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INTRODUCTION

The framework

@ Nonlinear hyperbolic conservation laws (Euler equations)

@ Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)

@ High-order linear methods introduce spurious oscillations in the regions of discontinuities
(Gibbs)

@ These unphysical oscillations propagate everywhere

@ Use artificial viscosity to suppress oscillations

The (not so new) idea

@ Regularize the PDE from the start.
@ Clearly identify the viscous regularization.

@ Discretize = artificial viscosity should be independent of discretization (except for a notion
of mesh-size). Should work for finite diff, finite elements, DG, spectral method, spectral
finite elements, etc.
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The (not so new) idea

@ Viscous regularization gives umax (First-order viscosity. Low order method).
@ Use the physical principle of entropy production to limit the amount of artificial viscosity: ue
@ Entropy Viscosity: 4 = min(tmax, 4E)-
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PDE-based vs Entropy-based artificial viscosities

@ The use of a residual to construct an artificial viscosity is not new

@ For instance, the so-called PDE-based artificial viscosity (Hughes-Mallet (1986),
Johnson-Szepessy (1990))

4

PDE-residual is less robust than entropy residual

@ The residual of the PDE goes to zero in the distribution sense (solve the PDE!)

@ The entropy residual converges to a Dirac measure supported in the physical shocks.

A\
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Example (Riemann problem for 1D Burgers’ equation)

IVP:
du+dx (u;) =0, (x,f)eRxR,
1 ifx<0
u(x,0) = t(x) = {o it x>0
Solution:
u(x,t) =1 7H(x7 §t>
PDE Residual:




INTRODUCTION

Example (Riemann problem for 1D Burgers’ equation)

IVP:
a,u+ax(u;):o, (x,t) ERx Ry
1 ifx<0
u(x,0) = w(x) =
(x,0) = to(x) {o if x>0
Solution:
)=1—H(x—=t
u(x,t) (x 2)
PDE Residual:
2
u 1 1
o+ (- |=-H --H =0
[U+ X(Z) 2 >
If E(u) = “; and F(u) = “; then the Entropy Residual:
2 3
u u T T 1
o () rou(£) = -t = b= (- 3 <
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INTRODUCTION

Contact and other waves

@ The residual of an entropy equation is large in shocks
@ But it goes to zero in contacts
@ Automatic distinction between shock and other waves




SCALAR CONSERVATION

Nonlinear scalar conservation equations

© SCALAR CONSERVATION

Transport,
mixing




SCALAR CONSERVATION

Model problem

ou+V-f(u) =0, (x,t)€Qx(0,T]
u(x,0) = up(x)
ulx,t)lr=g

Entropy inequality

0tE(u)+V-F(u)<o0

F'(u) = E'(u)f (u)
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Regularized model problem

Add viscous dissipation to stabilize the model
problem:

oru+V-f(u)=-V-q, (x,t)€Q2x(0,T]
u(x,0) = up(x)
U(X,t)|r =g

@ q= —uVuis aviscous flux.

@ u will be the entropy viscosity (will depend on u).
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Space discretization

Discretize the domain Q2 into Uy ¢ T, K = Q

K is assumed to be either a polygon or a polyhedron

Finite element space ’V,f consists of continuous polynomials of degree p > 0
h:Q — Ry is defined by VK € T : h|,, = hx = diam(K)/p?.




SCALAR CONSERVATION

@ Numerical analysis 101: Up-winding=centered approx + || viscosity
@ 1D Proof: Assume f/ >0

Uit1 — 2U; + Uj—1
h;

;
2h; 2

Ui — Uj— Ujpq — Uj—
s Ui i _ g YiH i—1
f =1

hy fihi
i

v

1
Mmax = §|f,‘h




SCALAR CONSERVATION

@ Evaluate entropy residual

Dp:= B,E(uh) +f’(uh)-VE(uh)

at each time step

@ Set
2 Dp

e normalization(E (up))




SCALAR CONSERVATION

The algorithm

@ Choose one entropy functional (or more).
EX: E(u) = |u—Tg|, E(u) = (u—Tp)?, etc.




SCALAR CONSERVATION

The algorithm

@ Choose one entropy functional (or more).
EX: E(u) = |u—Tg|, E(u) = (u—Tp)?, etc.
@ Compute volume residual Dy x := 9¢E (up) + (un)-VE(un),




SCALAR CONSERVATION

The algorithm

@ Choose one entropy functional (or more).

