2}^{n,R})$  from (approximate) Riemann solver, e.g.
  - (Local) Lax-Friedrichs Lax (1954), Rusanov (1961)
  - **HLL (C)** Harten, Lax and van Leer (1983), Toro et al. (1994)
  - Roe (1981)

Interested in hydrostatic

equilibrium:

$$\frac{\partial \mathbf{F}}{\partial x} = \mathbf{S} \implies \frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x}$$

EoS:  $p = p(\rho, e)$ 

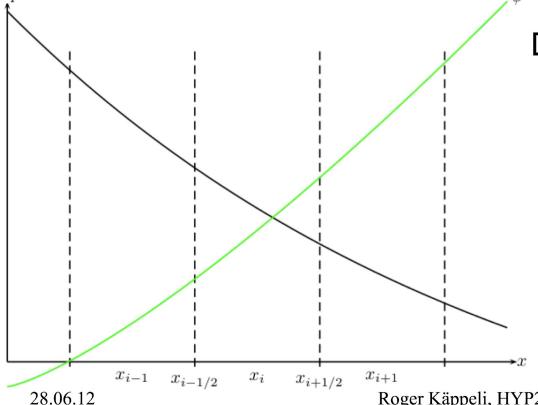


Interested in hydrostatic

equilibrium:

$$\frac{\partial \mathbf{F}}{\partial x} = \mathbf{S} \implies \frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x}$$

EoS:  $p = p(\rho, e)$ 



Discretise in cells  $[x_{i-1/2}, x_{i+1/2}]$ 

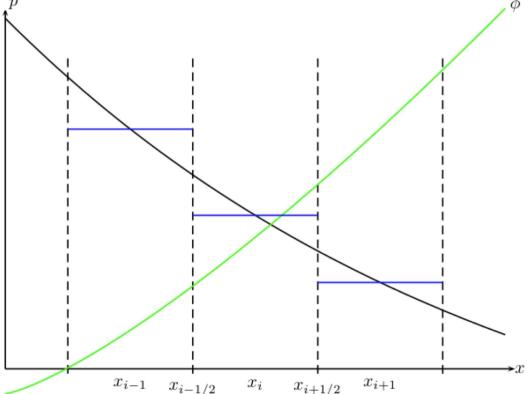
Roger Käppeli, HYP2012, Padova

Interested in hydrostatic

equilibrium:

28.06.12

$$\frac{\partial \boldsymbol{F}}{\partial x} = \boldsymbol{S} \quad \Longrightarrow \quad \frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x} \qquad \text{EoS: } p = p(\rho, e)$$



Discretise in cells  $[x_{i-1/2}, x_{i+1/2}]$ 

Define cell averages

$$\boldsymbol{u}_i = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \boldsymbol{u}(x, t^n) \mathrm{d}x$$

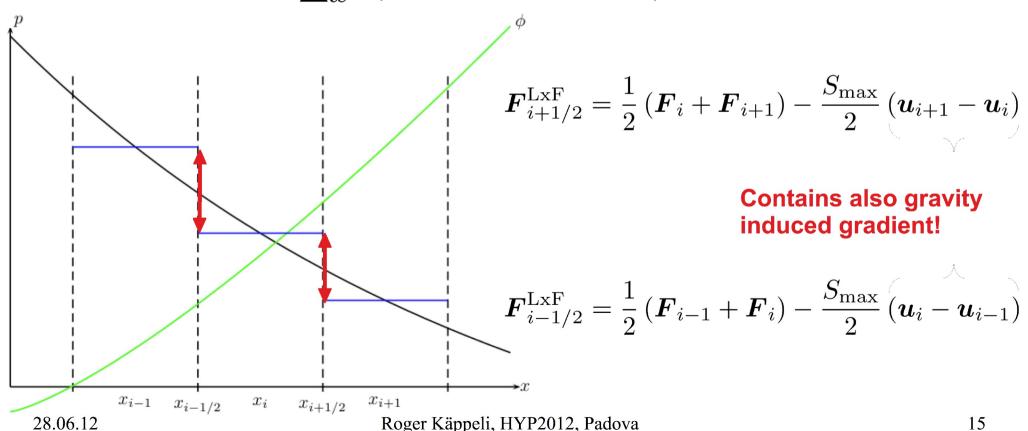
$$\boldsymbol{S}_{i} = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \boldsymbol{S}(\boldsymbol{u}(x,t)) dx$$

