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Governing Equations

A new approach

2D shallow water equations for SWE source
terms
Arnaud Duran
u + V. H(u) = —B(u,z) — F(u), with S
h gx ay Equations
q2 1, 42 9xq Num
u= | qx H(U,Z):(F,G)(U,Z): Tx—i—igh 5 hy
qy qxhqy qu + %ghz
Source terms :
\ 92+ a2 \ 92+ a2
B(u,2) = *(0, ghdxz, ghdyz) F(u) = *(0.n 4= ax n———ay)

@ h : water height

free surface

@ 7 : free surface

@ z : topography

@ u = (u,v): velocity

vector topography

@ q = (gx,qy) : discharge
vector
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Numerical treatment of the topography  Pre-balanced approach

Pre-balanced formulation oo e rronch

terms

Arnaud Duran

Numerical requirements :
@ Preservation of motionless steady states : u = 0 and n = cst.
@ h-positivity preservation.

= "pre - balanced" set of equations [ Q. Liang and F. Marche. Numerical o
resolution of well-balanced shallow water equations with complex source terms. :;:;o:cah"ce
Advances in Water Resources, 2009.]

Main idea : Use n as a conservative variable (instead of h).

Derived formulation for the frictionless model

Ve +V-H(\V,z)=5(V,2), with

n ax qy
V=g« I:I(V, z) = | ugx + %g(n2 — 2nz) VQx
ay ugy vay + 38(n* — 2nz)
. 0
S( v, Z) = | —8nzx
—8MNzy
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Numerical treatment of the topography  Pre-balanced approach

A new approach

Semi-discrete finite volume homogeneous scheme [y

terms

Arnaud Duran

v+2/ A(V, 2).fi;) ds = 0.

0

Numerical flux function H : (U, V, i) — H(U, V, ) derived from 1D scheme
(HLL, HLLC, VFroe ...). Pre-balanced

approac|

@ Lipschitz continuous.

@ consistent with the exact flux : H(U, U, #) = H(U).i
@ conservation property : H(U, V,—A) = —H(V, U, —n)

Numerical flux through T

HIJ = H(\/inv ‘/jnvzvzaﬁl'j)

Semi - discrete homogeneous scheme

Y0
|Gl Vi + 2l i = 0.
k=1

Arnaud Duran (I3M) A new approach for SWE source terms 25/06/2012 6 /33



Numerical treatment of the topography  First order scheme

L - A new approach
Modified Riemann states for SWE rourcs
terms
Modification of the scheme to ensure positivity of h and account the source,
even on wet/dry interfaces. O] B

i ("left") and j ("right") Riemann states at the edge [ :

@ interface topography value : Z; = max (z, ;)

@ wet/dry interface : Aj; = max (0, Z; — n;) — MOd’f’,Ed
hydrostatic

reconstruction

(Audusse, 2004)

@ new interface topography value :

f,’j:Z'j—A,'j

@ non negative reconstruction of h :

hz; = max(O,n; = 2,'1'), h; = max(O,nj = 2,']')

@ reconstruction of the free surface :

g = hi + 2 — Ajj, i = hip + Z — Ay

New edges values

V; = (n,’j’vh?jui)z ‘/jlk = (77‘,’;,";111)
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Numerical treatment of the topography  First order scheme

A new approach

Formulation of the first order scheme for SWE souree

terms

. . . . Arnaud Duran
Source term : a convenient discretization
Q) q et
Sci == ei' SCI Zl = = 3
PR Z 7 (g’h (Zi_zii(k))"ii(k))

58 L . e
where 7);; is an approximation of 7 at the edge I';; ; we take 7j; = %

First order scheme

n+l _ vn
|Ci|# + Z Tty Hs (Vi) Viiis Zis 2o fijky) = 0, with

Hs( ,_,) J,,z,,zj,n,j)—H( ij J,vzijvfij’nij)_sc,iﬁ

\

Main properties

@ Well Balancing for motionless steady states.

