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Simplified Model for Plasma

Compressible Navier Stokes Poisson System

∂tρ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ)+div(ρλuλ⊗uλ)+∇(ρλ)γ =µ∆uλ+(µ+ν)∇div uλ+ρλ∇V λ

λ2∆V λ = ρλ − 1, x ∈ R3, t ≥ 0

ρλ(x, t) is the negative charge density

mλ(x, t) = ρλ(x, t)uλ(x, t) is the current density

uλ(x, t) is the velocity vector density

V λ(x, t) is the electrostatic potential

µ is the shear viscosity and ν is the bulk viscosity

λ = λD/L, λD is the Debye length
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Quasineutral limit

∂tρ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ)+div(ρλuλ⊗uλ)+∇(ρλ)γ =µ∆uλ+(µ+ν)∇div uλ+ρλ∇V λ

λ2∆V λ = ρλ − 1, x ∈ R3, t ≥ 0

Study the limit λ→ 0

⇓

Formally yields to an
Incompressible Dynamics

ρ = 1

div u = 0
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Main Issues

This formal limit will not be in general true

Control of Acoustic waves

Control of Space localized, high frequency in time Wave
Packets
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What is a plasma ?

A Plasma is a fluid which contains ions and electrons, such that
charge neutrality is mantained

A gas heated up to sufficiently high
temperatures so that the atoms ionise

Sun’s core. The plasma at the center of the
sun, where fusion of hydrogen to form helium
generates the suns heat.

Solar wind. The wind of plasma that blows off
the sun and outward through the region
between the planets.

Interstellar medium.The plasma, in our
Galaxy, that fills the region between the stars.
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a charged particle inside a plasma attracts particles with opposite
charge and repels those with the same charge

⇓

creation of a net cloud of opposite charge around itself

⇓

the cloud shields the particle’s own charge from external view

how large is this cloud?
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V = V (r), n0=mean density of electrons and protons
ne=electron density=n0e

eV/kT ni=ion density= n0e
−eV/kT

∆V = − 1

ε0
(ni − ne) = −n0e

ε0
(e−eV/kT − eeV/kT )

potential energy eV � kinetic energy kT

∆V = −n0e

ε0

(
1− eV

kT
− 1− eV

kT

)
=

(
2n0e

2

ε0kT

)
V

λD =

√
ε0kT

2n0e2
= Debye lenght

∆V − 1

λ2
D

V = 0 Debye law
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λD =

√
ε0kT

2n0e2
V (r) =

q

r
e−r/λD

⇒ the electric field dies off on distance greater than λD

⇒ this is the screening effect due to the polarization cloud which
screens the field of charge for distances larger than λD

⇒ charge fluctuation may occur over distances smaller than λD

⇒ the plasma is quasineutral for a distance L >> λD (we can
define as a parameter the “plasma density”)

Plasma T (K) λD(m)

Gas discharge 104 10−4

Sun’s core 107 10−11

Solar wind 105 10

Interstellar medium 104 10
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Plasma Oscillation

1−D linearized system

σt + ux = 0
ut + c2σx = Vx
λ2Vxx = σ

Fourier Transform(
σ̂t
ût

)
+

 0 iξ

iξc2 +
i

λ2ξ
0

(σ̂
û

)
= 0

Solutions(
σ̂(ξ, t)
û(ξ, t)

)
=

(
σ̂+(ξ)
û+(ξ)

)
eiθ(ξ)t +

(
σ̂−(ξ)
û−(ξ)

)
e−iθ(ξ)t

θ(ξ) =

(
c2ξ2 +

1

λ2

)1/2
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Mathematical difficulties - 1
u = P[u]︸︷︷︸

solenoidal part

+ Q[u]︸︷︷︸
gradient part

divP[u] = 0 Q[u] = ∇Ψ

∂tσ + div u = 0
∂tu+∇σ = ∇V
λ2∆V = σ

∂tσ + ∆Ψ = 0

∂t∇Ψ +∇σ =
1

λ2
∇∆−1σ

Problem: “weak compactness”

div(ρu⊗ u) ≈ div(u⊗ u)