Roger Käppeli, HYP2012, Padova

Interested in hydrostatic

equilibrium:

$$\frac{1}{\Delta x} \left( \boldsymbol{F}_{i+1/2}^n - \boldsymbol{F}_{i-1/2}^n \right) \stackrel{?}{=} \boldsymbol{S}_i^n$$



Interest equil

Hydrostatic atmosphere in a constant gravitational field

$$\phi(x) = gx \quad \rho(x) = \left[\rho_0^{\gamma - 1} - \frac{g}{K} \frac{\gamma - 1}{\gamma} x\right]^{\frac{1}{\gamma - 1}} \quad p = \frac{p_0}{\rho_0^{\gamma}} \rho^{\gamma} = K \rho^{\gamma}$$

$$x \in [0, 2]$$

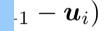


(after 2 sound crossing times)

| N   | 1st     | 2ndTVD  |
|-----|---------|---------|
| 32  | 9.3E-02 | 1.3E-03 |
| 64  | 4.6E-02 | 3.2E-04 |
| 128 | 2.3E-02 | 8.0E-05 |
| 256 | 1.2E-02 | 2.0E-05 |
| 512 | 5.7E-03 | 5.1E-06 |

$$Err = \frac{1}{N} \sum_{i} |p_i - p_i^0|$$

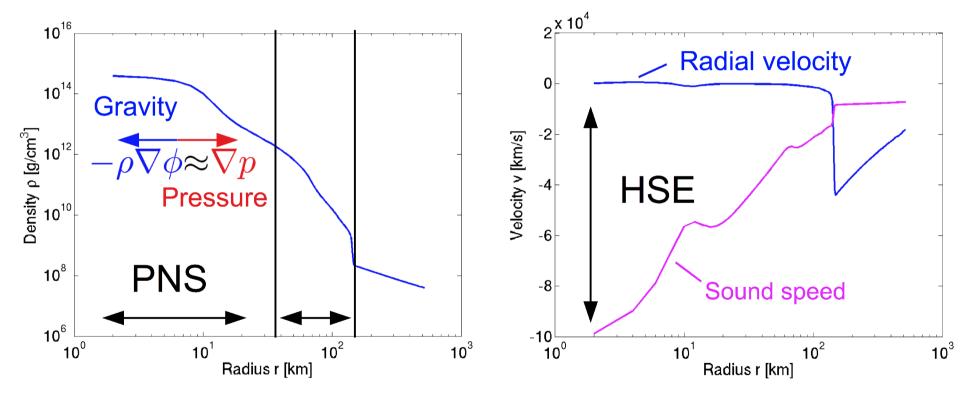
HLLC numerical flux



avity



The problem: (in our simulations)



Ability to maintain near hydrostatic equilibrium for a long time!

#### Solutions:

- Define a global stationary state  $u_0(r)$  at each time step and evolve  $u(\boldsymbol{x}) u_0(r)$
- Steady state preserving reconstructions, well balanced schemes

   e.g. LeVeque (1998), LeVeque & Bale (1998), Botta et al. (2004), Fuchs et al. (2010)

Note: there are many, many more... especially for shallow-water eqs!!!