@ Robustness (preservation of the positivity of the water height) under an
appropriate CFL.
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Governing Equations Second order extension

Numerical gradient approximations gl

= substitute in the numerical flux function #;; = H(V}", V", i), the values form] (Bron
V; and V; by "better" interpolations Vj; and Vj; at the interface I';.
Strategy : [ S. Camarri, M.V. Salvetti, B. Koobus, and A. Dervieux. A
low-diffusion muscl scheme for les on unstructured grids. Computers and

Fluids, 2004. ] :

Second order

° ‘7: (777QX,Qy:h) :
augmented vector.

extension

@ Tj and Tj; are, respectively,
the upstream and
downstream triangles, from
the initial triangulation T,
with respect to the edge ij.

o VVr, : Py gradient from a continuous and linear interpolation of V on
the triangle T.

=

° V\“/,.j— =VVr, 0.
e Vs = \A/J — V; : centered gradient.

° Vishe = lVV + VVE : more accurate way of evaluating the

variation of V.
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Governing Equations  Second order extension

A new approach

New edge values for S e
We set : Lj(V) = L(VV,, Vg,
continuous limiter :

[ 0 if sgn(a)# sgn(b),
L(a, b, C)f{ sgn(a) min (|2al,|2b|,|c|) otherwise

V\A/'.}w) , where L is a three entries

Arnaud Duran

Interpolated values on [j;

Second order
extension

Riemann states

@ reconstructed values for topography :zj; = n;; — hij and  zj = n;; — hj;
@ Z; = max(zj,z;), Aj = max(0,Z; — n;)
@ new interface topography values : z; = Z;; — Aj;
@ water height and free surface reconstruction :
by = max (0,m; — %), h3 = max (0,m; — Z;)
W?j:h?j+2U*AU’ T)J’-‘;- =h;-‘;-+2,'ij,'j
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Governing Equations  Second order extension

A new approach

Semi-discrete second order finite volume scheme for SWE source

terms

Arnaud Duran

Reconstructed variable vectors

V* - (7),,7/7 U ) VIT - (771,7 I,ujl)

Source term

AGi) 0 Second order
C l — g, i . ~ . , extension
Z it Seit) = 2, i) (g’?ii(k)( zi = zu(k))"'i(k))

k=1

with 9k = (B3 + h%)/2.

Second-order finite volume scheme

AG)
d * * = B
\C;\E Vi + Zzij(k)Hs(Vﬁ(k)v Viliyi» Zir Zjs Aijk)) = 0, with

HS( iy j:’zlszVn'j)le( ijo j:’zif’fiﬁnij)_s‘-‘,"j'

= Same discretization as the first order for the source term !
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Governing Equations  Numerical validati

- - A new approach
Accuracy validation for SWE source
terms
= analysis of the scheme’s accuracy and convergence rate.

Arnaud Duran

@ Q =20 x 5 channel. Splitted grid with h, = ?, n = 20,40, 80, 160.
@ topography : z(x,y) = 0.8e—5(x—10.9)2—50(y—0.5)*

@ inflow boundary (left) : enforced discharge q = (4.42,0)
outflow boundary (right) : n = h = 2.

= Stationary flow for which an exact solution is available.

Numerical

validations
Convergence rate ecoun

s 4
55 45
B y=0881x-497 S y=0850-3%
o e o -
55 - 7
-
o7 % ¥
Fs e -
g - i
ol yiescss O 7 a -
. 7 <
e ¥=1.85x 417, Vs
45 I3 »
AP 202 75
L7 A S48
o -
e Tt order B st order
95 - —==2nd order e == =2nd order
o 2nd order fiom Audusse & Biisteau, 2005 || 5] p 2nd order from Audusse & Eristeau, 2005
2 48 46 4 12 4 08 Db 04 02 0

2 48 6 44 12 1 08 06 04 02 O
log(h) ogit)

Convergence curves in a logarithmic scale for 1 (left) and u (right).
Arnaud Duran (I3M)
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Governing Equations  Numerical validation

A new approach

Carrier and Greenspan transient solution (1/2) for SWE voures

terms

= behavior of the scheme near wet/dry interfaces. BersudiDucss
= accuracy validation : comparison with exact solution and convergence
toward a steady state.

