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Degenerate Eikonal Equation with discontinuous
coefficient

Ω ⊂ Rn open bounded domain with regular boundary
N∑

i,j=1

bij(x)Uxi Uxj = [f (x)]2 x ∈ Ω

U(x) = G(x) x ∈ ∂Ω

(EK)

G : ∂Ω→ [0,+∞[ is continuous
b is symmetric, positive semidefinite
(bi,j) = (σik ) · (σt

kj) with σ(·) : Ω→ RNM is L-Lipschitz
continuous but possibly degenerate
f : RN → [ρ,+∞[, ρ > 0 is Borel measureable but possibly
discontinuous
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Optimal Control InterprGammation

Rewriting the differential operator in the following form
N∑

i,j=1

bij(x)pipj =
M∑

k=1

(p · σk (x))2 = |p · σ(x)|2,

where (σik )k := σk : Ω→ RN , k = 1, ...M.

We get the equivalent Bellman equation

max
|a|≤1

{
−DU(x) ·

∑
k=1

akσk (x)

}
= f (x) (BL)

associated to the symmetric optimal control system

ẏ =
M∑

k=1

akσk (y), y(0) = x ,

where a : [0,+∞[→ {a ∈ RM : |a| ≤ 1} and y(·) ≡ yx (·,a) is a
solution.
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Viscosity solution via semicontinuous envelopes

f∗(x) = lim
r→0+

inf{f (y) : |y − x | ≤ r},

f ∗(x) = lim
r→0+

sup{f (y) : |y − x | ≤ r}

Definition (Discontinuous Viscosity Solution [Ishii 1985])

A lower semicontinuous (resp. upper) function U is a viscosity super-
solution (resp. sub-) of the equation (EK) if for all φ ∈ C1(Ω), and
x0 ∈ argminx∈Ω(U − φ), (resp. x0 ∈ argmaxx∈Ω(U − φ)), we have

N∑
i,j=1

bij (x0)φxi (x0)φxj (x0) ≥ [f∗(x0)]2 ,

(resp.
N∑

i,j=1

bij (x0)φxi (x0)φxj (x0) ≤ [f ∗(x0)]2 ).

A function U is a discontinuous viscosity solution of the equation (EK)
if U∗ is a subsolution and U∗ is a supersolution.
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Dirichelet Conditions

Definition (DC in weaker sense)
We say that an upper semicontinuous function U, subsolution
of the equation in (EK), satisfies weakly the DC
if for all φ ∈ C1 and x̂ ∈ ∂Ω, x̂ ∈ argmaxx∈Ω(U − φ) such that
U(x̂) > G(x̂), then we have

N∑
i,j=1

bij(x̂)φxiφxj ≤ [f∗(x̂)]2 .

Lower semicontinuous functions that satisfy weakly the DC are

defined accordingly.
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Hypotheses on the discontinuity interface

Assumptions on discontinuities

Γ = {x ∈ RN : f is discontinuous at x} is a disjoint union of finite
Lipschitz hypersurfaces (∃η+ transversal vector)

f is continuous in each component Ω±

if x ∈ Γ, f (x) ∈
[

lim
Ω−3y→x

f (y), lim
Ω+3y→x

f (y)

]
.

if x̂ ∈ Γ ∩ ∂Ω we can choose η+, η− both inward for Ω.
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Comparison Results [Soravia 2006]

Theorem

Let Ω be an open domain with Lipschitz boundary.

Let U,V : Ω→ R be upper and a lower- semicontinuous
function, a subsolution and a supersolution of (EK) with weak
Dirichlet conditions.

Suppose that V is nontangentially continuous on ∂Ω \ Γ in the
inward direction ηΩ and on Γ ∩ Ω in the direction of η+.

Then U ≤ V in Ω.

Corollary

Let U : Ω→ R be a continuous, bounded viscosity solution of the
problem (EK).

Then U is unique.