EX: E(u) = |u—Tg|, E(u) = (u—Tp)?, etc.
@ Compute volume residual Dy x := 9¢E (up) + (un)-VE(un),
@ Compute interface residual Jyax := [VF(up) : (n@n)],




SCALAR CONSERVATION

The algorithm

@ Choose one entropy functional (or more).
EX: E(u) = |u—Tg|, E(u) = (u—Tp)?, etc.
@ Compute volume residual Dy x := 9¢E (up) + (un)-VE(un),
@ Compute interface residual Jyax := [VF(up) : (n@n)],
@ Construct viscosity associated with entropy residual over each mesh cell K:
5 max(|| Dall =y [1Jnll=(ak))

HE K ‘= CEhK —————
E(un)




SCALAR CONSERVATION

The algorithm

@ Choose one entropy functional (or more).
EX: E(u) = |u—Tg|, E(u) = (u—Tp)?, etc.
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5 max(|| Dall =y [1Jnll=(ak))

HE K ‘= CEhK —————
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@ Compute maximum upwind viscosity over each mesh cell K:

Mmax,K = CmaxhKHf/(uh)HL‘”(K)




SCALAR CONSERVATION

The algorithm

@ Choose one entropy functional (or more).
EX: E(u) = |u—Tg|, E(u) = (u—Tp)?, etc.

@ Compute volume residual Dy x := 9¢E (up) + (un)-VE(un),
@ Compute interface residual Jyax := [VF(up) : (n@n)],
@ Construct viscosity associated with entropy residual over each mesh cell K:

max(|| Dall =k | nll = k)
ek = CEN ®) (@)
E(un)

@ Compute maximum upwind viscosity over each mesh cell K:

Mmax,K = CmaxhKHf/(uh)HL‘”(K)

@ Compute viscosity over each mesh cell K by comparing timax,x and uge k:

Hk 2= min(Umax K , ME,K )
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Definition of ux can be localized when polynomial degree p is large.

Cmax = 3 in 1D, with p= 1.

Cmax Can be theoretically estimated (depends on space dimension, p, and type of mesh).

ce ~ 1 in applications.
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The algorithm

@ Space approximation: Galerkin + entropy viscosity:

/Q(atuh—l—V~(f(uh)))vhdx+Z/K,uKVuthhdx: 0, Vv,€ 'V,f7
K

N——
Entropy viscosity

Galerkin(centered approximation)
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SCALAR CONSERVATION

The algorithm

@ Space approximation: Galerkin + entropy viscosity:

/Q(B,uh—i—v(f(uh)))vhdx-l—Z/,uKVuth,,dx:Q VVhE‘V,i7
K /K

N——
Entropy viscosity

Galerkin(centered approximation)

@ Time approximation: Use an explicit time stepping: BDF2, RK3, RK4, etc.

@ Make the viscosity explicit = Stability under CFL condition.
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Example (Finite differences + RK2)

@ (u",u") Given. Advance half time step to get w”

1 f(uly)—f(uly) u —ul ul —ul
wh=u"— —At i+1 _ 1 n Zi+1 i _.n i i—1
i i 2 2/7,' + M hi HMi—q hi—1
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Example (Finite differences + RK2)

@ (u",u") Given. Advance half time step to get w”

1 f(uly)—f(uly) ul —ul ufl —uf”
wh=ul— — At i+1 _ 1 n Zi+1 i _.n i i—1
i T 5 2h; + (4 hi HMi—q By

@ Compute entropy residuals (volume and interface)

F(w/' 1) — F(w/)

by B~ ECD)

At/2 + hi

E(wliq) — E(ufyy) | F(wiy) —F(w)
AI’/Q h;
_ F(wi) —F(w) — F(w') - F(wil4)
hi hi—1

Diy1:=

Ji:
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Example (Finite differences + RK2)

@ Compute entropy viscosity "t

1, =
Mimax = EH" HLDO(X171VX/‘+1)hi

—omax(|D;l, |D; Ji
I-liAE:hiz X(‘ IM I+1|7| ID
E(w")

‘ul’_7+1 = min(,ui,mah,“i,E)'
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Example (Finite differences + RK2)

@ Compute entropy viscosity "t

1, =
Mimax = EH" HLDO(X171VX/‘+1)hi

—omax(|D;l, |D; Ji
I-liAE:hiz X(‘ IM I+1|7| ID
E(w")

‘ul’_7+1 = min(,ui,mah,“i,E)'

@ Compute u"t?
n_

f(wl,)—f(w,) wi ., —w w!—w!
un+1 — up At i+1 - i—1 + (7+1 i+1 [ {1+1 i i—1
i i 2hi Hi h,‘ Hi—q h,',1
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all polynomial degrees. (Better than usual & < ch% condition for piecewise linear approximation.)
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Theorem (AB,JLG,BP (2012))

The RK2 time approximation with finite element approximation is stable under CFL condition for
all polynomial degrees. (Better than usual & < ch% condition for piecewise linear approximation.)