#### Solutions:

- Define a global stationary state  $u_0(r)$  at each time step and evolve  $u(\boldsymbol{x}) u_0(r)$
- Steady state preserving reconstructions, well balanced schemes

   e.g. LeVeque (1998), LeVeque & Bale (1998), Botta et al. (2004), Fuchs et al. (2010)

#### Requirements

- Equilibrium not known in advance (self-gravity)
- Extensible for general EoS
- (At least) second order accuracy

Interested in **numerical** hydrostatic equilibrium:

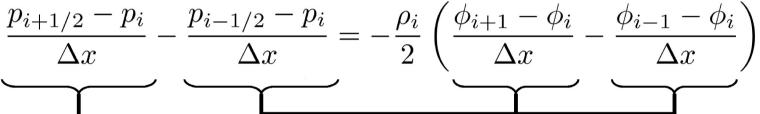
$$\frac{1}{\Delta x} \left( \boldsymbol{F}_{i+1/2}^n - \boldsymbol{F}_{i-1/2}^n \right) = \boldsymbol{S}_i^n$$

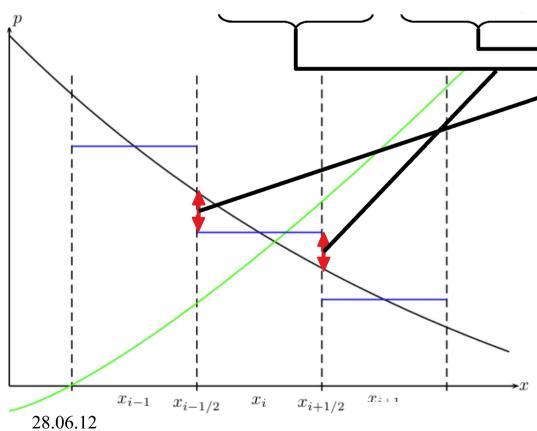
$$\frac{\partial p}{\partial x} + O(\Delta x^2) = \frac{p_{i+1/2} - p_{i-1/2}}{\Delta x} = -\rho_i \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} = -\rho \frac{\partial \phi}{\partial x} + O(\Delta x^2)$$

$$\frac{(p_{i+1/2} - p_i) - (p_{i-1/2} - p_i)}{\Delta x} = -\frac{\rho_i}{2} \frac{(\phi_{i+1} - \phi_i) - (\phi_{i-1} - \phi_i)}{\Delta x}$$

Interested in **numerical** hydrostatic

equilibrium:





Equilibrium reconstruction:

$$p_{i+1/2} = p_i + \frac{\Delta x}{2} \Delta p_i^+$$

$$p_{i-1/2} = p_i - \frac{\Delta x}{2} \Delta p_i^-$$

Equilibrium differences:

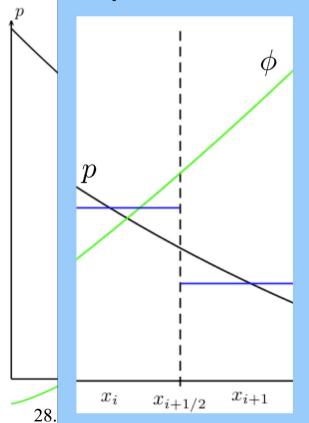
$$\Delta p_i^+ = -\rho_i \frac{\phi_{i+1} - \phi_i}{\Delta x}$$
$$\Delta p_i^- = -\rho_i \frac{\phi_i - \phi_{i-1}}{\Delta x}$$

$$\Delta p_i^- = -\rho_i \frac{\phi_i - \phi_{i-1}}{\Delta x}$$

Interested in **numerical** hydrostatic

equilibrium:

#### Equilibrium?



$$p_{i+1/2}^L \stackrel{!}{=} p_{i+1/2}^R$$

$$p_i + \frac{\Delta x}{2} \Delta p_i^+ = p_{i+1} - \frac{\Delta x}{2} \Delta p_{i+1}^-$$

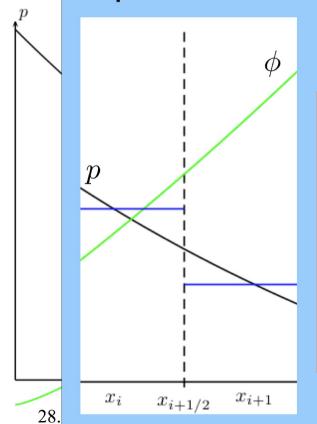
$$\frac{p_{i+1} - p_i}{\Delta x} = -\frac{\rho_i + \rho_{i+1}}{2} \frac{\phi_{i+1} - \phi_i}{\Delta x}$$

