Domain continuity for the Euler and Navier-Stokes equations

(Based on joint works with C. Lacave and A.L. Dalibard)

David Gérard-Varet

IMJ, Université Paris 7

1. Domain continuity

<u>Starting point</u>: Fluid in a domain Ω^n , parametrized by $n \gg 1$.

Assumption:

 $\Omega^n o \Omega$ in a suitable topology

Question: Does the fluid have an asymptotic behavior ? Namely:

- Does the fluid velocity field $u^n \rightarrow u$ in a suitable sense ?
- Does u satisfy the same equations as the uⁿ's ?
- Does *u* satisfy the same conditions at $\partial \Omega$ as the *u*^{*n*}'s at $\partial \Omega^n$?

Plan: To adress this kind of questions, for Euler and Navier-Stokes.

2. The 2D Euler equation in non-smooth sets

Let $\Omega \subset \mathbb{R}^2$ an open set.

$$\left\{ \begin{aligned} \partial_t u + u \cdot \nabla u + \nabla p &= 0, \\ & \text{div } u = 0, \\ u|_{t=0} &= u_0, \quad u \cdot \nu|_{\partial\Omega} &= 0 \end{aligned} \right.$$

<u>Aim</u>: To solve (E) with minimal requirements on Ω .

We focus on the construction of weak solutions, inspired by the whole space case.

<u>Here</u>: weak solutions with vorticity in $L^{p}(\Omega)$, p > 1.

<u>Problem</u>: Global weak solutions for general Ω ?

Until recently, limited results.

(E)

Most works deal with C^{1,1} boundaries.
 [Wolibner,33], [Yudovitch,63], [Kato,67], [Bardos,72] ...

<u>Reason</u>: Use of the Biot and Savart law: $u = \nabla^{\perp} \Delta^{-1} \omega$. Regularizing effect of $\nabla^{\perp} \Delta^{-1}$ weakens in non-smooth sets.

Convex domains [Taylor,00]

 $\longrightarrow \Delta^{-1}: L^2(\Omega) \mapsto H^2(\Omega).$

 \longrightarrow weak solutions with vorticity in $L^p(\Omega)$, p > 2.

Exterior of a smooth Jordan curve [Lacave, 09]

Relies on an explicit Biot and Savart law, through conformal mapping. The smoothness of the curve is needed.

Objective: To go beyond such specific cases.

Bounded open sets

$$\Omega \ := \ ilde{\Omega} \setminus \cup_{i=1}^k \mathcal{C}^i, \quad k \in \mathbb{N},$$
 with

(A1) (Connectedness):

- $\tilde{\Omega}$ bdd simply connected domain.
- \mathcal{C}^i 's connected compact subsets.

(A2) (Positive
$$H^1$$
 capacity):

for all
$$i = 1, \ldots, k$$
, $\operatorname{cap}(\mathcal{C}^i) > 0$.

Definition: $E \subset \mathbb{R}^N$:

 $\operatorname{cap}(E) := \inf\{ \|v\|_{H^1(\mathbb{R}^N))}, \ v \ge 1 \ \text{a.e. in a neighborhood of } E \}$

Very roughly:

 $\operatorname{cap}(E) \approx \operatorname{Leb}(E) + (n-1)$ -dimensional "measure" of ∂E .

Remarks:

- 1. The C^{i} 's can be of positive measure, smooth curves ...
- 2. k = 0: any bounded simply connected domain.

Theorem: Let Ω satisfying (A1)-(A2), p > 1, and

 $u_0 \in L^2(\Omega), \quad \omega_0 \in L^p(\Omega), \quad \text{with } \int_{\Omega} u_0 \cdot \nabla \psi_0 = 0, \quad \forall \psi_0 \in C^1_c(\mathbb{R}^2).$

Then, there exists u = u(t, x) such that

$$u \in L^{\infty}(\mathbb{R}_+; L^2(\Omega)), \quad \omega = \operatorname{curl} u \in L^{\infty}(\mathbb{R}_+; L^p(\Omega))$$

with
$$\int_{\mathbb{R}_+} \int_{\Omega} u \cdot \nabla \psi = 0$$
, $\forall \psi \in \mathcal{D}([0, +\infty[; C_c^1(\mathbb{R}^2))]$

and s.t. for all $\varphi \in \mathcal{D}([0, +\infty[\times \Omega)$ with div $\varphi = 0$,

$$\int_{\mathbb{R}_+} \int_{\Omega} \left(u \cdot \partial_t \varphi + u \otimes u : \nabla \varphi \right) = - \int_{\Omega} u_0 \cdot \varphi(0, \cdot).$$

Ideas of proof

Basic idea: Smoothing procedure

- Approximate Ω by smooth Ω^n , u_0 by smooth u_0^n .
- u^n , solution of Euler in Ω^n " \rightarrow " u, solution of Euler in Ω .

