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probably, the most used approach for approximating CL.

=» Mainly two basic formulations of the FV method: the cell-centered (CCFV)
and the node-centered (NCFV), one on triangular grids.

=?» A lot of current-day 2D CFD codes rely, almost exclusively, on formal
second order accurate FV schemes following the MUSCL-type framework
achieved in two stages: (a) solution reconstruction stage from cell-average
values (b) use of an (approximate) Riemann solver.

=? High-order reconstruction can capture complex flow structures but may
entail non-physical oscillafions near discontinuities which may lead to wrong
solutfions or serious stability and convergence problems.

=» Multidimensional limiting, based on the satisfaction of the Maximum
Principle (for monotonic reconstruction), Barth & Jespersen (1989), Venkatakrishnan
(1993-95), Batten et al. (1996), Hubbard (1999), Berger et al. (2005), Park et al. (2010-12).

k&l HYP 2012, Padova 1



=» However, need the use of non-differentiable functions like the min and
max, and limit at the cost of multiple constrained, data dependent,
minimization problems at each computational cell and time step.

kU HYP 2012, Padova



=» However, need the use of non-differentiable functions like the min and
max, and limit at the cost of multiple constrained, data dependent,
minimization problems at each computational cell and time step.

=*» Although current reconstruction and limiting approaches have enjoyed
relative success, there is no consensus on the optimal strategy to fulfill a
high-level of accuracy and robustness.

kU HYP 2012, Padova



=» However, need the use of non-differentiable functions like the min and
max, and limit at the cost of multiple constrained, data dependent,
minimization problems at each computational cell and time step.

=*» Although current reconstruction and limiting approaches have enjoyed
relative success, there is no consensus on the optimal strategy to fulfill a
high-level of accuracy and robustness.

=» May have to use different approaches for the CCFV and NCFV
formulations e.g in poor connected grids.

kU HYP 2012, Padova



=» However, need the use of non-differentiable functions like the min and
max, and limit at the cost of multiple constrained, data dependent,
minimization problems at each computational cell and time step.

=*» Although current reconstruction and limiting approaches have enjoyed
relative success, there is no consensus on the optimal strategy to fulfill a
high-level of accuracy and robustness.

=» May have to use different approaches for the CCFV and NCFV
formulations e.g in poor connected grids.

=*» Grid topology can be an issue, especially for distorted, stretched and
hybrid meshes, as well as boundary treatment. Different behavior may
exhibited on different meshes.

kU HYP 2012, Padova



=» However, need the use of non-differentiable functions like the min and
max, and limit at the cost of multiple constrained, data dependent,
minimization problems at each computational cell and time step.

=*» Although current reconstruction and limiting approaches have enjoyed
relative success, there is no consensus on the optimal strategy to fulfill a
high-level of accuracy and robustness.

=» May have to use different approaches for the CCFV and NCFV
formulations e.g in poor connected grids.

=*» Grid topology can be an issue, especially for distorted, stretched and
hybrid meshes, as well as boundary treatment. Different behavior may
exhibited on different meshes.

=? May need to compare the CCFV approach with the NCFV (median dual
or centroid dual) one in a unified framework, e.g. Delis et al. (2011).
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=?» Major requirement: fo enable meaningful asymptotic order of
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freedom, the characteristic length hy = /(L. X Ly)/N
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=2 For fair comparisons, also between the CCFV and NCFV approach, need
to derive equivalent meshes, based on the degrees of freedom N
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Grids & Terminology

(a) Equilateral (Type-l) (b) Orthogonal (Type-Il) (c) Orthogonal (Type-Ill) (d) Distorted (Type-IV)

=? Major requirement: to enable meaningful asymptotic order of
convergence use consistently refined grids, i.e. for N = degrees of
freedom, the characteristic length hy = /(L. X Ly)/N

=2 For fair comparisons, also between the CCFV and NCFV approach, need
to derive equivalent meshes, based on the degrees of freedom N

=?» Term edge will refer to the line connecting neighboring data points
(locations of discrete solutions) and faces are the FV cell boundaries
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‘ FV discretization schemes on triangles: CCFV approach |
/ / —dady + fé . (FAg, + Gitg, ) dl = / /T pﬁdxdy

p\Tp\_ > @ +/ LS,

q€EK (p)
with the usual one point quadrature at M,

<I>q = Numerical flux function,

evaluated at W and W reconstructed values.

