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Scope: modeling, analysis and control of network
phenomena on the example of gas flow

» Many applications have inherent network and transport
structure as for example traffic flow, gas or water
transportation networks, telecommunication, blood flow or
production systems

» Network as directed® graph with arcs j and vertices v

» Transport phenonema along each arc described by a spatial
1-d hyperbolic equation

» Physical coupling conditions at each vertex described by an
algebraic condition 2

Mathematical description as coupled systems of hyperbolic balance
or conservation laws

lew. S. Canic, Hyperbolic Nets as undirected graph
2cw. M. Garavello ODE conditions



Example: Traffic Flow On Road Networks

Macroscopic description of traffic flow on one—way road j by
density p;(x, t) and average velocity uj(x, t9

» Roads modeled through conservation laws
(LWR)

depj + Oxpju(pj) =0

or systems (ARZ, Colombo, Goatin ...)

» Vertices as road intersections modelled by
conservation of cars and right—of-way
rules

> Incomplete Refs. Colombo, Garavello, Holden,
Lebacque, Piccoli, Rascle, ...




Example: Supply Chain Management

Macroscopic description of large—volume production facilities with
density of parts p;(x, t)3

» Re—entrant machines modelled by
conservation laws (possibly
non—local fluxes)

Oepj + Oxpjulpj) = 0

> Vertices as machine—to—machine
connections including (sometimes)
buffers (leads also to ODE at
vertices)

> Incomplete Refs. Armbruster, d'Apice,
Degond, Gottlich, Klar, Ringhofer, ...

3M. Kawski, S. Peng, ...



Example: Water Flow in Open Canals or Pooled Chutes

Description of a water level h; and velocity u; in open canals j or
pooled step cascades j

» Dynamics modelled by
shallow—water equations
equations with source terms

» Vertices as waterway
intersections or
(controllable) gates

= Aigner (2001)
Emiroglu & Baylar (2003)

. Chinnarasri & Wongwises (2006
» Questions of closed and

open loop control and
stabilization

> Incomplete Refs.
Andrea-Novel, Bastin, Coron,
Gugat, Guerra, Li Tatsien,
Leugering, ...



Example of gas transportation networks

Modeling and simulation for high pressure gas transmission
systems using the p—system?*

> Industrial problem:
Cost—efficient driving of gas
through pipe networks

» Major physical effect: Pressure
loss along the pipe due to
pipewall friction

> Gas supplier operates
compressor stations to increase
the pressure and fulfill
contracts with customers

> Pipe—to—pipe intersections

*In collaboration with Colombo, Guerra, Schleper, Klar, Gugat, Leugering



Common assumptions for high—pressure gas transmission

» No influence of temperature gradients
» Horizontal pipes with constant pipe diameter

» Equation of state p = z R T p with constant gas
compressibility factor z leads to isothermal Euler equations

(2 ) )
‘ <Pj“j p(pj) + pju? f(pj, uj)

» Pipe wall friction given by f(p;, u;) = fg%fjuj‘

» Theoretical results available for general 2x2 genuine nonlinear
hyperbolic balance laws on each arc

Literature in engineering and mathematics since more than 50 years, e.g.,
Pipeline Simulation Interest Group (www.psig.com)



Modelling of compressor stations

control

» Compressor station in the 1-d pipe modelled as vertex
coupling incoming (in) and outgoing (out) pipes.

» Compressor conserves mass qj, = qout With g = pu

> Pressure at the pipe boundaries enter the equation for a
single, idealized compressor

P(-) = P(pin; pout; q) = ¢ q ((Iﬁ(p/::t)))ﬁ - 1)

» P(-) is the energy necessary to increase pressure from p(pj,)
to p(pout)




Modelling of a single pipe—to—pipe vertex

T !
» Conservation of mass at vertex located at x; on arc j, t >0
> (1) (o) (x5, 1) = 0
J
» Second condition required for example in engineering literature
p(pi(xj, t)) = p(pi(xi, t))

» Variety of other second conditions exists: equal pressure
including minor losses depending on geometry and type of gas
(tables); equal dynamic momentum; numerically by modeling
the domain by a 2-D consideration



Numerical assesment of coupling conditions by 2 — D
simulations

Zooming . _--=~"""""

T

/(/(" 1 2 It

» Vertex is locally a 2d domain and simulate perturbations of
constant steady states

» Average to obtain tables to be compared with predictions of
1-d coupling conditions

» Subsonic flow: equal pressure at node as reasonable
assumption for tee—shaped pipe—to—pipe intersection



1-d description of pipe networks simplistic as seen for time
evolution of the density p(x, y, t) for p-system, v =1

1=05 =1



Mathematical properties of coupled systems

j=1 - j=2 -

control

» Generic situation of a single vertex located at x = 0 for each
of the n connected arcs, y(x, t) € R?