= div(u⊗P[u]) + div(P[u]⊗∇Ψ)

+
1

2
∇|∇Ψ|2 + ∆Ψ∇Ψ

‖

∂t(σ∇Ψ)−1

2
∇σ2 +

1

λ2
σ∇∆−1σ
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Mathematical difficulties -2

∂tρ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ)+div(ρλuλ⊗uλ)+∇(ρλ)γ =µ∆uλ+(µ+ν)∇div uλ+ρλ∇V λ

λ2∆V λ = ρλ − 1

L∞t L
2
x bound on λ∇V λ = λEλ ρλ∇V λ ∼ λEλ ⊗ λEλ

simplified example: space independent case

λ2∂ttE
λ + Eλ = F

Fourier transform in time

λÊλ(τ) = λ
1

1− λ2τ2
F̂ (τ)

the L2 mass of λÊλ concentrates around τ =
1

λ
as λ→ 0

=⇒ corrector analysis
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State of Art - References
Quasineutral limit for Euler Poisson system in 1D

weak solutions, Gasser and Marcati (’01)(’03)
Quasineutral limit for Euler Poisson system in Hs

Cordier and Grenier (’00), Grenier (’96), Cordier, Degond,
Markowich and Schmeiser (’96), Loeper (’05), Peng, Wang
and Yong (’06)

Combined quasineutral limit and inviscid limit in Td
smooth solutions, well- prepared initial data ,Wang (’04)
weak solutions, general initial data, Jiang and Wang (’06)

Quasineutral limit for Navier Stokes Poisson system
regular solutions, ill-prepared data, Ju,Li and Li (’09)
weak solutions, well-prepared data, Ju, Li and Wang (’08)
weak solutions, D. Donatelli P.Marcati, A quasineutral type
limit for the Navier Stokes Poisson system with large data,
Nonlinearity, 21, (2008), 135-148.

Singular Limits
E. Feireisl, A. Novotny, Singular Limits in Thermodynamics of
Viscous Fluids, Birkhäuser Verlag, 2009.
L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann
Equation, Springer, 2009.
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Existence for Navier Stokes Poisson

∂tρ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ)+div(ρλuλ⊗uλ)+∇(ρλ)γ =µ∆uλ+(µ+ν)∇div uλ+ρλ∇V λ

λ2∆V λ = ρλ − 1

Renormalized pressure:

πλ =
(ρλ)γ − 1− γ(ρλ − 1)

γ(γ − 1)

Total Energy:

E(t) =

∫
R3

(
ρλ
|uλ|2

2
+ πλ+

λ2

2
|∇V λ|2

)
dx

Initial conditions:∫
R3

(
πλ|t=0 +

|mε
0|2

2ρλ0
+ λ2|V λ

0 |2
)
dx ≤ C0, where ρλuλ|t=0 = mλ

0 .

Existence of global weak solution
(B. Ducomet, E. Feireisl, H. Petzeltová, and I. Straškraba, 2004)

E(t) +

∫ t

0

∫
R3

(
µ|∇uλ|2+(ν + µ)|div uλ|2

)
dxds ≤ E(0).
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Strategy

Uniform bounds

Strong convergence for Pu

Recover Acoustic equation and control oscillations

Strichartz estimates

Strong convergence for Qu

Compactness for λ∇V λ

introduction of correctors
construction of microlocal defect measure
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Uniform bounds

∫
R3

(
ρλ
|uλ|2

2
+

(ρλ)γ − 1− γ(ρλ − 1)

γ(γ − 1)
+ λ2|∇V λ|2

)
dx

+

∫ t

0

∫
R3

(
µ|∇uλ|2+(ν + µ)| div uλ|2

)
dxds ≤ C0.