Festa-Falcone Discontinuous Eikonal Equation



Example I

{
x2 (ux (x , y))2 +

(
uy (x , y)

)2
= [f (x , y)]2 ]− 1,1[×]− 1,1[

u(±1, y) = u(x ,±1) = 0 x , y ∈ [−1,1]

where f (x , y) = 2, for x > 0, and f (x , y) = 1 for x ≤ 0.

bi,j =

(
x2 0
0 1

)
, σ(x) =

(
x 0
0 1

)
,

therefore the Bellman’s equation in this case is

max
|a|≤1

{
−Du(x , y) · a1(x ,0)T − Du(x , y) · a2(0,1)T

}
= f (x , y).
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Example II

u(x , y) =


2(1− |y |) x > 0, |y | > 1 + ln x
−2ln(x) x > 0, |y | ≤ 1 + ln x
u(−x ,y)

2 x ≤ 0.
(1)

is a viscosity solution of the problem.
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A semiLagrangian Approx.: time discretization

1 (Kruzkov’s transform). V (x) = 1− e−U(x)

|DV (x) · σ(x)| = f (x)(1− V (x))

2 (1/f as velocity)

|DV (x) · σ(x)|
f (x)

= 1− V (x)

3 (Bellman-type equation)

sup
a∈B(0,1)

{∑
k akσk (x)

f (x)
· DV (x)

}
= 1− V (x)

4 (discretize as diretional derivative)

 Vh(x) = 1
1+h inf

a∈B(0,1)

{
Vh

(
x − h

∑
k akσk (x)

f (x)

)}
+ h

1+h x ∈ Ω

Vh(x) = 1− e−G(x) x ∈ ∂Ω

(SDE)
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The set A(x,h)

Figure: The set A(x ,h) :=
{

x − h
∑

akσk (x)
f (x) ; x ∈ B(0,1)

}
in dimension

2. In grey A(x ,h) := Ω ∩ A(x ,h)

Festa-Falcone Discontinuous Eikonal Equation



A semiLagrangian Approx.: space discretization

Let us assume that Ω = Πn
i=1(ai ,bi), Ω∆x := Zn

∆x ∩ Ω and that
the grind size ∆x > 0.

We look for a solution of W (xα) = 1
1+h min

a∈B(0,1)
I[W ](xα − h

∑
k akσk (xα)

f (xα) ) + h
1+h xα ∈ Ω∆x

W (xα) = 1− e−φ(xα) xα ∈ ∂Ω∆x
(SL)

where I[W ](x) is a linear interpolation, in the space

W∆x :=
{

W : Ω→ R|W ∈ C(Ω) and DW (x) = cα
for any x ∈ (xα, xα+1)} .
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Properties of the scheme

(There exists a fixed point) Let A(xα,h) ∈ Ω, for every
xα ∈ Ω∆x , for any a ∈ B(0,1), so there exists a unique
solution W of (SL) inW∆x

(Consistency) Developing with che usual Taylor expansion,
like in the DF case, we find consistency

(Monotonicity) The following estimate holds true:

||W n −W ||∞ ≤
(

1
1 + h

)n

||W0 −W ||∞.
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Error estimates

Theorem

Under the introduced Hypotheses, we have that

||V (x)−W (x)||L1(Ω) ≤ C
√

h + C′
∆x
h

for all h > 0

for some constant C,C′ > 0 independent from h. Moreover, if
v(x) ∈ C(Ω) we have

||V (x)−W (x)||L∞(Ω) ≤ C
√

h +
1 + h

h
(C′∆x) for all h > 0

for some constant C,C′ > 0 independent from h.
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Sketch of the proof I

We start introducing, for a ε > 0, the set
Λ2ε := {x ∈ Ω|B(x ,2ε) ∩ Λ 6= ∅}. We observe that

||V (x)−W (x)||L1(Ω) ≤
∫

Ω\Λ2ε

|V (x)−W (x)|dx

+

∫
Λ2ε

|V (x)−W (x)|dx ≤
∫

Ω\Λ2ε

|V (x)−W (x)|dx + m(Λ2ε)

from the fact that |V (x)−W (x)| ≤ 1 for all x ∈ Ω.
If x ∈ ∂Ω the assumption is trivially verified because of Dirichlet
boundary conditions.
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Sketch of the proof II

Let x̂ ∈ Ω \ Λ2ε. Consider for ε > 0 the auxiliary function

ψ(x , y) := V (x)−W (y)− |x − y |2

2ε
− |x − x̂ |2

2

It is not hard to check that the boundness of v , v∗ and the upper
semicontinuity of ψ, implies the existence of some (x , y) in Ω±

(depending on ε) such that

ψ(x , y) ≥ ψ(x , y) for all x , y ∈ Ω±.