Convergence to the entropy solution is under way for convex, Lipschitz flux.

Why convergence is so difficult to prove?
@ Key a priori estimate

.
/ w(u)|VulPax <
0

o Okin {u(u)(x,t) = 3| |l=h} (non-smooth region)

@ The estimate is useless in smooth region.

@ Explicit time stepping makes the viscosity depend on the past.




SCALAR CONSERVATION

@ Algorithm extends naturally to Discontinuous Galerkin setting (PhD thesis Valentin Zingan
(2011) Texas A&M).

@ Lagrangian formulation under way (PhD thesis Vladimir Tomov, Texas A&M).
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Nonlinear scalar conservation equations

o NUMERICAL ILLUSTRATIONS

Johannes Martinus
Burgers




Example (1D scalar transport)

@ J;u+dyu = 0, periodic BCs.

@ P finite elements, RKx (x > 2).

@ Using very nonlinear entropies help to satisfy the maximum principle for scalar
conservation and steepen contacts.

12 12
| 7Y 1 —
|
/ o
/ \ |
J \ |
/ \
/ \ / \
0 / : 1 o / \ |
-02 0
0 1 0
() E(u)=(u—$)?, N=100,t=1

1
(b) E(u)=(u—$)%,N=100,t=1




NUMERICAL ILLUSTRATIONS

Example (2D scalar transport)
@ J;u+PB-Vu=0, (B solid rotation).
@ Qq finite elements, RKx (x > 2).

@ Using very nonlinear entropies help to satisfy the maximum principle for scalar
conservation and steepen contacts.

DB: tho_00.vik DB: ho_00.vik
ycle: 0 Cycle: 0

cnat
Tz asam

(©) E(u)=(u—$)2 N=1002,t=1 (@) E(u)=(u—$)%, N=100%t=1
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Example (3D scalar transport)

@ d;u+B-Vu=0, (B solid rotation about Oz)
o Qq finite elements, RKx (x > 2).

@ Level sets of a cube in rotation on a (1 00)3 grid in the original configuration and after 1, 10,
and 100 rotations. E(u) = (u—3)®,0<u<1.

(e) t=0 M t=1 (@ t=10 (h) t=100
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Example (1D Burgers)

@ Second-order Finite Differences + RKx
@ Burgers, t =0.25, N =50, 100, and 200 grid points.

11 1.0x10%;
|
Loxio: |
' \
10x1072
ie Ll
/
[ \
o 10x10°> 1 b8 ’f \\
e
doo e e
1.0x10 = I o o g " 3 Bt
ape .
/M.M\“
s, "/## i | TN
N Y N
n BEd e
11 1.0x107%-
1 0 01 02 03 04 05 06 07 08 09

(i) un (i) vh(un)|oxun|
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Example (1D Burgers)

@ Fourier approximation + RKx

@ Burgers at t = 0.25 with N =50, 100, and 200.

1 102
103 g
0 10 E
10 E

-1 10°
0 1 0 1

®) up () vn(un)
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Example (1D Burgers)

@ DG1 + RKx (V. Zingan)
@ Entropy viscosity preserve accuracy outside shocks.
@ Compute error in [0,0.5—0.025] U [0.5+ 0.025] at t = 0.25 with DG1

cells dofs h Ly-error Ry Lo-error R>
5 10 2e-01 1.677e-01 - 2.450e-01 -
10 20 1e-01 7.866e-02 | 1.09 | 1.420e-01 0.79
20 40 5e-02 2.133e-02 | 1.88 | 4.891e-02 | 1.54
40 80 2.5e-02 1.779e-03 | 3.58 | 4.918e-03 | 3.31

80 160 1.25e-02 1.517e-04 | 3.55 | 1.894e-04 | 4.69
160 320 6.25e-03 2.989e-05 | 2.34 | 4.075e-05 | 2.22
320 640 3.125e-03 6.903e-06 | 2.11 | 9.832e-06 | 2.05
640 1280 | 1.5625e-03 | 1.720e-06 | 2.01 | 2.464e-06 | 2.00
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Example (1D Burgers)