the convexity of z → zγ − 1− γ(z − 1)
⇓

density fluctuation = σλ = ρλ − 1 ∈ L∞t Lk2, k = min {2, γ}

=⇒

∇uλ is bounded in L2
t,x, λ∇V λ is bounded in L∞t L

2
x,

uλ is bounded in L2
t,x ∩ L2

tL
6
x σλuλ is bounded in L2

tH
−1
x
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Leray Projectors

u = P[u]︸︷︷︸
soleinodal part

+ Q[u]︸︷︷︸
gradient part

divP[u] = 0 Q[u] = ∇Ψ

where
P[u] = I−Q[u] Q[u] = ∇∆−1 div[u]
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Convergence of Puλ

convolution techniques

Lp compactness

‖Puλ(t+ h)−Puλ(t)‖L2([0,T ]×R3) ≤ CTh1/5

⇓

Puλ −→ Pu, strongly in L2(0, T ;L2
loc(R3))
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Uniform bounds
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Compactness for λ∇V λ

introduction of correctors
construction of microlocal defect measure
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Acoustic equation

σλ = ρλ − 1 = density fluctuation

∂tσ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ) +∇σλ = µ∆uλ + (ν + µ)∇ div uλ − div(ρλuλ ⊗ uλ)

− (γ − 1)∇πλ + σλ∇V λ +∇V λ,

λ2∆V λ = σλ.

Differentiate in t the “density fluctuation equation”, taking the
divergence of the second equation
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Acoustic equation

σλ = ρλ − 1 = density fluctuation

∂tσ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ) +∇σλ = µ∆uλ + (ν + µ)∇ div uλ − div(ρλuλ ⊗ uλ)

− (γ − 1)∇πλ + σλ∇V λ +∇V λ,

λ2∆V λ = σλ.

Differentiate in t the “density fluctuation equation”, taking the
divergence of the second equation

Klein Gordon Equation

∂ttσ
λ −∆σλ +

σλ

λ2
= div(µ∆uλ + (ν + µ)∇ div uλ)

+ div(div(ρλuλ ⊗ uλ)+(γ − 1)∇πλ−σλ∇V λ)
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Scaling: mass renormalization

changing the time and space scale:

t = λτ x = λy

∂ττ σ̃ −∆σ̃ + σ̃ = − 1

λ
div(µ∆ũ+ (ν + µ)∇ div ũ)

+ div(div(ρ̃ũ⊗ ũ) + (γ − 1)∇π̃ + σ̃∇Ṽ )

+ div(σ̃∇Ṽ ).
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Scaling: mass renormalization

changing the time and space scale:

t = λτ x = λy

∂ττ σ̃ −∆σ̃ + σ̃ = − 1

λ
div (µ∆ũ+ (ν + µ)∇ div ũ)︸ ︷︷ ︸

L2
tH
−1
x

+ div(div (ρ̃ũ⊗ ũ)︸ ︷︷ ︸
L∞t L

1
x

+ (γ − 1)∇ π̃︸︷︷︸
L∞t L

1
x

)

+ div (σ̃∇Ṽ )︸ ︷︷ ︸
L∞t L

1
x
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Strichartz estimates for Klein-Gordon equations

wtt−∆w+w = F w(0, ·) = f, ∂tu(0, ·) = g, (x, t) ∈ Rd×[0, T ]

‖w‖Lqt,x + ‖∂tw‖LqtW−1,q
x

. ‖f‖Ḣγ
x

+ ‖g‖
Ḣγ−1
x

+ ‖F‖Lpt,x

(p, q), are admissible pairs in 3−D if

4

3
≤ p ≤ 10

7

10

3
≤ q ≤ 4

By choosing p = 4/3 and q = 4 and by using Duhamel’s principle
we get this “non standard estimate ”

‖w‖L4
τ,x

+ ‖∂τw‖L4
τW
−1,4
x

. ‖f‖
Ḣ

1/2
x

+ ‖g‖
Ḣ
−1/2
x

+ ‖F‖L1
τL

2
x
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Scaling: mass renormalization

changing the time and space scale:

t = λτ x = λy

∂ττ σ̃ −∆σ̃ + σ̃ = − 1

λ
div (µ∆ũ+ (ν + µ)∇ div ũ)︸ ︷︷ ︸

L2
tH
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x

+ div(div (ρ̃ũ⊗ ũ)︸ ︷︷ ︸
L∞t L

1
x
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1
x

)

