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1. Domain continuity

Starting point: Fluid in a domain Q", parametrized by n > 1.

Assumption:

Q" — Q in a suitable topology

Question: Does the fluid have an asymptotic behavior 7 Namely:

» Does the fluid velocity field u" — u in a suitable sense 7

» Does u satisfy the same equations as the u"'s ?

» Does u satisfy the same conditions at 0L as the u"'s at 9Q" 7

Plan: To adress this kind of questions, for Euler and Navier-Stokes.
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2. The 2D Euler equation in non-smooth sets

Let Q C R? an open set.

Otu+u-Vu+Vp =0,
divu =0, (E)

Ult—o = g, u-V]po =0

Aim: To solve (E) with minimal requirements on Q.

We focus on the construction of weak solutions, inspired by the
whole space case.

Here: weak solutions with vorticity in LP(Q2), p > 1.
Problem: Global weak solutions for general Q 7

Until recently, limited results.
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» Most works deal with CY1 boundaries.
[Wolibner,33], [Yudovitch,63], [Kato,67], [Bardos,72] ...

Reason: Use of the Biot and Savart law: ‘u = VLA_lw.‘

Regularizing effect of VA1 weakens in non-smooth sets.

» Convex domains [Taylor,00]

— AT 12(Q) = H2(Q).

— weak solutions with vorticity in LP(Q2), p > 2.
» Exterior of a smooth Jordan curve [Lacave, 09]

Relies on an explicit Biot and Savart law, through conformal
mapping. The smoothness of the curve is needed.

Objective: To go beyond such specific cases.
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Bounded open sets

Q= Q\UK,C", keN,| with

(A1) (Connectedness):

- Q) bdd simply connected domain.
- C"s connected compact subsets.
(A2) (Positive H' capacity):
foralli=1,...,k cap(C’) > 0.

Definition: E ¢ RV:

cap(E) := inf{ ||v[|p1(mny), v > 1 a.e. in a neighborhood of E'}

Very roughly:
cap(E) ~ Leb(E) + (n— 1)-dimensional "measure" of JE.
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Remarks:

1. The C"'s can be of positive measure, smooth curves ...

2. k = 0: any bounded simply connected domain.

Theorem: Let Q satisfying (A1)-(A2), p > 1, and

w € [2(Q), wo e LP(Q), with / uo-Vibo = 0, Vao € CL(R2).
Q

Then, there exists u = u(t,x) such that

ue L®Ry; [3(Q), w=curlue ®[Ry;LP(Q))

with

i

/ / u-Vip =0, Vi€ D([0,+oof; CL(R?))
R, Ja

and s.t. for all ¢ € D([0, +00[xQ) with divep =0,

/R+/Q(U‘ats0+u®u:v¢):—/QUO.SO(O’,).

6
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Ideas of proof

Basic idea: Smoothing procedure

» Approximate Q by smooth 2", uy by smooth u.

» u", solution of Euler in Q7 "—

u, solution of Euler in Q.
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Ideas of proof

Basic idea: Smoothing procedure

» Approximate Q by smooth 2", uy by smooth u.

» u", solution of Euler in Q7 "—

a) Approximation of Q:

u, solution of Euler in Q.

Lemma: There exists sequences (Q") and (O"") of smooth

Jordan domains such that

Q = limQ", Q" ="\ Uk, 0"

Definition: Let (Q") be a sequence of confined open sets in RN,
B a compact set with Q" C B for all n.

Q"

if du(B\Q",B\ Q) — 0.
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Sketch of Proof.

>

>

Approximation of € by Q" use conformal mapping.

Approximation of C' by O"":
- One approximates C' by a finite union of disks.

- One makes slits in this union of disks to get it simply connected.

19



Sketch of Proof.
» Approximation of by Q" use conformal mapping.

» Approximation of C' by O"'":
- One approximates C' by a finite union of disks.

- One makes slits in this union of disks to get it simply connected.

b) Weak compactness. Continuity of the tangency condition

First ingredient: Explicit Hodge decomposition.

The field u” reads

u(t, x) = Vl(l/}””(tx +Za t)y""(x ))

i=1
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with
» 90 (rotational part) satisfying

A1ﬁo’n =w" in Qn, ¢O’n|agn =0.

> wf,, i > 1 (harmonic part) satisfying

AP =0 inQ", ¥"|p5, =0, U""|yoin = dy.