Discrete HydroStatic Equilibrium

Interested in **numerical** hydrostatic

equilibrium:

#### Equilibrium?



$$p_{i+1/2}^L \stackrel{!}{=} p_{i+1/2}^R$$

Requirement on Riemann solver:

$$m{F}_{i\pm 1/2}^n = m{\mathcal{F}}( \left[ egin{array}{c} 
ho_{i+1/2}^L \ 0 \ p_{i+1/2} \end{array} 
ight], \left[ egin{array}{c} 
ho_{i+1/2}^R \ 0 \ p_{i+1/2} \end{array} 
ight]) = \left[ egin{array}{c} 0 \ p_{i+1/2} \ 0 \end{array} 
ight]$$

e.g. HLLC, Roe

Discrete HydroStatic Equilibrium

Second order extension:

$$\tilde{\boldsymbol{\sigma}}_{i} = \varphi \left( \frac{\boldsymbol{u}_{i} - \boldsymbol{u}_{i-1}}{\Delta x} - \frac{\boldsymbol{\Delta} \boldsymbol{u}_{i-1}^{+} + \boldsymbol{\Delta} \boldsymbol{u}_{i}^{-}}{2}, \frac{\boldsymbol{u}_{i+1} - \boldsymbol{u}_{i}}{\Delta x} - \frac{\boldsymbol{\Delta} \boldsymbol{u}_{i}^{+} + \boldsymbol{\Delta} \boldsymbol{u}_{i+1}^{-}}{2} \right)$$

$$\boldsymbol{u}_{i+1/2}^{L} = \boldsymbol{u}_{i} + \left( \boldsymbol{\Delta} \boldsymbol{u}_{i}^{+} + \tilde{\boldsymbol{\sigma}}_{i} \right) \frac{\Delta x}{2}$$

$$\boldsymbol{u}_{i+1/2}^{R} = \boldsymbol{u}_{i+1} - \left( \boldsymbol{\Delta} \boldsymbol{u}_{i+1}^{-} - \tilde{\boldsymbol{\sigma}}_{i+1} \right) \frac{\Delta x}{2} \quad \boldsymbol{\Delta} \boldsymbol{u}_{i}^{\pm} = \begin{bmatrix} 0 \\ 0 \\ \frac{\Delta p_{i}^{\pm}}{\gamma - 1} \end{bmatrix}$$

#### Reconstruction in deviation from equilibrium

Similar to Botta et al. 2004, Fuchs et al. 2010

Time stepping:

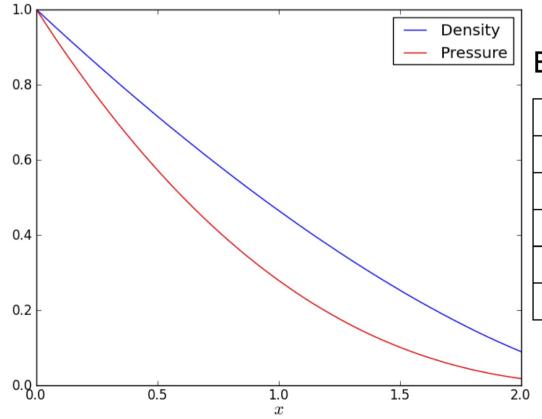
$$\boldsymbol{u}^* = \boldsymbol{u}^n + \Delta t^n \boldsymbol{L}(\boldsymbol{u}^n)$$

$$\boldsymbol{u}^{**} = \boldsymbol{u}^* + \Delta t^n \boldsymbol{L}(\boldsymbol{u}^*)$$

$$\boldsymbol{u}^{n+1} = \frac{1}{2} \left( \boldsymbol{u}^n + \boldsymbol{u}^{**} \right)$$