+ div (σ̃∇Ṽ )︸ ︷︷ ︸
L∞t L

1
x
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...we end up with the estimate

λ−
1
2 ‖σλ‖

L4
tW
−s0−2,4
x

+ λ−
1
2 ‖∂tσλ‖L4

tW
−s0−3,4
x

. λs0−
1
2 ‖σλ0‖H−3/2

x
+ λs0−

1
2 ‖mλ

0‖H−5/2
x

+ T‖ div(div(σλuλ ⊗ uλ)− (γ − 1)∇πλ)‖
L∞t H

−s0−2
x

+ λs0‖ div ∆uε +∇ div uε‖L2
tH
−2
x

+ T‖ div(σλ∇V λ)‖
L∞t H

−s0−1
x
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Strong convergence of Quλ

Quλ = Q(ρλuλ)︸ ︷︷ ︸
?

−Q(σλuλ)︸ ︷︷ ︸
L2
tH
−1
x
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Strong convergence of Quλ

Quλ = Q(ρλuλ)︸ ︷︷ ︸
?

−Q(σλuλ)︸ ︷︷ ︸
L2
tH
−1
x

but......
Q(ρλuλ) = ∇∆−1 div(ρλuλ)

∂tσ
λ = −div(ρλuλ)

Q(ρλuλ) = λ1/2∇∆−1λ−1/2∂tσ
λ︸ ︷︷ ︸

L4
tW
−s0−2,3
x

convolution techniques (Young type estimates)

interpolation

‖Quλ‖L2
tL

p
x
≤ CTλ

6−p
p(17+s0) for any p ∈ [4, 6).

⇓

Quλ −→ 0 strongly in L2
tL

p
x, for any p ∈ [4, 6).
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Strategy

Uniform bounds
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Recover Acoustic equation and control oscillations

Strichartz estimates
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construction of microlocal defect measure
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What can we do?

2� Convergence for Quλ

2 Compactness for λEλ = λ∇V λ

P
(
∂t(ρ

λuλ)+div(ρλuλ ⊗ uλ)+∇(ρλ)γ =µ∆uλ+(ν + µ)∇ div uλ+ ρλ∇V λ
)

⇓

∂tP(ρλuλ) +P div(ρλuλ⊗uλ)−µ∆Puλ = P div
(
λ∇V λ ⊗ λ∇V λ

)

P
(
∂tu + (u · ∇)u − ∆u = ? )
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We know

λEλ = λ∇V λ ⇀ 0 weakly in L2(0, T, L2(R3))

.....but
we want to pass into the limit in

ρλ∇V λ = div(λEλ ⊗ λEλ)− 1

2
∇|λEλ|2

Our setting

We want to study the weak continuity of quadratic forms in L2

(Awk, wk)

when A belongs to a more refined class of “testing operators”

28



We know

λEλ = λ∇V λ ⇀ 0 weakly in L2(0, T, L2(R3))

.....but
we want to pass into the limit in

ρλ∇V λ = div(λEλ ⊗ λEλ)− 1

2
∇|λEλ|2

Our setting

We want to study the weak continuity of quadratic forms in L2

(Awk, wk)

when A belongs to a more refined class of “testing operators”

28



We know

λEλ = λ∇V λ ⇀ 0 weakly in L2(0, T, L2(R3))

.....but
we want to pass into the limit in

ρλ∇V λ = div(λEλ ⊗ λEλ)− 1

2
∇|λEλ|2

Our setting

We want to study the weak continuity of quadratic forms in L2

(Awk, wk)

when A belongs to a more refined class of “testing operators”

28



Defect measures

(e.g. Di Perna, Majda)

Defect measure

wk ∈ L2
loc(Ω), wk → w in D′(Ω)