@ computational domain : Q = [-20,6] x [0,10].

@ initial condition and time-evolving boundary condition on the left side
provided by the exact solution.

Shoreline evolution

204.avi

Arnaud Duran (I3M) A new approach for SWE source terms 25/06/2012 13 / 33


204.avi

Governing Equations

shoreline evolution

t=10s

Carrier and Greenspan transient solution (2/2)

=205

Numerical validatiol

t=40s

LY error analysis

o

O g

— Free surface profile at times t=10s, 20s and 40s.

]

o numerical
—exact

B3 o

B

o

Time series of the L* error for first and second order schemes ; Ax = 0.26 (left).
Convergence rate study for increasingly refined regular meshes (right)
Arnaud Duran (I3M)

A new approach for SWE source terms

25/06/2012
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Governing Equations  Numerical validations

Oscillatory flow in a parabolic basin gl

Arnaud Duran

= 2D test case involving dry areas.
= comparison with an exact solution.

Free surface evolution

Numerical
validations

207_1.avi
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207_1.avi

Comparison with the exact solution for SWE vourse

terms

Arnaud Duran

Free surface profile al the x-direction middle sectio

t=500s t=1000s

f
6
- i - Numerical
o numerical O numerical

2

validations
— exact — exact

4000 3000 2000 1000 O 1000 2000 3000 4000 DAI]EIEI 3000 2000 1000 O 1000 2000 3000 4000

t=1500s t=2000s

8 oS Y .
4 -
o numerical o numerical
2
exact exact
O400 w0 2000 000 0 1000 2000 5000 4000 “G00 000 2000 o000 1000 2000 000 4000

Time history of the free surface at times t=500s, 1000s, 1500s and 2000s.
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Governing Equations  Numerical validations

Small perturbation of a lake at rest (1/3)

= well - balancing property of the first and second order model.
= efficiency of the low diffusion second order reconstruction.

@ Q =[0,2] x [0,1] channel. Unstructured triangulation with 11476 nodes.

@ topography : z(x,y) = 0.§e—5(x—10.9)2-50(y—0.5)%

@ perturbation of the initial steady state :

1.01 if0.05 < x < 0.15,
n(x,y,0) =
1 elsewhere.

A new approach
for SWE source
terms

Arnaud Duran

ical
ons

3D surface evolution

205.avi
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Governing Equations  Numerical validations
Small perturbation of a lake at rest (2/3)

Free surface evolution

. s

_ o

0z o 0s o5 1 1z 1 6 8 2

NN ¥

Free surface elevation at t=0.12s : contour and vertical section at
y=0.5m.

£=0.24s

0 o2 04 05 08 1 12 if

Free surface elevation at t=0.24s : contour and vertical section at
y=0.5m.

A new approach
for SWE source
terms

Arnaud Duran

Numerical
validations
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Governing Equations  Numerical validations

Small perturbation of a lake at rest (3/3)

Free surface evolution

Free surface elevation at t=0.36s : contour and vertical section at
y=0.5m.

2 et

&

1

2% t=0.48s
..... NN,

0 o2 04 05 08 1 12 1 16 18 2

Free surface elevation at t=0.48s : contour and vertical section at
y=0.5m.

A new approach
for SWE source
terms
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Numerical
validations
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Governing Equations  Numerical validations

Malpasset dam break
Reyran river valley (South of France), 1959. Varying topography and complex
geometry : benchmark test for dam-break models.

Topography and dual mesh

The Malpasset dam break: topography of the river (top) and
vertex-centered dual mesh (bottom)

Time series of the water level

— Comparison with experimental
data from gauge 6 to 11.
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Accounting frictional terms

Plan
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Accounting frictional terms  The 1D scheme

The 1D scheme for SWE vourse

terms

Arnaud Duran

Main idea : Modification of the intermediate states in the HLL Riemann solver
. introduce the friction directly in the intermediate states.