After some standard calculations, choosing ε =
√

h and the
boundness of f and σ, we obtain

V (x)−W (y) ≤ C
√

h

For C suitable positive constants.
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Test 1

Let Ω := (−1,1)× (0,2) and f : Ω→ R be defined by

f (x1, x2) :=


1 x1 < 0,
3/4 x1 = 0
1/2 x1 > 0

It is not difficult to see that f satisfies our Hypotheses. We can
verify that the function

u(x1, x2) :=


1
2x2, x1 ≥ 0,
−
√

3
2 x1 + 1

2x2, − 1√
3
x2 ≤ x1 ≤ 0,

x2, x1 < − 1√
3
x2.

is a viscosity solution of |Du| = f (x) in the sense of our
definition.
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Test 1 - Results

∆x = h || · ||∞ Ord(L∞) || · ||1 Ord(L1)

0.2 3.812 e-1 1.821 e-1
0.1 1.734e-1 1.1364 8.112e-2 1.1666
0.05 8.039e-2 1.1095 3.261e-2 1.3148
0.025 4.359e-2 0.8830 1.616e-2 1.0178
0.0125 2.255e-2 0.9509 7.985e-3 1.0271
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Test 2

We consider the problem shown in a previous example . As
already said, let Ω := [−1,1]2 we want to solve{

x2 (ux (x , y))2 +
(
uy (x , y)

)2
= [f (x , y)]2 ]− 1,1[×]− 1,1[

u(±1, y) = u(x ,±1) = 0 x , y ∈ [−1,1]

with f (x , y) = 2, for x > 0, and f (x , y) = 1 for x ≤ 0. The
correct viscosity solution is function,

u(x , y) =


2(1− |y |) x > 0, |y | > 1 + ln x
−2ln(x) x > 0, |y | ≤ 1 + ln x
u(−x ,y)

2 x ≤ 0.
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Test 2 - Results

∆x = h || · ||∞ Ord(L∞) || · ||1 Ord(L1)

0.2 1.0884 0.4498
0.1 1.0469 - 0.2444 0.88
0.05 1.0242 - 0.1270 0.9444
0.025 1.0123 - 0.0628 0.9708
0.0125 1.0062 - 0.0327 0.9867
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Applications I - Labyrinths

We consider the labyrinth I(x) as a digital image with I(x) = 0 if x is
on a wall, I(x) = 0.5 if x is on the target, I(x) = 1 otherwise.
We solve the eikonal equation

|Du(x)| = f (x) x ∈ Ω

with the discontinuous running cost

f (x) =

{ 1
4 if I(x) = 1
M if I(x) = 0.
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Applications I - Labyrinths

Figure: Mesh and level sets of the value function for the labyrinth
problem (dx = dt = 0.0078, M = 1010).
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Applications II - Shape-From-Shading

SFS equation
The SFS equation in the case of vertical light is

|Du(x , y)| =

(√
1

I(x , y)2 − 1

)
, (x , y) ∈ Ω.

where I is the brightness function measured at all points
(x , y) in the image.
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Applications II - Shape-From-Shading

Figure: Basilica of Saint Paul Outside the Walls: satellite image and
simplified sfs-datum.
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Applications II - Shape-From-Shading

Figure: Choosing boundary conditions.
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Applications II - Shape-From-Shading

Figure: Solutions with various BC.
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Concluding Remarks

Two different problems overcomed: discontinuity of the
running coast and degeneracy of the dynamics

Error estimations provided

Large presence in applications

Generalization to discontinuous equation of a more
general kind (Representation formulae [Soravia 2002])

Thank you.
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Definition

The set Γ ⊂ RN is said to be a Lipschitz hypersurface if

for all x̂ ∈ Γ one of its neighborhoods is partitioned by Γ into two
connected open sets Ω+, Ω− and Γ

there exists a transversal unit vector η+ ∈ RN , |η+| = 1, s.t.:
there are c, r > 0 s.t. if x ∈ B(x̂ , r) ∩ Ω± then
B(x ± tη+, ct) ⊂ Ω± for all 0 < t ≤ c, respectively.

We will say that an open set Ω is a Lipschitz domain if ∂Ω is a
Lipschitz hypersurface. In this case if for x̂ ∈ ∂Ω and a transversal unit
vector Λ we have Ω+ ⊂ Ω, then we call Λ = ΛΩ an inward unit vector.

Definition

Given a Lipschitz surface Γ ⊂ RN with transversal unit vector Λ, we
say that a function u : Ω→ R is nontangentially continuous at x̂ in the
direction of η if there are sequences tn → 0+, and pn → 0, pn ∈ RN ,
such that

lim
n→+∞

u(x̂ + tnη + tnpn) = u(x̂).
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