Hydrostatic atmosphere in a constant gravitational field

$$\phi_i = gx_i \qquad \frac{p_{i+1}-p_i}{\Delta x} = -\frac{\rho_i + \rho_{i+1}}{2} \frac{\phi_{i+1}-\phi_i}{\Delta x} \qquad p_i = K_i \rho_i^{\gamma}$$
 
$$x \in [0,2] \qquad K = const. \quad \text{$\sim$ entropy}$$



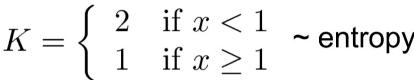
#### Error in pressure:

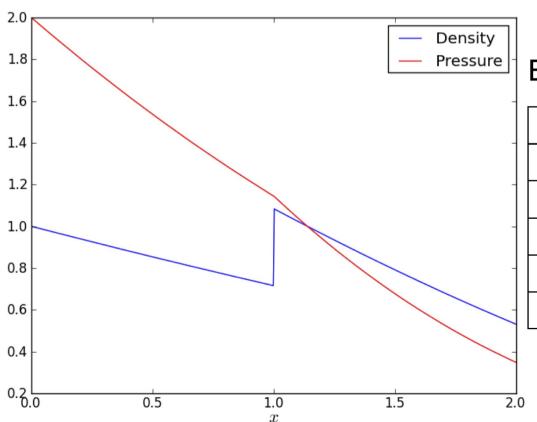
| N   | 1st                      | 2ndTVD                   |
|-----|--------------------------|--------------------------|
| 32  | 9.3E-02 / <b>4.0E-16</b> | 1.3E-03 / <b>2.0E-16</b> |
| 64  | 4.6E-02 / <b>2.2E-15</b> | 3.2E-04 / <b>8.7E-17</b> |
| 128 | 2.3E-02 / <b>2.9E-15</b> | 8.0E-05 / <b>8.1E-16</b> |
| 256 | 1.2E-02 / <b>2.9E-15</b> | 2.0E-05 / <b>3.8E-16</b> |
| 512 | 5.7E-03 / <b>8.1E-14</b> | 5.1E-06 / <b>1.8E-15</b> |

$$Err = \frac{1}{N} \sum_{i} |p_i - p_i^0|$$

Hydrostatic atmosphere in a constant gravitational field

$$\phi_i = gx_i \qquad \frac{p_{i+1} - p_i}{\Delta x} = -\frac{\rho_i + \rho_{i+1}}{2} \frac{\phi_{i+1} - \phi_i}{\Delta x} \qquad p_i = K_i \rho_i^{\gamma}$$
 
$$x \in [0, 2] \qquad K = \begin{cases} 2 & \text{if } x < 1 \\ 1 & \text{if } x \ge 1 \end{cases} \sim \text{entropy}$$





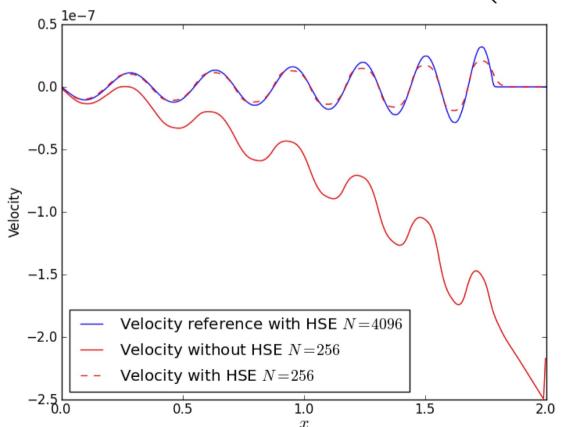
#### Error in pressure:

| N   | 1st                      | 2ndTVD                   |
|-----|--------------------------|--------------------------|
| 32  | 6.3E-02 / <b>3.3E-16</b> | 6.2E-04 / <b>1.3E-16</b> |
| 64  | 3.2E-02 / <b>3.8E-15</b> | 1.6E-04 / <b>4.6E-16</b> |
| 128 | 1.6E-02 / <b>6.1E-15</b> | 4.2E-05 / <b>8.8E-16</b> |
| 256 | 8.0E-03 / <b>7.0E-15</b> | 1.1E-05 / <b>6.7E-16</b> |
| 512 | 4.0E-03 / <b>1.1E-13</b> | 2.7E-06 / <b>3.4E-15</b> |

$$Err = \frac{1}{N} \sum_{i} |p_i - p_i^0|$$

Hydrostatic atmosphere in a constant gravitational field + **small** amplitude waves

