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Balance equations

Isothermal Euler equations

ρt + (ρv)x = 0
(ρv)t + (ρv2 + p)x = 0

Jump conditions across discontinuities

Jρ(v−W)K = 0
ρ(v−W)JvK + JpK = 0

Mass flux across discontinuities
Z = −ρ(v−W)

with

Z =

{
Q shock wave
z phase boundary and W =

{
S shock wave
w phase boundary
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Equations of state

Ideal gas law

pV = ρV
kT0

m
0 ≤ ρV ≤ ρ̃

Liquid equation of state

pL = p0 + K0

(
ρL

ρ0
− 1
)

ρL ≥ ρm
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Maxwell condition∫ 1/ρV(p0)

1/ρ0

p(ρ)d
1
ρ

=

(
1

ρV(p0)
− 1
ρ0

)
· p0

Equation of state
black: p(1/ρ)
for T0 = 573.15 K
dashed red: Maxwell line

a) red: ρ̃(T)
a) black: ρm(T)

b) ρ̃(T)/ρm(T) < 1
4
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Kinetic relation

Case 1: trivial case

z = 0

Case 2

z =
pV√
2π

(
m

kT0

)3/2

Jg + ekinK

z =
pV√
2π

(
m

kT0

)3/2 [K0

ρ0
ln
ρL

ρ0
− kT0

m
ln

pV

p0

+
1
2

(vL − w)2 − 1
2

(vV − w)2
]

7 / 25



Euler equations
with phase
transition

M. Hantke

Outline

Introduction

Model description

Phase boundaries

Classical waves

Riemann problem
for two phase
flows, Case 1

Riemann problem
for two phase
flows, Case 2

Nucleation and
cavitation

Kinetic relation

Case 1: trivial case

z = 0

Case 2

z =
pV√
2π

(
m

kT0

)3/2

Jg + ekinK

z =
pV√
2π

(
m

kT0

)3/2 [K0

ρ0
ln
ρL

ρ0
− kT0

m
ln

pV

p0

+
1
2

(vL − w)2 − 1
2

(vV − w)2
]

7 / 25



Euler equations
with phase
transition

M. Hantke

Outline

Introduction

Model description

Phase boundaries

Classical waves

Riemann problem
for two phase
flows, Case 1

Riemann problem
for two phase
flows, Case 2

Nucleation and
cavitation

Interface pressure relations I

Case 1: z = 0

z = 0 implies
w = vV = vL

pV = pL

Case 2

pL − pV = JpK = −z2J
1
ρ
K = −z2

(
1
ρL
− 1
ρV

)
z = 0 ⇐⇒ pL = pV (= p0)

otherwise pV < pL
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Interface pressure relations II

Lemma 1: Uniqueness of liquid interface pressure

Consider the isothermal case with 273.15 K ≤ T0 ≤ 623.15 K. Then for
given interface pressure p∗V of the vapor phase with 0 ≤ p∗V ≤ p̃ the
kinetic relation and the corresponding equations of state define the
liquid pressure p∗L, uniquely. Furthermore, by these relations the mass
flux z is uniquely defined.

Lemma 2: Monotonicity of liquid interface pressure

For given temperature 273.15 K ≤ T0 ≤ 623.15 K the implicitely
defined function p∗L(p∗V) is strictly increasing.

Lemma 3: Monotonicity of zJ1/ρK

For given temperature 273.15 K ≤ T0 ≤ 623.15 K the expression zJ 1
ρK is

strictly increasing in p∗V , where z depends on the implicitely defined
function p∗L(p∗V).
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Classical waves

A =

(
v ρ
a2

ρ v

)
λ1 = v− a I1 = v + a ln ρ
λ2 = v + a I2 = v− a ln ρ

Rarefactions

W1fan =

{
v = a + x

t

ρ = exp
(

v′−v
a + ln ρ′

)
W2fan =

{
v = −a + x

t

ρ = exp
(

v−v′′
a + ln ρ′′

)
.