» Control u present at the vertex

» Dynamics on each arc according to a 2 x 2 nonlinear
hyperbolic system of balance laws

Oryj + Oxf (yj)) =g (x,y), V (y(l), .. ,y(”)> = u(t)

» Coupling conditions for a nonlinear function V¥ and
¥y = yi(0, t)
» Well-posedness of the problem?



Result on weak solutions for 2x2 balance laws

Crucial assumption. There exists a constant subsonic state (y, o)
fulfilling the coupling condition W = 0 and V is locally invertible

Theorem (Colombo Guerra, H., Schleper)

Let D° = {(y,u) € (y,0) + L} (R, Q x R") : TV (y,u) <4},
where Q C R?" in a non—-empty set. Then, there exist 6, T and a
semigroup € : [0, T — to] x [0, T] x Dy, — D° for some Dy, C D?
such that & (t, to, yo, u) is a solution to the Cauchy problem at the
Junction with initial condition y(to,x) = yo and control function
u(t). The solution depends Lipschitz-continuous on VW, yy and u:

1€ (t, to, yo, u) — € (t, to, Jo, ) || <

t- (1o 5ol + /+ Ju(r) ~ 5



Result on weak solutions ... (cont'd)

Oey () + O, f (y(’)) =g (X,y(i)> " (y(1)7 - ,y(”)) = u(t)

» Coupling condition is satisfied for a.e. t > 0

» The solution may contain shock waves and its regularity as in
the case of the Cauchy problem

» The main assumptions are subsonic initial data and small
TV-norm of the initial data and

det (D1V(7)r3(71), - - -, DaW(7)r3 (7)) # O
» The solution operator y = £(t, to, yo, u) enjoys important
property

||5 (ta to, Y0, U) -& (ta to,}N/O» EI) || <

(o =50l + [ lutr) - a1

to



|dea of the proof: Riemann Problems at the Vertex (1/2)

» Consider the situation of piecewise constant initial data in
each arc ) = yj o — coupling conditions are not necessarily

satisfied

» Introduce unknown, artifical states V/ for each arc

» Solve a Riemann problem on each arc j with an artifical state

VJ at the node

Knoten -



Choice of V; (2/2)

Compute Q; € R?, such that for all
V € 2}, the self-similar solution
yj(x, t) to a Riemann problem for
U/ and V/ consists of waves of
non—positive speed (incoming arcs)
Existence of admissible sets £2; due
to assumption a subsonic state

Reduced problem: Find

VieQ; C R2, such that the
coupling conditions W = 0 are
fulfilled, uses the assumption on
the determinant of ¥

A wave — front tracking solution
satisfies at the vertex
yj(0—,t) =V, vt >0

[y




Application to Gas Transportation Networks

» Gas networks: conditions of conservation of mass and equal
pressure is well-posed

» Compressor condition and conservation of mass through
compressor is well-posed

» Existence of an open loop control for compressor power
control for a single compressor station

min J subj. 9yy(V+d,f (y(i)) =g (x, y(i)) Y (y(l), . 7y(")) = u(t)
Lemma. The cost functional
-
T@ =)+ [ E (¢ t030,0) de
0
admits a unique minimum on

{uen+ ([0, T];R") : (yo,u) € D°} provided that Jy are
lower semi—continuous wrt to Ll-norm.



Alternative approach towards coupling conditions via
homogenization

AN

» Every road governed by 2 x 2 traffic flow model of
Aw-Rascle-Zhang (ARZ)

» ARZ = LWR + information traveling with car and influencing
speed (e.g., truck or car)

» Vertex introduces a mixture of cars on the outgoing road

> Instead of solving Riemann problems solve an initial-value
problem with oscillating initial data on exiting road

> Leads to modified equation on outgoing arc close to vertex



Again: Gas transportation networks

pj pju;
8 J > _|_ ax ( 1%
‘ (pjuj- p(pj) + pju?

» Well-posedness for coupling
conditions for pipe—to—pipe and
compressor vertices

» Existence of open loop (or optimal
control) for compressor energy P(-)

» Fulfillment of contracts possible?
Stabilization of flow in pipe
network by compressor control
possible?

> - <f(ﬂjo’ “j)>




Controllability Result for Compressor Control in Gas
Networks

control

Setting. Two connected pipes — customer (j = 2) requires state
yg(t) for t > t** — control is P(-) to be determined.

> Classical subsonic solutions (A1(y;) < 0 < Xa2(y:))

(9t (piui) + A(pleul)aX (pu) G(l'7X7 p”plul) on D’

D = {(t,x):t>0,—-L<x<0}
D, = {(t,x):t>0,0<x<L}

> Theorem (Gugat, H., Schleper): Existence of a control P for
suitable yg but no uniqueness. Assumption on the smallness of
Cl'—norm of all data.