Velocity perturbation:  $v(t,x=0)=10^{-8}\sin\left(\frac{6}{1.8}2\pi t\right)$ 

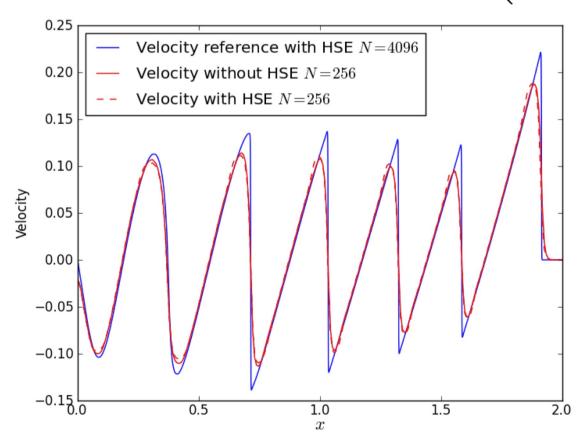


28.06.12

# Example 3 (2)

Hydrostatic atmosphere in a constant gravitational field + large amplitude waves

Velocity perturbation:  $v(t,x=0)=10^{-1}\sin\left(\frac{6}{1.8}2\pi t\right)$ 



28.06.12

Polytrope: model star (e.g. main sequence stars, white dwarfs, neutron stars)

Euler equations in spherical symmetry:

$$\frac{\partial (\mathbf{r}^2 \mathbf{u})}{\partial t} + \frac{\partial (\mathbf{r}^2 \mathbf{F})}{\partial r} = \mathbf{r}^2 \mathbf{S}$$

$$\mathbf{u} = \begin{bmatrix} \rho \\ \rho v \\ E \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} \rho v \\ \rho v^2 + p \\ (E+p)v \end{bmatrix} \qquad \mathbf{S} = \frac{2p}{r} - \begin{bmatrix} 0 \\ \rho \\ \rho v \end{bmatrix} \frac{\partial \phi}{\partial x}$$

Poisson equation in spherical symmetry:

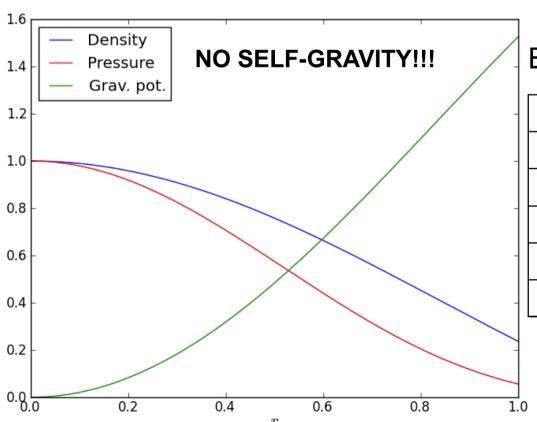
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial \phi}{\partial r} \right) = 4\pi G \rho$$

# Example 6 (2)

Polytrope: model star  $\gamma = 2$  ~ neutron stars

$$\text{HSE: } \frac{p_{i+1} - p_i}{\Delta r} = -\frac{\rho_i + \rho_{i+1}}{2} \frac{GM_{1+1/2}}{r_{i+1/2}^2} \quad \text{Poisson: } \frac{\phi_{i+1} - \phi_i}{\Delta r} = \frac{GM_{1+1/2}}{r_{i+1/2}^2}$$