νk = |wk − w|2 ⇀ ν = defect measure of wk

wk(x) = eikx·ξ0 , ξ0 6= 0 ν = dx = Lebesque measure

29



A ∈ ψc0(Ω,K(H))

class of pseudodifferential operators

A(x,D)f(x) =

∫
a(x, ξ)Ff(ξ)eixξdξ := OP (a(x, ξ))

polihomogeneous

p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ)

pm−j(x, rξ) = rm−jpm−j(x, ξ)for |ξ| ≥ 1

whose kernel has compact support
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Microlocal defect measures
(L. Tartar 1990, P. Gérard 1991)

Defect measure

wk ∈ L2
loc(Ω), wk → w in D′(Ω)

νk = |wk − w|2 ⇀ ν = defect measure of wk

wk(x) = eikx·ξ0 , ξ0 6= 0 ν = dx = Lebesque measure

Microlocal defect measure

µ is the microlocal defect measure if for any A ∈ ψc0(Ω,K(H))

lim
k→∞

(A(wk − w), (wk − w)) =

∫
Sn−1×Ω

tr(a(x, ξ)µ(dxdξ))

wk(x) = eikx·ξ0 , ξ0 6= 0 ν = dx⊗ δξ0/|ξ0|
31



Our setting

λEλ = λ∇V λ ⇀ 0 weakly in L2(0, T, L2(R3))

we want to pass into the limit in

div(λEλ ⊗ λEλ)

=⇒ we can associate a microlocal defect measure to λEλ

BUT
in λ2〈AEλ, Eλ〉, A is a pseudodifferential operator

homogenous only with respect to the x and we cannot extend it to
a pseudodifferential operator homogenous in (x, t)

we have to work on λEλ in order to
isolate the components that oscillates fast in time

⇓
we introduce correctors of the electric field
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Electric field equation

λ2∂ttE
λ + Eλ = div ∆−1∇ div

(
ρλuλ ⊗ uλ + (ρλ)γI− λ2Eλ ⊗ Eλ

)
+
λ2

2
div
(
|Eλ|2I

)
− 2∇ div uλ = F λ,

By using Duhamel’s formula

Eλ(t, x) =

∫ t

0

F λ(s, x)

2iλ

(
ei
t−s
λ − e−i

t−s
λ

)
ds

+
Eλ1 (x)

λ
eit/λ +

Eλ2 (x)

λ
e−it/λ,

Eλ1 and Eλ2 are two functions in L2
x defined by the initial data of Eλ.

The L2-mass of λEλ concentrates around t =
1

λ
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Definition of the correctors

Eλ+ = λe−it/λEλ Eλ− = λeit/λEλ

They take into account of the L2-mass of λEλ around 1/λ.

Eλ+ ⇀ E+, Eλ− ⇀ E− weakly in L2

So if we look at the limit

λEλ − eit/λE+ − e−it/λE− as λ→ 0

we take away the L2-mass of λEλ which concentrates around 1/λ.

E+ and E− are the correctors

34



Microlocal defect measure for λẼλ

(isolating space oscillations)

Ẽλ = Eλ − eit/λE
+

λ
− e−it/λE

−

λ

λẼλ ⇀ 0 weakly in L2(0, T, L2(R3)).

The weak convergence of λẼλ is caused only by spatial oscillations

⇓

we can introduce the microlocal defect measure in space for λẼλ
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Construction of the microlocal defect measure

ë since Ẽλ is defined only in (0, T ), we need to extend it to 0
out of this interval

ë cut-off the frequencies greater than a certain quantity

wλ = TR[λẼλ] = λF−1χB(0,R)F [λẼλ]

ë lim
λ→0
=
∫
dtφ(t)(Awλ, wλ) = 0 lim

λ→0
<
∫
dtφ(t)(Awλ, wλ)≥ 0

ë lim
λ→0

∫
dtφ(t)(AλẼλ, λẼλ) = 〈νẼλ(dt, dx, dξ), φ(t)a(x, ξ)〉.
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Where we are?2� Convergence for Quλ

2� Compactness for λEλ = λ∇V λ

P
(
∂t(ρ

λuλ)+div(ρλuλ ⊗ uλ)+∇(ρλ)γ =µ∆uλ+(ν + µ)∇ div uλ+ ρλ∇V λ
)