Equations studied for controllability questions

O <P?llll> + A(pinini)ax (ppzl) — G(taX,pi,p;u;) on D;

iYi

W(p1, p2, prut, p2u2)(0, t) — P(t)
p1(t,—L) = pi(t), fort>0
@(t, L) = &(t), forte (0,t%)
w(t,L) = yg(t), fort >t >t*

and initial condition y;(0,x) = yo,.
> Based on existence results for semi—global classical solutions (Li
Tatisen et al)
» Need smallness of C'—norm of all data

» Explicit construction of the control P(t) possible



Proof: Construction of control P
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Solution y in red area obtained in particular g
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Use any smooth connection of p,, g, to desired state yg
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Change meaning of x and t



Full solution in second pipe available

x=0

s [ F

x=12

T T

transposed problem:

Dxy2 + (A(y2)) " Beyo = (A(y2)) " G(t, %, y2)






Coupling condition:

P2, g2 gives qi
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Control u due to coupling conditions depending on

P1, P2, 42, q1
Ye
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Stabilization of Gas Flow

Stabilization of flow patterns using compressor stations?

>

Results for a single pipe and the isothermal Euler equations
without source term®
Linearization of the system around constant (also

space—dependent possible) stationary states gives a
quasi—linear hyperbolic system

Transformation of the linearized system in Riemann invariants
R+

Derive boundary conditions (aka compressor) of the linear part
of the system to stabilize the flow of the quasi—linear equations

Proof relies on the design of suitable Lyapunov functions
extending previous work by Coron et al

5Tree—like networks, compressor stations, pipe—to—pipe intersections also
possible



Example of a Lyapunov function for the linearised problem
in Riemann invariants

o, (?) S o, <g+> —0
- 0 Ao - BetRe -

» Lyapunov function with constants pu, AL > 0

L(r) = / ;‘iexp(—ix)fﬁ(r,x)dw / ”/j : R (£.x)dx

HA I

» Equivalent to L>—norm, therefore L2—stabilization result
> Provided there is a uniform bound on ||0x R4 | < T one obtains
exponential decay of L

%L(t) < (= + r)L(D)

1 AN 1 1 —A N
a:3+max{ /\_Jr exp (,uL(_—_)> , *.A }
2 2 —A A Xe e A,




Stabilization Result for Compressor Controlled Gas
Networks

Theorem. (Gugat, H.)

» Assumptions: stationary subsonic state, finite terminal time T,
constants ko, k. € (0,1)

» Then, there exists dg > d1; > 0 such that any initial data
|u?]|c: < 81 and such that the compatibility conditions at x = 0, L
are satisfied, there is a Cl—solution u; of the quasi-linear system.

> Then, the Lyapunov function L(t) satisfies
w
L(t) < L(0) exp(—7 1)

and Ry decays to zero exponentially fast®

> u depends on kg 1

®Extension to H' stabilzation (Gugat)



Numerical discretization of problem

» Discretized version of the
continuous Lyapunov function

Theoretical expected value
of decay rate
» Results for a system in diagonal w=>575E —01.

form (i.e. Riemann invariants)

» Assumption on boundness of initial

. . . | Nz Er L m v

data and spatial derivative S

H 200 2.18E-03 267E-04 5.70E-01 5.72E-

necessary n Order to prove 400 1.09E-03 9.49E-05 5.73E-01 5.73E-

. . . 800 548E-04 3.36E-05 5.74E-01 5.74E-
exponential decay of the discretized 1600 274E05 LIGEU5 575001 5.75E

. TABLE 1. The number of grid points in the spatial dom

Lya punov functions noted by Ny. L™ denotes the norm ||(LE%%<), — (L"),
norm [|(L&Fast 7‘\(11'.")""2. The values of y and v are

> Explicit bounds on decay I’ate /1/ equation (E%E‘FL constant is equal to one and k =

» Decay independent on the grid size



Optimal control vs exact control

TN

Two connected pipes. Depicted is the pressure evolution over both
pipes and time. Simulation result using higher—order finite—volume
scheme. Left: optimal control, right: exact control for a constant
desired pressure.



Simulation of pipe network

) Teanscanaen

cana

Network graph of Candian mainline gas network and Isolines of the
pressure selected pipes in Toronto area



Conclusion

» Some ideas on modeling and analysing problems on networks

» Well-posedness theory for nodal control of systems of 2 x 2
balance laws on network (weak + classical)

» Remarks on existence of optimal controls including shock
waves

» Remarks for gas networks on controllability and stabilization
using semi—global (classical) solutions

Thank you for your attention.
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