Ideas of proof

Basic idea: Smoothing procedure

- Approximate Ω by smooth Ω^n , u_0 by smooth u_0^n .
- u^n , solution of Euler in Ω^n " \rightarrow " u, solution of Euler in Ω .

a) Approximation of Ω :

Lemma: There exists sequences $(\tilde{\Omega}^n)$ and $(O^{i,n})$ of smooth Jordan domains such that

$$\Omega = \lim_{H} \Omega^{n}, \quad \Omega^{n} = \tilde{\Omega}^{n} \setminus \cup_{i=1}^{k} \overline{O}^{i,n}$$

Definition: Let (Ω^n) be a sequence of confined open sets in \mathbb{R}^N , B a compact set with $\Omega^n \subset B$ for all n.

$$\Omega^n \xrightarrow{H} \Omega$$
 if $d_H(B \setminus \Omega^n, B \setminus \Omega) \to 0.$

Sketch of Proof.

- Approximation of $\tilde{\Omega}$ by $\tilde{\Omega}^n$: use conformal mapping.
- Approximation of C^i by $O^{i,n}$:
 - One approximates \mathcal{C}^i by a finite union of disks.
 - One makes slits in this union of disks to get it simply connected.

Sketch of Proof.

- Approximation of $\tilde{\Omega}$ by $\tilde{\Omega}^n$: use conformal mapping.
- Approximation of C^i by $O^{i,n}$:
 - One approximates \mathcal{C}^i by a finite union of disks.
 - One makes slits in this union of disks to get it simply connected.

b) Weak compactness. Continuity of the tangency condition

First ingredient: Explicit Hodge decomposition.

The field u^n reads

$$u^{n}(t,x) = \nabla^{\perp} \left(\psi^{0,n}(t,x) + \sum_{i=1}^{k} \alpha^{i,n}(t) \psi^{i,n}(x) \right)$$

with

•
$$\psi_n^0$$
 (rotational part) satisfying

$$\Delta \psi^{0,n} = \omega^n \quad \text{in } \Omega^n, \quad \psi^{0,n}|_{\partial \Omega^n} = 0.$$

•
$$\psi_n^i$$
, $i \ge 1$ (harmonic part) satisfying

$$\Delta\psi^{i,n}=0\quad\text{in }\Omega^n,\quad\psi^{i,n}|_{\partial\tilde{\Omega}^n}=0,\quad\psi^{i,n}|_{\partial O^{j,n}}=\delta_{ij}.$$

Questions:

▶ Bounds on stream functions $\psi^{i,n}$, $i \ge 0$, and coeffts $\alpha^{i,n}$?

$$\bullet \ \partial_{\tau}\psi^{i,n}|_{\partial\Omega^{n}} = 0 \ \Rightarrow \ \partial_{\tau}\psi^{i}|_{\partial\Omega} = 0 ?$$

Second ingredient: γ -convergence of open sets.

Definition: $\Omega^n \subseteq D$. We note $\Omega^n \xrightarrow{\gamma} \Omega$ if the solution v^n of

$$\Delta v^n = 1$$
 in Ω^n , $v^n|_{\partial \Omega^n} = 0$

converges in $H_0^1(D)$ (after extension by 0) to the solution v of

$$\Delta v = 1$$
 in Ω , $v|_{\partial \Omega} = 0$.

<u>Remark</u>: Equivalent to the Γ -convergence of the associated Dirichlet functionals.

<u>Remark:</u> γ -convergence means domain continuity of elliptic equations and Dirichlet conditions.

Proposition (Sverak): If the number of connected components of $D \setminus \Omega^n$ is uniformly bounded in n, then

$$\Omega^n \xrightarrow{H} \Omega \quad \Rightarrow \quad \Omega^n \xrightarrow{\gamma} \Omega.$$

Allows to handle the asymptotic boundary behavior of $\psi^{i,n}$.

Question: Coefficients $\alpha^{i,n}$ in the decomposition ?

Broadly: they satisfy a linear system with

- ▶ a source term involving the circulations of u^n around the \mathcal{O}_n^i .
- a matrix close to $(\int_{\Omega^n} \nabla \psi^{i,n} \cdot \nabla \psi^{j,n})_{i,j}$

Broadly:

- The source is controlled thanks to Bernoulli's theorem.
- The matrix is controlled by (A2).

$$\operatorname{cap}(\mathcal{C}^{i}) > 0 \; \Rightarrow \; (\int_{\Omega} \nabla \psi^{i} \cdot \nabla \psi^{j})_{i,j} \text{ non-singular } \Rightarrow \; \alpha^{i,n} \to \alpha^{i}$$

c) Asymptotics of the momentum equation in Euler <u>Main point</u>: No Aubin-Lions lemma in Ω^n . What about $\Omega' \subseteq \Omega$? Not really ! Roughly, one has

 $P_{\Omega'}u^n$ is compact in $L^q(0, T \times \Omega')$, for some q > 2.