[Berthon C., Marche F., Turpault R. : An efficient scheme on wet/dry
transitions for shallow water equations with friction. Computers and Fluids,
2011]

Modified approximated Riemann solver

Up If% <a- frict
. U+ (1—a)(Up —U* =P Fuy))ifa- < %<0
Ur(%,UL, UR) = L :
= (%> UL, Ur) U* +(1—a) (U — U* — ELF(Ug)) if 0 < X < at
Ugif X > at
with

The 1D scheme

(%, UL, UR)
hrup

h* (%, UL, UR))

UL(3, UL, UR) = ( hr U

) , UR(%, UL, UR) = (
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Accounting frictional terms  The 1D scheme

A new approach
for SWE source

The 1D scheme we s

Arnaud Duran

New updated values

+1 h
h? - {'_ ( l+1 _Gi—%)

l

+1 _ h h
(hu)™' = (hu)r — AL [%% Ghey —a;_3 Gy

—(Q—a;_1) i+’1 L SRR )s:é)]

° o hi+%(ai+%7ai—%) ting
i1 = — terms
A The 1D scheme

with h;, 1 = ((hP)" + (h2,1)7) /2, 9+l = ((hu)p + (hu)? ) /2

+’§' = min(0, a, 1 )(hu)? — min(0, a 1 Y(hu)?y + Ghu(um)
:2 = max(0,a_ 1 )(hu)? — max(0, a" ;)(hu);'_H + Ghu(um)

9 s,

= Robustness
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Accounting frictional terms  The 1D scheme

A new approach

Extension to the 2D unstructured case for SWE voes

Arnaud Duran

1 |T; |~+1 :
T 72 "1' with

i

JEK;
it = = 251y (a(up, Up. ) — oV, UF. 7))
i i |T | iy ij i ij

= Natural extension :

1D fluxes at fluxes of the 3 pomt
the nodei: <«+— scheme on I';
Giogo Gy O T) O ) Ax=y) T e

New updated interface contribution vector

F’,’; :h,n_ , At (¢Z( ,7 l:"lj) ¢,’:> (u,7u,7nlj)
(hu)p = (hu)? — "TAT [a,,¢ “(uP,uP, Tig) — g (up, uf, i)
— (@ =5 + (1 —az)s; ) |

o At
()2 = (hv)? — IT I [auqﬁ" (uf s uf o, i) — oz,,d)h"(u' ,uf, i)

— (= a5 + @ - ay)s;) |
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Accounting frictional terms  Second order extension

A new approach

Second order extension Pl

terms

Arnaud Duran

= Same numerical strategy as the previous scheme :

Augmented vector : ¥ = (7, gx, gy, h).
New interfaces values :

R T
V=0t SL(0), Ui =0 - S Li(0)

New values for the flux computation

uj =q;/hy i = (hy, hijujj) he1p o
econd order
extension

Second order convex combination component

- At , ,
T (&ug, u i) — o(uf, uf i) )
u
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Accounting frictional terms  Numerical validation

. - e A new approach
Periodic subrcitical flow for SWE source
terms
= convergence toward a steady state ; comparison with analytical solution.
= efficiency of the model near wet/dry transitions.

Arnaud Duran

Q = 5000 x 500 channel. Cartesian splitted grid with Ax = Ay = 0.33m
steady state for the water height : h,er(x,y) = % + %sin(%

left boundary condition : h = h,.¢(0), gx = 2m.s~1.

iterative method for the topography profile computation (see [Delestre
O., Marche F. : A numerical scheme for a viscous shallow water model
with friction. Journal of Scientific Computing. 2010]).

@ Manning-Cheezy friction term : = 10/3 and s = n? with n = 2.

Evolution of the free surface

— Time history of the

free surface elevation

(t=100s, 750s, 1250s,
2500s).

Numerical
validations

= Convergence toward the
steady state.

0 1000 2000 3000 4000 5000
X(m)
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Numerical validations

Accounting frictional terms

A new approach

Dam - break with friction Pl

terms
= accuracy of the wave speed computation on a flat and wet bottom context.

@ computational domain : Q = [-10,10] x [0, 4]. Splitted cartesian grid,
with Ax =Ay = 0.1 ; 8241 nodes.

1 ifx<0,
0 elsewhere.