@ DG2 + RKXx (V. Zingan)
@ Entropy viscosity preserve accuracy outside shocks.
@ Compute error in [0,0.5 —0.025] U[0.5+ 0.025] at t = 0.25 with DG2.

cells dofs h Ly-error Ry Lo-error R>
5 15 2e-01 4.039e-02 - 8.362e-02 -
10 30 1e-01 8.040e-03 | 2.33 | 1.398e-02 | 2.58
20 60 5e-02 2.242e-03 | 1.84 | 6.584e-03 | 1.08

40 120 2.5e-02 2.149e-04 | 3.38 | 5.229¢-04 | 3.65
80 240 1.25e-02 1.366e-05 | 3.98 | 1.621e-05 | 5.01
160 480 6.25e-03 1.644e-06 | 3.06 | 1.949e-06 | 3.06
320 960 3.125e-03 2.018e-07 | 3.03 | 2.410e-07 | 3.02
640 1920 | 1.5625e-03 | 2.505e-08 | 3.01 | 3.003e-08 | 3.01




NUMERICAL ILLUSTRATIONS

Example (1D Burgers)

@ DG3 + RKXx (V. Zingan)
@ Entropy viscosity preserve accuracy outside shocks.
@ Compute error in [0,0.5 —0.025] U[0.5+ 0.025] at t = 0.25 with DG3.

cells dofs h Ly-error Ry Lo-error R>
5 20 2e-01 1.678e-02 - 2.556e-02 -
10 40 1e-01 9.932e-03 | 0.76 | 2.445e-02 | 0.10
20 80 5e-02 2.019e-03 | 2.30 | 6.712e-03 | 1.86

40 160 2.5e-02 1.761e-04 | 3.52 | 6.608e-04 | 3.35
80 320 1.25e-02 5.716e-06 | 4.95 | 7.317e-06 | 6.50
160 640 6.25e-03 5.791e-07 | 3.30 | 7.531e-07 | 3.28
320 1280 3.125e-03 6.225e-08 | 3.22 | 7.843e-08 | 3.26
640 | 2560 | 1.5625e-03 | 7.485e-09 | 3.06 | 9.052e-09 | 3.12
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Example (1D Nonconvex flux)
@ Fourier approximation

11

1D equation

otu+9xf(u) =0, u(x,0) = up(x)

1 : 1
H(u) = §u(17u) \ !fu<?,
su(u—1)+5 ifu>3,
.

Initial data o ]
} 03 6.4 05 0.6 07 08 09 1
0, x€(0,0.25],
Uo(x) =
1, x€(0.25,1]

N

t =1 with N =200, 400, 800, and 1600.




Example (2D Burgers)
@ P4 finite elements.

2D Burgers

Oru—+0x(Fu?) +0,(3u?) =0

Initial data

—0.2 if x<05,y>05
—1  if x>05,y>05
05 if x<05,y<05
0.8 if x>05,y<05

Solution at t = , 3x10* nodes.




Example (2D Burgers)

@ Py and P finite elements.

NUMERICAL ILLUSTRATIONS

Py approximation

h £y
L rate Al rate
5.00E-2 2.3651E-1 = 9.3661E-2
2.50E-2 1.7653E-1 0.422 4.9934E-2 0.907
1.25E-2 1.2788E-1 0.465 2.5990E-2 0.942
6.25E-3 9.3631E-2 0.449 1.3583E-2 0.936
3.12E-3 6.7498E-2 0.472 6.9797E-3 0.961

A\

P, approximation

h P
2 rate w rate
5.00E-2 1.8068E-1 - 5.2531E-2
2.50E-2 1.2956E-1 0.480 2.7212E-2 0.949
1.25E-2 9.5508E-2 0.440 1.4588E-2 0.899
6.25E-3 6.8806E-2 0.473 7.6435E-3 0.932

A\




Example (Buckley Leverett)
@ P, finite elements.

The equation

dtu+9xf(u)+9,9(u) = 0.

U2

fv) = Zx—oe

g(u) = f(u)(1 = 5(1 - u)?)
Non-convex fluxes (composite waves)

Initial data

1, /x2+y2<05 Solution at t = , 3x10* nodes.
0, else

u(x,y,0) = {




Example (KPP)
@ P, and Q4 finite elements.

The equation

otu+ 9y f(u)+9,g(u) = 0.

