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Balance equations

Euler equations
with phase
transition

Isothermal Euler equations

M. Hantke pr + (Pv)x =0
(V)i + (pv* +p)x =

(e}

Model description

Jump conditions across discontinuities

[pv=W)] = 0
p(v =W +p] = 0

Mass flux across discontinuities

Z=—plv—W)

7 QO shock wave
| z phaseboundary

S shock wave

and W= { w phase boundary
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Equations of state

Euler equations
with phase
transition

Ideal gas law

kT, ~
PV:PVWO 0<py<p

Model description

Liquid equation of state

pL=po+Ko(Z—z—1> PL = Pm

L

o™
o

Ei

o
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e Maxwell condition
ransition

/I/Pv(Po) ) 1 ( 1 1 )
d— = - — -
1/p0 PP P pv(po)  po o

Model description

Equation of state

black: p(1/p)
for Ty = 573.15K
dashed red: Maxwell line
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Kinetic relation

Euler equations

with phase . .
transition Case 1: terlal case

z=0

Model description
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Model description

Kinetic relation

Case 1: trivial case
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Interface pressure relations I
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z=0 implies

Phase boundaries

[Pl = —2°[-1

=0 < pr=pv (=po)



Interface pressure relations I
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M. Hantke

z=0 implies

Phase boundaries

po—pv=  [pl= —zz[[%]] E— <i _ i)

PL PV

=0 < pr=pv (=po)

otherwise pv <PpL



Interface pressure relations II

Euler equations

VD Lemma 1: Uniqueness of liquid interface pressure

transition

S Consider the isothermal case with 273.15K < Ty < 623.15 K. Then for
given interface pressure py, of the vapor phase with 0 < p}, < p the
kinetic relation and the corresponding equations of state define the
liquid pressure py, uniquely. Furthermore, by these relations the mass
flux z is uniquely defined.

Phase boundaries
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Euler equations

VD Lemma 1: Uniqueness of liquid interface pressure

transition

S Consider the isothermal case with 273.15K < Ty < 623.15 K. Then for
given interface pressure py, of the vapor phase with 0 < p}, < p the
kinetic relation and the corresponding equations of state define the
liquid pressure py, uniquely. Furthermore, by these relations the mass
flux z is uniquely defined.

Phase boundaries

Lemma 2: Monotonicity of liquid interface pressure

For given temperature 273.15 K < Ty < 623.15 K the implicitely
defined function py(p}) is strictly increasing.
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M. Hantke

Phase boundaries

Interface pressure relations II

Lemma 1: Uniqueness of liquid interface pressure

Consider the isothermal case with 273.15K < Ty < 623.15 K. Then for
given interface pressure py, of the vapor phase with 0 < p}, < p the
kinetic relation and the corresponding equations of state define the
liquid pressure py, uniquely. Furthermore, by these relations the mass
flux z is uniquely defined.

Lemma 2: Monotonicity of liquid interface pressure

For given temperature 273.15 K < Ty < 623.15 K the implicitely
defined function py(p}) is strictly increasing.

Lemma 3: Monotonicity of z[1/p]

For given temperature 273.15 K < Ty < 623.15 K the expression z[[%]] is
strictly increasing in py,, where z depends on the implicitely defined

Sfunction p; (py).
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Classical waves

Euler equations

with phase
transition v P )\1 =v—a 11 =v+ alIl,O
M. Hantke A= i . N = v+a L =v—al
5 2 = 2=V alnp
v = a+j
; W =
Classical waves Ifan p = €xXp (V/a_v + In p,)
_ X
= —a+t3

W2fan = {

exp ("_av” —l—lnp”) .

<
|
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Euler equations

with phase
transition A \;2 p Al=V—a I =v+alnp
M. Hantke = % ¥ M=v+a L =v— alnp

v = a+j

Classical waves Wlfan = p = exp (Vliv + In p,)
a
v = —a+}
W2fan = p = exp (v—av” +1In pll) )
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Wave configuration
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Riemann problem

_ | pyv for x<O _J v for x<O0
p(x,O)—{pL for x>0 i v(x,O)—{vL for x>0.

Riemann problem
for two phase
flows, Case 1

solid: classical waves, dashed: vapor-liquid phase boundary
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Wave configuration

Euler equations
with phase
transition

Riemann problem

_ | pyv for x<O _J v for x<O0
p(x,O)—{pL for x>0 i v(x,O)—{vL for x>0.