Shocks

S1 = v′ −
√

a2ρ′ρ′′

ρ′ v′′ = v′ − a2(ρ′′−ρ′)√
a2ρ′ρ′′

S2 = v′ +
√

a2ρ′ρ′′

ρ′ v′′ = v′ + a2(ρ′′−ρ′)√
a2ρ′ρ′′
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Wave configuration

Riemann problem

ρ(x, 0) =

{
ρV for x < 0
ρL for x > 0 and v(x, 0) =

{
vV for x < 0
vL for x > 0 .

solid: classical waves, dashed: vapor-liquid phase boundary

Lemma 4
There exists no solution of wave pattern types a) und c), which include
the cases of coincidence of the classical waves with the phase boundary.
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Solution of isothermal Euler equations, Case 1

THEOREM 1: Let f be given as
f (p,WV ,WL) = fV(p,WV) + fL(p,WL) + ∆v , where the functions fV
and fL are given by

fV(p,WV) =

{
p−pV√
ρV p if p > pV (shock)
−aV ln pV + aV ln p if p ≤ pV (rarefaction)

fL(p,WL) =


p−pL√

K0ρL

(
p−p0

K0
+1
) if p > pL (sh.)

−aL ln ρL
ρ0

+ aL ln
(

p−p0
K0

+ 1
)

if p ≤ pL (rf.).

If the function f (p,WV ,WL) has a root p∗with 0 < p∗ ≤ p̃, this root is
unique and is the unique solution for pressure p∗V of the above Riemann
problem. The velocity v∗V can be calculated as follows

v∗V =
1
2

(vV + vL) +
1
2

(fL(p∗,WL)− fV(p∗,WV)) .
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Wave curves

vV = −200 m
s vL = −50 m

s T0 = 473.15K K0 = 109

0.88383 Pa
pV = 60000Pa pL = 100000Pa ρ0 = 1000

1.15651
kg
m3 p0 = 1554670Pa

0 0.5 1 1.5 2 2.5
-1000

-800
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-400

-200

0

200

400
Wave curves in the p-v-plane

Pressure in bar

V
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Wagner, Kretzschmar. International steam tables, Springer-Verlag,
Berlin - Heidelberg, 2008.
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Wave configuration

solid: classical waves, dashed: vapor-liquid phase boundary

Lemma 5
There exists no solution of wave pattern type a), which include the cases
of coincidence of the classical waves with the phase boundary.

Lemma 6
For pL ≥ p0, there exists no solution of wave pattern type c).
For pL < p0, the condition p∗V(pL) ≥ p0 exp(−

√
2π) is sufficient, that

there is no solution of type c).
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Solution of isothermal Euler equations, Case 2

THEOREM 2: Let fz be given as
fz(p,WV ,WL) = fV(p,WV) + fL(p∗L(p),WL) + zJ 1

ρK + ∆v with

fV(p,WV) =

{
p−pV√
ρV p if p > pV (shock)
−aV ln pV + aV ln p if p ≤ pV (rarefaction)

fL(p,WL) =


p∗L (p)−pL√

K0ρL

(
p∗L (p)−p0

K0
+1
) if p∗L(p) > pL (sh.)

−aL ln ρL
ρ0

+ aL ln
(

p∗L (p)−p0

K0
+ 1
)

if p∗L(p) ≤ pL (rf.) .

If the function fz has a root p∗ with 0 < p∗ ≤ p̃, this root is unique. If
further

p∗ > pV we must have z > −aV
√
ρVρ∗V . (1)

In this case the root p∗is the unique solution for the pressure p∗V for a
b)-type solution of the above Riemann problem with phase transition
and the complete solution is uniquely determined.
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Solution properties

THEOREM 3: (Sufficient condition for solvability) Let us consider
the above Riemann problem. If the Riemann problem considered for
Case 1 is solvable, then the same Riemann problem is also solvable
taking into account phase transition due to the kinetic relation.

THEOREM 4: Let p∗ be the solution of the pressure in the star region
of the above Riemann problem for Case 1. Then for the solutions p∗V and
p∗L(p∗V) of the same Riemann problem for Case 2 we have

1 p∗ = p0 implies that p∗V = p∗L(p∗V) = p0.

2 p∗ < p0 implies that p∗ < p∗L(p∗V) < p0.

3 p∗ > p0 implies that p0 < p∗V < p∗.
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Solution properties

THEOREM 3: (Sufficient condition for solvability) Let us consider
the above Riemann problem. If the Riemann problem considered for
Case 1 is solvable, then the same Riemann problem is also solvable
taking into account phase transition due to the kinetic relation.