Solution up,

f(u) = sin(u), g(u) = cos(u),
Non-convex fluxes (composite waves)

Initial data
7 /2 2
= <A
U(X,y70)_{2 ) X +y S

€
4T, else




EULER EQUATIONS

Compressible Euler equations

“~@ EULER EQUATIONS

Leonhard Euler




EULER EQUATIONS

Compressible Euler equations

p m
9c+V-F(c) =0, c=(m], Fc)=| sm®m
E

sm(E+p)

Equation of state

Ideal gas e.g.

p=(—1)(E— ~-m?).




EULER EQUATIONS

Compressible Euler equations

m

P
dic+V-F(c) =0, c=(m|, F(c) = %m@m
E

sm(E+p)

Equation of state

Ideal gas e.g.

0S+V-(uS) >0, u:=

1 1
S=plog(ep'™), e:=—(E——m?
plog(ep’ ) p( 2 )




EULER EQUATIONS

Viscous regularization?

@ Entropy viscosity = min(gmax, ME)-




EULER EQUATIONS

Viscous regularization?

@ Entropy viscosity = min(gmax, ME)-
@ What is a good viscous regularization of Euler? umax?




EULER EQUATIONS

Lax-Friedrich regularization (parabolic regularization)

In 1D, LxF is an approximation of
1
d;c+V-F(c)— 5(\u| +a)hvV2e =0

where h is the mesh size, a is the speed of sound (Perthame, CW Shu
(1996)).




EULER EQUATIONS

Lax-Friedrich regularization (parabolic regularization)

In 1D, LxF is an approximation of
1
d;c+V-F(c)— 5(\u| +a)hvV2e =0

where h is the mesh size, a is the speed of sound (Perthame, CW Shu
(1996)).

@ Not Gallilean/rotational invariant.




EULER EQUATIONS

Navier-Stokes regularization

0
dic+ V-F(c)—V-q=0, q= | uVeu
xVT

@ T is the temperature.
@ u>0,k>0.
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@ T is the temperature.
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@ No regularization on the mass.
Discrete positivity of p?
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Navier-Stokes regularization

0

dic+ V-F(c)—V-q=0, q= | uVeu
xVT

@ T is the temperature.
@ u>0,k>0.

@ No regularization on the mass.
Discrete positivity of p?

Case k # 0, ideal gas

K
p(drs+u-Vs)— V-(ke 'VT) = %|V3u|2 + o VIve




EULER EQUATIONS

Navier-Stokes regularization

0

dic+ V-F(c)—V-q=0, q= | uVeu
xVT

@ T is the temperature.
@ u>0,k>0.

@ No regularization on the mass.
Discrete positivity of p?

Case k # 0, ideal gas

K
p(drs+u-Vs)— V-(ke 'VT) = %|V3u|2 + o VIve

@ Sets {s(p,e) > so} are not positively invariant if kK # 0. (See e.g.
Serre (1999)
Discrete positivity of e?




EULER EQUATIONS

Minimum principle on the specific entropy

@ Formally, solutions to Euler equations should satisfy

p(dts+u-Vs) > 0.




EULER EQUATIONS

Minimum principle on the specific entropy
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Minimum principle on the specific entropy

@ Formally, solutions to Euler equations should satisfy

p(dts+u-Vs) > 0.

@ Minimum principle (assuming p > 0, no vacuum)

s(x,t) > mins(z,0), a.e. x, t.
z

@ Provided p > 0 = e > 0 (minimum principle on e).

@ s there a viscous regularization that can reproduce this property?
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Jdic+V-F(c)-V.q=0, q= g
h+g-u




EULER EQUATIONS

Minimum entropy preserving regularization
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8;c+V~F(c)—V-q =0), q= g
h+g-u

@ f, g, h to be determined so that
p(dts+u-Vs) —V-(k(p,e)Vo(s)) + conservative > 0,

and

35+ V-(uS) > 0.
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Key hypotheses
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Minimum entropy preserving regularization

f
Jdic+V-F(c)-V.q=0, q= g
h+g-u

@ f, g, h to be determined so that
p(dts+u-Vs) —V-(k(p,e)Vo(s)) + conservative > 0,

and
9:S+V-(uS) > 0.

Key hypotheses

e f-Vp > 0= {p > 0} positively invariant set.