Riemann problem
for two phase
flows, Case 1

solid: classical waves, dashed: vapor-liquid phase boundary

There exists no solution of wave pattern types a) und c), which include
the cases of coincidence of the classical waves with the phase boundary.
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Solution of isothermal Euler equations, Case 1

Euler equations

with phase THEOREM 1: Let f be given as

f(p, Wy, W) = fu(p, Wy) + fr(p, W) + Av , where the functions fy
and f; are given by

Fop Wy) = 1\7/_7% if p > py (shock)
VA BV —aylnpy +aylnp if p < py (rarefaction)
P if p > pr (sh.)
e Y RN PN Gy ren
flows, Case 1 1L ) L -
—ayIn2 +agln (P;fo n 1) if p < pr. (tf.).

If the function f(p, Wy, W) has a root p*with 0 < p* < p, this root is
unique and is the unique solution for pressure pj, of the above Riemann
problem. The velocity vy, can be calculated as follows

v; = %(Vv + VL) + % (fL(P*aWL) —fV(P*wa)) :



Wave curves

Euler equations

el v = 2007 | v = 50" | Ty =473.5K | Ko= gi%pa
py = 60000Pa | py = 100000Pa | py = 20 %8 | py = 1554670Pa

Wave curves in the p-v-plane
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Wagner, Kretzschmar. International steam tables, Springer-Verlag,
Berlin - Heidelberg, 2008.
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Wave configuration

with phase
transition

solid: classical waves, dashed: vapor-liquid phase boundary

Riemann problem
for two phase
flows, Case 2
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Wave configuration

Euler equations
with phase
transition

solid: classical waves, dashed: vapor-liquid phase boundary

Lemma 5
Riemann problem

g e There exists no solution of wave pattern type a), which include the cases
s Cases of coincidence of the classical waves with the phase boundary.
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Wave configuration

Euler equations
with phase
transition

solid: classical waves, dashed: vapor-liquid phase boundary

Lemma 5

There exists no solution of wave pattern type a), which include the cases
of coincidence of the classical waves with the phase boundary.

Riemann problem
for two phase
flows, Case 2

Lemma 6

For pr. > po, there exists no solution of wave pattern type c).
For pr. < po, the condition p},(pL) > poexp(—v/2w) is sufficient, that
there is no solution of type c).
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Solution of isothermal Euler equations, Case 2

Euler equations THEOREM 2: Let f; be given as

with phase

fransifon fz(Pa Wy, WL) :fV(P» WV) +fL(PZ(P); WL) + Z[[%]] + Av with

FooWy) = % if p > py (shock)
’ —ayInpy +aylnp if p < py (rarefaction)
A if pi(p) > pu (sh.)
filp. W) o (L2 )
L\V>» L = 0
—arn % +a;ln (F%)O_"“ + 1) if p; (p) < pL (f).
Riemann problem
for two phase
How,Case If the function f; has a root p* with 0 < p* < p, this root is unique. If
further

p*>py we must have > —ay\/pvpy . )]

In this case the root p*is the unique solution for the pressure py; for a
b)-type solution of the above Riemann problem with phase transition
and the complete solution is uniquely determined.
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Euler equations
vith phase Wave curves in the p-v-plane
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Solution properties

Euler equations
with phase
transition

THEOREM 3: (Sufficient condition for solvability) Let us consider
the above Riemann problem. If the Riemann problem considered for
Case 1 is solvable, then the same Riemann problem is also solvable
taking into account phase transition due to the kinetic relation.

Riemann problem
for two phase

flows, Case 2
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Solution properties

Euler equations
with phase
transition

THEOREM 3: (Sufficient condition for solvability) Let us consider
the above Riemann problem. If the Riemann problem considered for
Case 1 is solvable, then the same Riemann problem is also solvable
taking into account phase transition due to the kinetic relation.

THEOREM 4: Let p* be the solution of the pressure in the star region
Riemann problem

: of the above Riemann problem for Case 1. Then for the solutions py, and
flows, Cose 2 p;(py) of the same Riemann problem for Case 2 we have

0p=po implies that Py =pi(py) = po.
P < po implies that  p* < p;(p}) < po.
P > po implies that po < py < p*.