$$p_i = K_i \rho_i^{\gamma}$$
  $K = const.$ 



$$M_{i+1/2} = \int_0^{r_{i+1/2}} 4\pi r^2 \mathrm{d}r$$

#### Error in pressure:

| N   | 1st                      | 2ndTVD                   |
|-----|--------------------------|--------------------------|
| 32  | 2.3E-02 / <b>2.7E-16</b> | 1.8E-03 / <b>1.4E-16</b> |
| 64  | 1.1E-02 / <b>5.7E-16</b> | 4.4E-04 / <b>5.0E-16</b> |
| 128 | 5.7E-03 / <b>4.3E-16</b> | 1.1E-04 / <b>3.3E-16</b> |
| 256 | 2.8E-03 / <b>1.0E-15</b> | 2.8E-05 / <b>7.7E-16</b> |
| 512 | 1.4E-03 / <b>6.6E-13</b> | 6.9E-06 / <b>3.5E-16</b> |

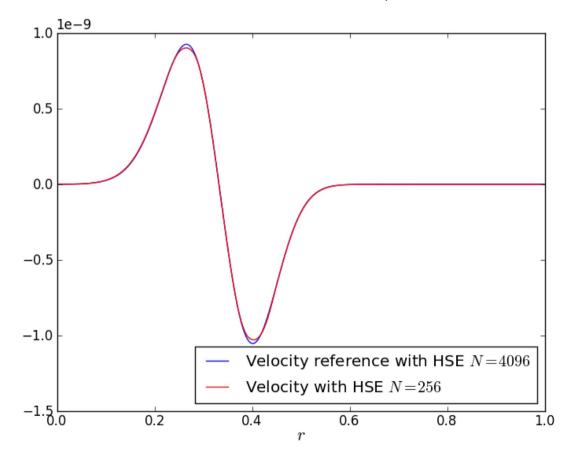
$$Err = \frac{1}{N} \sum_{i} |p_i - p_i^0|$$

# Example 6 (3)

Polytrope: model star  $\gamma = 2$  ~ neutron stars

+ density perturbation

$$\rho(r) = \rho(r) \left( 1 + 10^{-6} \exp(-100r^2) \right)$$



Without HSE reconstruction the velocity is way off!

28.06.12

#### **Outline**

- Introduction
  - (Astro)Physical motivation
- Well-balanced scheme for HydroStatic Equilibrium (HSE)
  - First order
  - Second order
- Multi-dimensional extension
  - Limitations
- Conclusion

#### Multi-dimensional extension

 Straight forward directional application of HydroStatic Reconstruction

$$\frac{\mathrm{d}\boldsymbol{u}_{i,j}}{\mathrm{d}t} = \boldsymbol{L}(\boldsymbol{u}) = -\frac{1}{\Delta x} \left( \boldsymbol{F}_{i+1/2,j} - \boldsymbol{F}_{i-1/2,j} \right) - \frac{1}{\Delta y} \left( \boldsymbol{G}_{i,j+1/2} - \boldsymbol{G}_{i,j-1/2} \right) + \boldsymbol{S}_{i,j}$$

Numerical equilibrium:

$$\frac{p_{i+1,j} - p_{i,j}}{\Delta x} = -\frac{\rho_{i,j} + \rho_{i+1,j}}{2} \frac{\phi_{i+1,j} - \phi_{i,j}}{\Delta x}$$
$$\frac{p_{i,j+1} - p_{i,j}}{\Delta y} = -\frac{\rho_{i,j} + \rho_{i,j+1}}{2} \frac{\phi_{i,j+1} - \phi_{i,j}}{\Delta y}$$

Polytrope: model star (e.g. main sequence stars, white dwarfs, neutron stars)

HSE: 
$$\nabla p = -\rho \nabla \phi$$
 Poisson equation:  $\nabla^2 \phi = -4\pi G \rho$ 