@ ¢'(s)>0,x(p,e) > 0= {s(p,e) > so} positively invariant sets.
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@ pspxmass balance + se xinternal energy balance
P

@ Recombine the terms so that conservative term is —V-kVs, rhs is
positive, and hope for the best.
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Simple choice

——Vp.
pPSp — ese P

g=uVu+u®f.

:
h=«Ve— —u’f.
2
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Simple choice

——Vp.
pPSp — ese P

g=uVu+u®f.

:
h=«Ve— —u’f.
2

Proposition (JLG-BP (2012))
Assume ideal gas, Y > 1. Assume existence of a smooth solution. The sets {s(p,e) > so} are
positively invariant and

P(rs+u¥s) — V-(xVs) = £ |voup + gvr.w.

0tS+V-(uS+«(Vs+ %sVIog(p))) >0.

Similar properties hold for a stiffened gas (conjecture: holds on a large class of eos)
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Ideal gas

_Kky=1Vp

_CVY p
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Connection with a phenomenological model by H. Brenner (2006)

@ Seems a bit controversial in the physics literature

@ Seems to give some leeway in the analysis of Navier-Stokes?
(Feireisl-Vasseur (2008))
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Connection with a phenomenological model by H. Brenner (2006)

@ Seems a bit controversial in the physics literature

@ Seems to give some leeway in the analysis of Navier-Stokes?
(Feireisl-Vasseur (2008))

Brenner’s model (ideal gas) Our regularization (ideal gas)

Un=u—p 'f Un=u—p 'f
f— KV O

Co P Co¥Y—1p
9p+V-(ump) =0 9p+V-(ump) =0
ot(pu)+V-(u®pup)+Vp—V-1, =0 dt(pu)+V-(u®pup)+Vp—V-1, =0
di(pe)+V-(une) +pV-u—V-(«kVT) = V-(t,-v) =0 9i(pe)+V-(ue)+pV-u—V-(kVT)—V:(1,-v) =0
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The algorithm, S = & (ep' ™)

@ Compute cell entropy residual, Dy := 9¢S+ V-(uS)

@ Compute interface entropy residual Jyox = [(VuS) : (n®n)]|
@ Define
tg = cehig max([| Dy |y | 9mjor | = o))

Compute maximum local viscosity: tmax,x = CmaxhkP||||ul| + (yT)% [[oo,

Compute entropy viscosity
MK = min(/'lmanKnuE\K)'

@ Define artificial thermal diffusivity

KK:T,UK7 P~0.2.
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The algorithm (continued)

@ Use Galerkin for space approximation (use your favorite method: FE, FD, Fourier, Spectral,
DG, etc.)

@ Use explicit RK to step in time.




EULER, NUMERICAL ILLUSTRATIONS

1D Euler flows + Fourier

@ Solution method: Fourier + RK4 + entropy viscosity
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1D Euler flows + Fourier

@ Solution method: Fourier + RK4 + entropy viscosity

5
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Figure: Lax shock tube, t = 1.3, 50, 100, 200 points. Shu-Osher shock tube, t = 1.8, 400, 800 points. Right:
Woodward-Collela blast wave, t = 0.038, 200, 400, 800, 1600 points.
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DG, 2D Riemann problem

Density Q;, Q», and 3

1.0
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DG, 2D Riemann problem

Density Q; and associated dynamic viscosity

1.0 1.0
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Cylinder in a channel, Mach 2, P; FE (By M. Nazarov)
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Bubble, density ratio 10~ ", Mach 1.65, ; FE (by M. Nazarov)




EULER, NUMERICAL ILLUSTRATIONS

Mach 3 Wind Tunnel with a Step, PP; finite elements, 1.3 10° nodes

DB: rho139.vtk
Cycle: 139

Pseudocolor
Var: scalars
6,500

5.000

-

2.0m0

0.5
Max: 6,611
Min: 0.1743

Y-Axis

user; guermond
Eri Jun 22 05:39:57 2012



EULER, NUMERICAL ILLUSTRATIONS

Mach 10 Double Mach reflection, IP; finite elements

Py FE, 4.510% nodes, t = 0.2
Movie, density field



file:MOVIES/dbl_mach10_0_003.mpeg

EULER, NUMERICAL ILLUSTRATIONS

Sod shocktube. Lagrangian hydro. Q1 FEM, 1 x 1024 (V. Tomov)
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Riemann pb. Lagrangian hydro. Q> FEM, 32 x 32, (V. Tomov)
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Sedov explosion. Lagrangian hydro. Q3 FEM, 32 x 32, (V. Tomov)

;
Var: tho, t
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