17/25



Single phase flow, two gases

Euler equations
with phase
transition

Riemann problem

_J pv— for x<0 _J vy for x<0
p(x,O)—{ pv+ for x>0 and v(x,O)—{ vyy for x>0.

THEOREM §: Let the function fyy be given as

fow, Wy, Wy ) =fyr (p,Wy_) +fvi(p, Wyy) + Av.

If the function fyy (p, Wy_, Wy ) has a root p* with 0 < p* < p, this
Nucleation and root is unique and is the unique solution for pressure pj, of the above
cavitation Riemann problem. The velocity vy, is given by

1 1
vy = E(VV_ +vyy) + 5 (Frs (Ps, Wyt ) = fr—(ps, Wy-)) .

18/25



Nucleation criterion, wave configuration

Euler equations
with phase
transition

If there is no solution to the above Riemann problem according to
Theorem 5, then nucleation occurs.

Nucleation and

cavitation
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Nucleation criterion, wave configuration

Euler equations

vith phase o,
ransition Definition 1

If there is no solution to the above Riemann problem according to
Theorem 5, then nucleation occurs.

Lemma 7

If there is a solution of the Riemann problem consisting of two classical
waves and two phase boundaries, then no wave is propagating through
the liquid. Waves may only occur in the gas.

Nucleation and
cavitation

19/25



Wave configuration

Euler equations

with phase
transition Lelnn]a 8

There are no solutions of wave pattern types d) and f).

Nucleation and
cavitation
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Wave configuration

with phase
transition Lemma 8

There are no solutions of wave pattern types d) and f).

Nucleation and
cavitation

Assume, there is a solution of wave pattern type e). Then py. = py.x.
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Nucleation

Euler equations
with phase
transition

THEOREM 6: Consider the above Riemann problem and assume the
nucleation criterion is satisfied. Let fyy, be given as

Sfove(p, Wy—, Wy ) = fu_(p, Wy—) +fvi-(p, Wyy) +22[[%]] +Av=0

Here z is given by the kinetic relation and [[ 1= pT = pT The
function pj (p) is implicitely defined.

If the function fyy, has a root with pg < p < p, then this root is the only
one. Furthermore, this root is the unique solution for pressure

N — DPvs = Py Of the Riemann problem for the vapor pressure in the star
izt regions. The liquid velocity v.. can be calculated by

Vi

(vw= +vvg) + 5 (fv+(P ) —fr—(px)) -

l\)l>—‘
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Single phase flow, two liquids

Euler equations
with phase
transition

Riemann problem

pl0) = {

vi— for x<O
vi+ for x>0,

pr— for x<O0 _
e for x>0 and v(x,0) = {
THEOREM 7: Let f;; be given as

fir(p, W W) =fi(p, W) + fir (0, Wiy ) + Av.

If the function f; (p, Wy—, W) has a root p* with p,, < p*, this root
is unique and is the unique solution for pressure p; of the above

Nucleation and . . * v

cavitation Riemann problem. The velocity vj is calculated from

V= g v+ g G (02) ~fi(04))



Cavitation criterion, cavitation

Euler equations ..
with phase Definition 2
transition
If there is no solution to the above Riemann problem according to
Theorem 7, then cavitation occurs.

Nucleation and
cavitation
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Cavitation criterion, cavitation

Euler equations ..
with phase Definition 2
transition
If there is no solution to the above Riemann problem according to
Theorem 7, then cavitation occurs.

THEOREM 8: Consider the above Riemann problem and assume the
cavitation criterion is satisfied. Let f;;, be given as

fiz(py Wi, Wiy) = fi(pr(p), We—) + e+ (pL(p), We) +22[[%1] +Av=0.

Here z is calculated from the kinetic relation and [[/l)]] = pi* - pvl** . The
function pj (p) is implicitely defined.
If the function f;;, has a root with py,in < p, then this root is unique.

Nucleation and

cavitation Further, this root uniquely determines the pressure py, of the Riemann
problem for the vapor pressure in the star region. Further, the vapor
velocity vy, is given by

we = 500 +wa) + 3 G i) —fi ()
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Solvability, example

Euler equations

with phase THEOREM 9: Consider the above Riemann problem and assume the
transition . . . . . . . .o e .

cavitation criterion is satisfied. If we admit phase transition, this
problem is always solvable.

Velocity in m/s Zoom: Velocity in m/s
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Nucleation and «10¢ Pressurein Pa Zoom: p - 70383 Pa
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