Equation of state  $p = K \rho^{\gamma}$  K = 1

Take 
$$\gamma=2$$
 ~ neutron stars

Take 
$$\gamma=2$$
 ~ neutron stars 
$$/ \frac{\text{Central density}}{r}$$
 Then there's an exact solution: 
$$\rho(\boldsymbol{x}) = \rho_c \frac{\sin(\alpha r)}{r}$$

$$\phi(\boldsymbol{x}) = -\gamma K \rho(\boldsymbol{x})$$

$$\alpha = \sqrt{\frac{2K}{4\pi G}} \quad r = \sqrt{x^2 + y^2 + z^2}$$

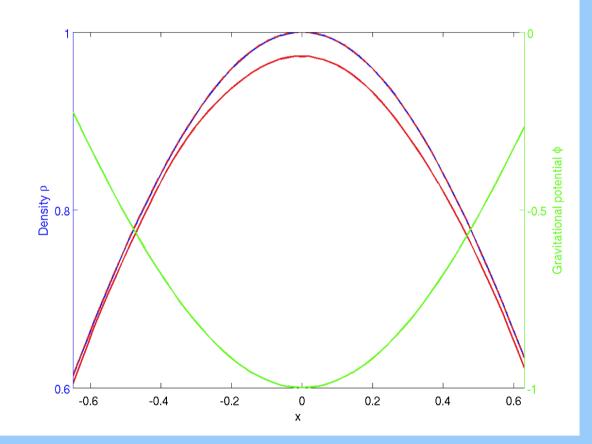
Evolution for 20 "sound crossing" times

P

H

Ta

Th



- NO HSE

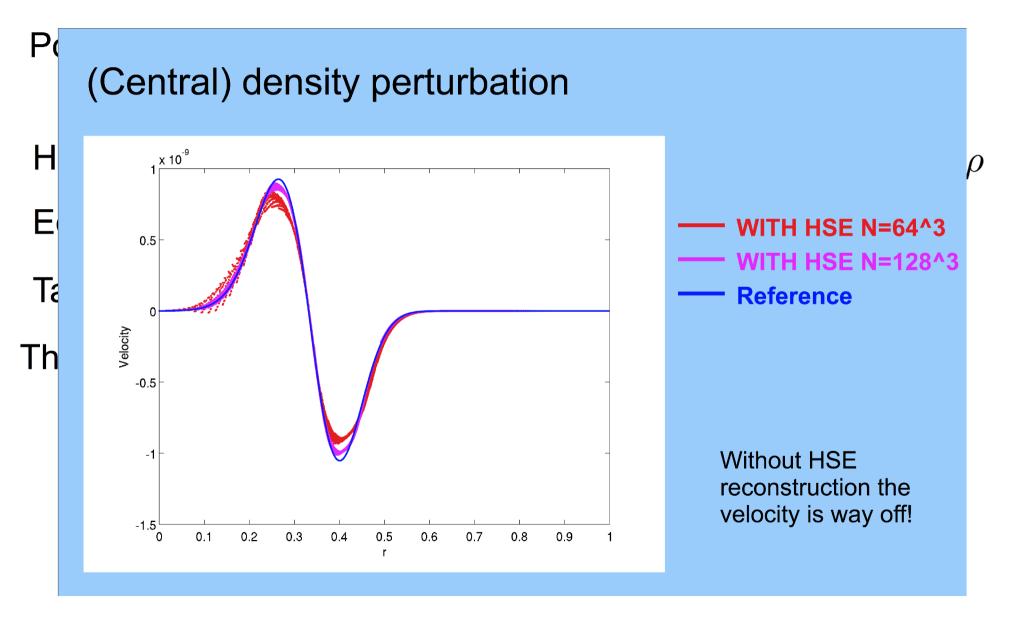
·--·· WITH HSE

--- Reference

Error in density:

| N   | 2ndTVD                   |
|-----|--------------------------|
| 64  | 1.9E-02 / <b>1.2E-15</b> |
| 128 | 4.9E-03 / <b>3.4E-15</b> |

$$Err = \frac{1}{N} \sum_{i} |\rho_i - \rho_i^0|$$



#### Conclusions

- 1D well-balanced scheme for hydrostatic equilibrium (for any Equation of State EoS)
- Extension to higher-order? Non-zero velocity steady state?
- Multi-D well-balanced scheme for hydrostatic equilibrium
  - Unfortunately with limitations (so far...)
     Although not exactly well-balanced for general EoS, the ability to maintain HSE is greatly increased

Thank you for you attention!!!