THEOREM 4: Let p∗ be the solution of the pressure in the star region
of the above Riemann problem for Case 1. Then for the solutions p∗V and
p∗L(p∗V) of the same Riemann problem for Case 2 we have
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Single phase flow, two gases

Riemann problem

ρ(x, 0) =

{
ρV− for x < 0
ρV+ for x > 0 and v(x, 0) =

{
vV− for x < 0
vV+ for x > 0 .

THEOREM 5: Let the function fVV be given as

fVV(p,WV−,WV+) = fV−(p,WV−) + fV+(p,WV+) + ∆v .

If the function fVV(p,WV−,WV+) has a root p∗ with 0 < p∗ ≤ p̃, this
root is unique and is the unique solution for pressure p∗V of the above
Riemann problem. The velocity v∗V is given by

v∗V =
1
2

(vV− + vV+) +
1
2

(fV+(p∗,WV+)− fV−(p∗,WV−)) .
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Nucleation criterion, wave configuration

Definition 1
If there is no solution to the above Riemann problem according to
Theorem 5, then nucleation occurs.

Lemma 7
If there is a solution of the Riemann problem consisting of two classical
waves and two phase boundaries, then no wave is propagating through
the liquid. Waves may only occur in the gas.
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Definition 1
If there is no solution to the above Riemann problem according to
Theorem 5, then nucleation occurs.

Lemma 7
If there is a solution of the Riemann problem consisting of two classical
waves and two phase boundaries, then no wave is propagating through
the liquid. Waves may only occur in the gas.
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Lemma 8
There are no solutions of wave pattern types d) and f).

ρ
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V- ρ
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ρ
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ρ
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ρ
V**
, v
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Lemma 9

Assume, there is a solution of wave pattern type e). Then pV∗ = pV∗∗.
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Nucleation

THEOREM 6: Consider the above Riemann problem and assume the
nucleation criterion is satisfied. Let fVVz be given as

fVVz(p,WV−,WV+) = fV−(p,WV−)+ fV+(p,WV+)+2zJ
1
ρ
K+∆v = 0 .

Here z is given by the kinetic relation and J 1
ρK = 1

ρL∗
− 1

ρV∗
. The

function p∗L(p) is implicitely defined.
If the function fVVz has a root with p0 < p ≤ p̃, then this root is the only
one. Furthermore, this root is the unique solution for pressure
pV∗ = pV∗∗ of the Riemann problem for the vapor pressure in the star
regions. The liquid velocity vL∗ can be calculated by

vL∗ =
1
2

(vV− + vV+) +
1
2

(fV+(p∗)− fV−(p∗)) .
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Single phase flow, two liquids

Riemann problem

ρ(x, 0) =

{
ρL− for x < 0
ρL+ for x > 0 and v(x, 0) =

{
vL− for x < 0
vL+ for x > 0 ,

THEOREM 7: Let fLL be given as

fLL(p,WL−,WL+) = fL−(p,WL−) + fL+(p,WL+) + ∆v .

If the function fLL(p,WL−,WL+) has a root p∗ with pmin ≤ p∗, this root
is unique and is the unique solution for pressure p∗L of the above
Riemann problem. The velocity v∗L is calculated from

v∗L =
1
2

(vL− + vL+) +
1
2

(fL+(p∗)− fL−(p∗)) .
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Cavitation criterion, cavitation

Definition 2
If there is no solution to the above Riemann problem according to
Theorem 7, then cavitation occurs.

THEOREM 8: Consider the above Riemann problem and assume the
cavitation criterion is satisfied. Let fLLz be given as

fLLz(p,WL−,WL+) = fL−(pL(p),WL−)+ fL+(pL(p),WL+)+ 2zJ
1
ρ
K+∆v = 0 .

Here z is calculated from the kinetic relation and J 1
ρK = 1

ρL∗
− 1

ρV∗∗
. The

function p∗L(p) is implicitely defined.
If the function fLLz has a root with pmin ≤ p, then this root is unique.
Further, this root uniquely determines the pressure p∗V of the Riemann
problem for the vapor pressure in the star region. Further, the vapor
velocity vV∗ is given by

vV∗ =
1
2

(vL− + vL+) +
1
2

(fL+(p∗L(p∗))− fL−(p∗L(p∗))) .
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Solvability, example

THEOREM 9: Consider the above Riemann problem and assume the
cavitation criterion is satisfied. If we admit phase transition, this
problem is always solvable.
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