Questions:

» Bounds on stream functions w"’”, i >0, and coeffts a’" ?

> 0. gan =0 = 9. sq =07
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Second ingredient. ~y-convergence of open sets.

Definition: Q" € D. We note Q" X Q if the solution v" of
Av' =1 in an Vn‘aQn =0
converges in H3(D)(after extension by 0) to the solution v of

Av=1 inQ, v|pg=0.

Remark: Equivalent to the '-convergence of the associated
Dirichlet functionals.

Remark: y-convergence means domain continuity of elliptic
equations and Dirichlet conditions.

Proposition (Sverak): If the number of connected components of
D\ Q" is uniformly bounded in n, then

o = oXka

Allows to handle the asymptotic boundary behavior of 1)’
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n

Question: Coefficients a" in the decomposition ?

Broadly: they satisfy a linear system with
» a source term involving the circulations of u” around the O:.
» a matrix close to ([, V! - Vi),

Broadly:
» The source is controlled thanks to Bernoulli's theorem.

» The matrix is controlled by (A2).

cap(C’) > 0 = (/ V' Vi) non-singular = " — o
Q
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c) Asymptotics of the momentum equation in Euler

Main point: No Aubin-Lions lemma in Q". What about Q' € Q ?
Not really ! Roughly, one has
Pq/u" is compact in L9(0, T x Q'), for some q > 2.

— harmonic functions pj such that

i" = u" + Vpj is compactin L9(0, T x Q'), for some q > 2.

Then, one uses an algebraic identity well-known in the theory of
Navier-Stokes :

div(v" @ u") =div(i" ® i") + weak-strong terms

1
+5VIVe® + Apf V.
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4. Navier-Stokes equation in rough domains

Physical motivation: Microfluidics.

Goal: To make fluids flow through very small devices.

Minimizing drag at the walls is crucial.

Many theoretical and experimental works.
[Tabeling, 2004], [Bocquet, 2007 and 2012], [Vinogradova, 2012].

Some of these works claim that the usual no-slip condition is not
always satisfied at the micrometer scale:

Some rough surfaces may generate a substantial slip.

However, these results have raised controversies . . .

... Maths may help, notably through a homogenization approach.
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Simple model: 2D rough channel : Qf =QUX U R*

» Q: smooth part: R x (0,1).
» R : rough part, typical size ¢ < 1.

RE=cR, R ={y=(my) 0>yp>uw()}
w with values in (—1,0), and K-Lipschitz.

» ¥ : interface: R x {0}.
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Stationary Navier-Stokes, with given flux:

u-Vu—Au+Vp =0, xeQ°,
divu=0, xeQ°,

/0U1=€Z5>

with ¢ > 0, o vertical cross-section.

(NS)

Question: Can we get, for some boundary condition at 0Q2¢, an
effective (meaning asymptotic) slip condition at 9 ?

Intuition: yes, at least if we consider some pure slip at 0€2°:

’ u- Va’(‘)QE = O, D(U)VE X VE‘(‘}QE =0. ‘ (S)
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Answer: No !

As soon as the roughness is "non-degenerate”, any weak limit u of
a sequence of solutions (u®) in H} _(Q) will satisfy u|gq =0 !

[Casado-Diaz et al, 03], [Bucur et al, 08].

Here: Refined result, under the non-degeneracy assumption

(A) There is C > 0, such that for all u € C°(R),

UVlgmuin)y =0 = lullery < ClIVullizr)

Remarks:

» Not satisfied for flat boundaries.

» Satisfied if there is A > 0 such that

A

inf "(yy + t)]?dt > 0.
e I, w'(y1 + t)]

» Satisfied by non-cst periodic and quasiperiodic w.
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Theorem: There exists ¢g > 0 such that for all ¢ < ¢°, € < 1,
system (NS?)~(S) has a unique solution u¢ € HY, _(QF).
Moreover, if (A) holds,

I = ullmp @ < Cove, [l —ullz (@) < Ce,

where u is the Poiseuille flow in Q (that satisfies ulsq = 0).

Remark: The theorem shows that the effective slip can not be more
than O(e). Does not support some physics papers ...

Boundary layer analysis: under ergodicity properties of w, one
shows that the effective slip is indeed O(e).

Formal idea:

Non-vanishing of the tangential component + high frequency
oscillations of the boundary = blow up of Vu® as ¢ goes to zero.

Incompatible with the control of Vu® in Navier-Stokes.
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