⇓

∂tP(ρλuλ) +P div(ρλuλ⊗uλ)−µ∆Puλ = P div
(
λ∇V λ ⊗ λ∇V λ

)

P
(
∂tu + (u · ∇)u − ∆u = ? )
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P
(
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λuλ)+div(ρλuλ ⊗ uλ)+∇(ρλ)γ =µ∆uλ+(ν + µ)∇ div uλ+ ρλ∇V λ
)

⇓

∂tP(ρλuλ) +P div(ρλuλ⊗uλ)−µ∆Puλ = P div
(
λ∇V λ ⊗ λ∇V λ

)

P
(
∂tu + (u · ∇)u − ∆u = div(E+ ⊗ E+ + E− ⊗ E−) + div 〈νE , ξ ⊗ ξ

|ξ|2
〉
)
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Theorem

Let (ρλ, uλ, V λ) be weak solutions of the NSP system, then

ρλ ⇀ 1 weakly in L∞([0, T ];Lk2(R3)).

There exists u ∈ L∞t L2
x ∩ L2

t Ḣ
1
x, s.t. uλ ⇀ u weakly in L2

tH
1
x

Quλ −→ 0 stronlgy in L2
xL

p
x, for any p ∈ [4, 6).

Puλ −→ Pu = u strongly in L2
tL

2
loc,x

There exist correctors E+, E− and a defect measure νE ,
associated to Eλ = λ∇V λ s.t. u = Pu satisfies in
D′([0, T ]× R3)

P
(
∂tu−∆u+ (u · ∇)u−

div(E+ ⊗ E+ + E− ⊗ E−)− div 〈νE , ξ ⊗ ξ
|ξ|2
〉
)

= 0
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Who are the correctors?

+ The correctors E+, E− remain important as λ→ 0 and are
not vanishing.

+ They correspond to the physical phenomenon of the high
frequency plasma oscillation.

+ The effect of ill prepared initial data appears through E+, E−

and remains important for all times.
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Who are the correctors?

If (ρλ, uλ, V λ) satisfy for s large enough

‖ρλ − 1‖L∞(0,T ;Hs(R3)) ≤ C ‖λEλ‖L∞(0,T ;Hs(R3)) ≤ C

then for all s′ < s− 2

uλ−1

i
e−it/λE+−1

i
eit/λE− −→ v strongly in C0(0, T,Hs′−1

loc (R3))

λ(Eλ−e−it/λE+−eit/λE−) −→ 0 strongly in C0(0, T,Hs′−1
loc (R3))

and E± satisfy

∂tE
± −∆E± + Qdiv(v ⊗ E±) = 0, PE± = 0.
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Remark 1: Well prepared data

∫
R3

|ρλ0 − 1|2χ(|ρλ0−1|≤δ)dx+

∫
R3

|ρλ0 − 1|γχ(|ρλ0−1>δ)dx ≤Mλ

div u0 = 0

‖
√
ρλ0u0 − u0‖2L2 ≤Mλ ‖λ∇V λ

0 ‖2L2 ≤Mλ

⇓

No oscillations ⇒ Strong Convergence∫
R3

|ρλ − 1|2χ(|ρλ−1|≤δ)dx+

∫
R3

|ρλ − 1|γχ(|ρλ−1>δ)dx ≤Mλ

‖
√
ρλuλ − u‖2L∞(0,T ;L2) + ‖λV λ‖2L∞(0,T ;L2) ≤M(T )λmin{1/2,1/γ}
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Remark 2: What happens in a different domain?

T3 = (R/Z)3 is the 3-dimensional torus

2� Compactness for λEλ = λ∇V λ

we introduce correctors in T3 in order to take away the mass
that concentrates around 1/λ
we construct the microlocal defect measure νE in T3 by
means of Fourier series

2 Convergence for Quλ

it is related to the acoustic equation

∂ttσ
λ −∆σλ +

1

λ2
σλ = Fλ

but......clearly

in T3 there are NO dispersive effects!!
Great difficulty: small divisors problem
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