Arnaud Duran

@ initial condition : h(x,y) = {
@ approximated solution provided by [Chanson H. Analytical solution of
dam break wave with flow resistance. Application to tsunami surges.

XXXI IAHR Congress. 2005].

0
@ Darcy formulation for bed friction : F = <fuu>, with £ = 0.05.
8gh

Time history of the wet/dry interface location

Numerical
validations

— Water depth profiles
on the middle section at
t=0, 1, 1.5, 2, 2.5s

= The evolution of the
shoreline seems to be accu-
rately computed.
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Accounting frictional terms  Numerical validations

Moving boundary over a quadratic bottom (1/2)  |[CSEtise

terms

= accuracy validation : comparison with the exact solution.
= wet/dry interfaces : evolution of the shoreline. Arnaud Duran

@ Q = 4320 x 500 basin.
@ topography : 2(x,y) = ho((¥)* —1) , with hp =10 and a = 3000.

@ analytical solution available.

@ linear friction term : F = (’fq), with k = 0.001.

Free surface profiles

Numerical
20 validations

e

o ”
- = numerical
0 // —exact
A 0 1000 2000 3000 4000
215.avi 1(s)

Evolution of the flow and free surface elevation along the x-direction centerline at
times t=0s, 300s and 650s.
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Accounting frictional terms  Numerical validation

A new approach
for SWE source
terms

Moving boundary over a quadratic bottom (2/2)

Location of the shoreline

Arnaud Duran

Time series of the wet/dry
S interface.
wl T
=t A horeline evoluti
ok f 5 .
Y . shoreline evolution :
Enld o+ 1% N e 2 —rt/2
g ] L 7 Sy g _ a‘e _ _
Bal | LN X = pe (— Bs cos(st)
vz .
=W %sm(st)) +a
Zmaf-
I
T -
L [ nmerkal] = Excellent agreement with the
e exact solution.

Numerical
validations

y=1.02x-103

15t order
———2nd order

Arnaud Duran (I3M)

4 15

Ax orderl order2
108 3.92e-3 | 1.97e-3
54 1.95e-3 8.76-4
27 9.33e-4 | 2.92¢-4
135 | 4.77e-4 | 1.14e-4
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Accounting frictional terms  Numerical validations

Oscillatory flow in a parabolic bowl (1/2) or SWE rource
[Wang Y., Liang Q., Kesserwani G., Hall J.W. A 2d shallow flow model for ferme

practical dam break simulations. J. Hydraulic Research. 2011] Arnaud Duran
= accuracy validation and behavior on wet/dry transitions in an unstructured
context.

@ O =((0,4320). Unstructured triangulation with 13674 nodes.
@ topography : z(r) = r?(ho/a?) , with hg = 10 and a = 3000.
@ analytical solution available.

@ linear friction term, with k = 0.002.

Time history of the free surface

Numerical
validations

207.avi
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Accounting frictional terms  Numerical validations

Oscillatory flow in a parabolic bowl (2/2)

Free surface profiles

t=6725

"Y%ooo 200 0 2000 4000 "Y%ooo 2000 0 2000 4000

Water surface level along the section x=0 after a half period (left) and
four periods (right).

v

Velocity vector

— Time series of the velocity
components at (1000,0).

= Numerical prediction and exact
solutions are very close. The friction
model developed by Wang et al. gives
similar results.

A new approach
for SWE source
terms

Arnaud Duran

Numerical
validations
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Accounting frictional terms  Numerical validations

Malpasset dam break
Reyran river valley (South of France), 1959. Varying topography and complex
geometry : benchmark test for dam-break models.

Topography and dual mesh

N‘\
e

83888 8

Topography of the river (left) and vertex-centered dual mesh (right).

Time series of the water level

1200 reference +]
+ current scheme
1000}_© _first scheme (no friction)

800

Comparison with experimental data
from gauge 6 to 14.

600

time(s)

400

200

6 7 8 9 10 11 12 13 14
gauge

A new approach
for SWE source
terms

Arnaud Duran

Numerical
validations
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ional terms ~ The 1D scheme

A new approach
for SWE source
terms

Arnaud Duran

Thank you !

Numerical
validations
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