 \longrightarrow harmonic functions p_h^n such that

 $\widetilde{u}^n = u^n +
abla p_h^n$ is compact in $L^q(0, T imes \Omega')$, for some q > 2.

Then, one uses an algebraic identity well-known in the theory of Navier-Stokes [Lions et al, 1998], [Woelf, 2004]:

$$\begin{split} \operatorname{div}\left(u^n\otimes u^n\right) &= \operatorname{div}\left(\tilde{u}^n\otimes \tilde{u}^n\right) \,+\, \operatorname{weak-strong\ terms} \\ &+ \frac{1}{2}\nabla |\nabla p_h^n|^2 \,+\, \Delta p_h^n \,\nabla p_h^n. \end{split}$$

4. Navier-Stokes equation in rough domains

Physical motivation: Microfluidics.

Goal: To make fluids flow through very small devices.

Minimizing drag at the walls is crucial.

Many theoretical and experimental works. [Tabeling, 2004], [Bocquet, 2007 and 2012], [Vinogradova, 2012].

Some of these works claim that the usual no-slip condition is not always satisfied at the micrometer scale:

Some rough surfaces may generate a substantial slip.

However, these results have raised controversies

... Maths may help, notably through a homogenization approach.

Simple model: 2D rough channel : $\Omega^{\varepsilon} = \Omega \cup \Sigma \cup R^{\varepsilon}$

- Ω : smooth part: $\mathbb{R} \times (0,1)$.
- R^{ε} : rough part, *typical size* $\varepsilon \ll 1$.

$$R^{\varepsilon} = \varepsilon R, \quad R = \{y = (y_1, y_2), \quad 0 > y_2 > \omega(y_1)\}$$

 ω with values in (-1,0), and K-Lipschitz.

•
$$\Sigma$$
 : interface: $\mathbb{R} \times \{0\}$.

Stationary Navier-Stokes, with given flux:

$$\begin{cases} u \cdot \nabla u - \Delta u + \nabla p = 0, \quad x \in \Omega^{\varepsilon}, \\ \operatorname{div} u = 0, \quad x \in \Omega^{\varepsilon}, \\ \int_{\sigma} u_1 = \phi, \end{cases}$$

 (NS^{ε})

with $\phi > 0$, σ vertical cross-section.

<u>Question</u>: Can we get, for some boundary condition at $\partial \Omega^{\varepsilon}$, an effective (meaning *asymptotic*) slip condition at $\partial \Omega$?

Intuition: yes, at least if we consider some *pure slip* at $\partial \Omega^{\varepsilon}$:

$$|u \cdot \nu^{\varepsilon}|_{\partial \Omega^{\varepsilon}} = 0, \quad D(u)\nu^{\varepsilon} \times \nu^{\varepsilon}|_{\partial \Omega^{\varepsilon}} = 0.$$
 (S)

Answer: No !

As soon as the roughness is "non-degenerate", any weak limit u of a sequence of solutions (u^{ε}) in $H^{1}_{loc}(\Omega)$ will satisfy $u|_{\partial\Omega} = 0$! [Casado-Diaz et al, 03], [Bucur et al, 08].

<u>Here</u>: Refined result, under the non-degeneracy assumption (A) There is C > 0, such that for all $u \in C_c^{\infty}(\overline{R})$,

$$u \cdot \nu|_{\{y_2 = \omega(y_1)\}} = 0 \quad \Rightarrow \quad \|u\|_{L^2(R)} \leq C \|\nabla u\|_{L^2(R)}$$

<u>Remarks:</u>

- Not satisfied for flat boundaries.
- Satisfied if there is A > 0 such that

$$\inf_{y_1\in\mathbb{R}}\int_0^A|\omega'(y_1+t)|^2dt>0.$$

• Satisfied by non-cst periodic and quasiperiodic ω .

Theorem: There exists $\phi_0 > 0$ such that for all $\phi < \phi^0$, $\varepsilon \le 1$, system (NS^{ε})-(S) has a unique solution $u^{\varepsilon} \in H^1_{uloc}(\Omega^{\varepsilon})$. Moreover, if (A) holds,

$$\|u^{\varepsilon}-u\|_{H^1_{uloc}(\Omega)} \leq C\phi\sqrt{\varepsilon}, \quad \|u^{\varepsilon}-u\|_{L^2_{uloc}(\Omega)} \leq C\phi\varepsilon,$$

where u is the Poiseuille flow in Ω (that satisfies $u|_{\partial\Omega} = 0$).

<u>Remark</u>: The theorem shows that the effective slip can not be more than $O(\varepsilon)$. Does not support some physics papers ...

Boundary layer analysis: under ergodicity properties of ω , one shows that the effective slip is indeed $O(\varepsilon)$.

Formal idea:

Non-vanishing of the tangential component + high frequency oscillations of the boundary \Rightarrow blow up of ∇u^{ε} as ε goes to zero. Incompatible with the control of ∇u^{ε} in Navier-Stokes.