Linear reconstruction for the CCFV scheme
e Naive reconstruction (at point D)

L

(wi,p)D = Wip+Tpp - VW p;
(wi,q)g = Wij,q — TDq" VW,

e Monotonicity in the reconstruction will be enforced
by using edge-based slope limiters.
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‘ FV discretization schemes on triangles: CCFV approach |

LIM ((sz-,q)“ g, (Vs g)< - rpq) ;
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‘ FV discretization schemes on triangles: CCFV approach |

LIM ((sz-,q)“ g, (Vs g)< - rpq) ;

—||_|M ((Vwi,p)u . rpq7 (Vw’i,p)c ) rPQ) ’

where (Vw; o)< - Tpy = wi g — wip and (Vw; )" = 2 (Vw;,) — (Vwsp)©.

e Directionaly corrected reconstruction at VI

L L
(Wip)yy = (Wip)p +Tom - (Vwip),

(Wi g) v = (Wi g)p +Tom - (Vg g) .

~L

3]
EU HYP 2012, Padova 6



‘ FV discretization schemes on triangles: CCFV approach |

e Limited directionally corrected reconstruction at point VI, for (wi,p)ﬁ

e |dentify friangles 1;, with indices [, j = 1,2, 3, that
have a common vertex with 1), in the direction of D M.
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‘ FV discretization schemes on triangles: CCFV approach |

Finally the, now corrected and limited, left and right reconstructed values at
the flux integration point M are given as

L L . llroal|
(wi,p)M = (wiyp)D +
[T pks ]

LIM ((Vwi,p)u iy (V05)< rka) :

R R HI‘DMH
(Wi g)y = (Wig)p +

u C
T T ((sz-,q) Tymys (VWi q) .rme).
gms
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‘ FV discretization schemes on triangles: CCFV approach |

Finally the, now corrected and limited, left and right reconstructed values at
the flux integration point M are given as

L r , llrpul| u C
PR2

R r . llrpul| u C
qms2

"Prototype" limiter function, the modified Van Albada-Van Leer limiter:

<a2+e)b+(b2+e)a
LIM (a, b) = a2+ b? + 2e¢
0 if ab <0,

if ab > 0,

0<e<«]

e Continuous differentiable (helps in achieving smooth transitions)

e Can achieve second-order accuracy in all usual norms
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‘ Green-Gauss (GG) gradient operators Barth & Jespersen (1989) |

Three element (compact stencil) gradient
1 1
Vw; p = @ Z 9 (wi,q + wi,r) Ngr-

q,7€K (p)
T7q
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‘ Green-Gauss (GG) gradient operators Barth & Jespersen (1989) |

Three element (compact stencil) gradient
vwi,p — L Z l(UJi,q + wi,r) Ny
Cy 2

q,r€K(p)
T#q

M may lay outside gradient’s volume!

Extended element (wide stencil) gradient

1 1
V’wi,p — W Z i(wzl + wi,r) g,
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‘ Green-Gauss (GG) gradient operators Barth & Jespersen (1989) |

Three element (compact stencil) gradient
vwi,p — L Z l(UJi,q + wi,r) Ny
Cy 2

q,r€K(p)
T#q

M may lay outside gradient’s volume!

Extended element (wide stencil) gradient

1 1
V i — T~ g _( 7 ir) T
o 1 K/()QU’,“L“’, h
T
r;élp
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Typical behavior of the CCFV scheme at internal and boundary faces
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e In an ideal unstructured grid, variables are extrapolated at VI which will
coincide with D (intersection point of face 01, N 91}, and D).
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Typical behavior of the CCFV scheme at internal and boundary faces

D:!\{I a7 5 P=M

e In an ideal unstructured grid, variables are extrapolated at VI which will
coincide with D (intersection point of face 01, N 91}, and D).

e Ghost cells are used and the method of characteristics to enforce boundary

conditions.
e There can be a large distance between M and D (also on boundary
faces, where ghost cells are used).

e However, the compact stencil has to be used for the GG gradient
computation at the boundary.
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‘ FV discretization schemes on triangles: NCFV approach |
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‘ FV discretization schemes on triangles: NCFV approach |

(e) Centroid Dual (H Hybrid mesh
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FV discretization schemes on triangles: NCFV approach

(e) Centroid Dual (f) Hybrid mesh (g9) GG gradient stencil

OW p
ot

Cp| + Z Ppo + Ppout :/ Ldxdy where
QEKp Cp

® po = Numerical flux function and ®p,,: = boundary flux

evaluated again at W%)Q and WgQ reconstructed values.

g HYP 2012, Padova 1



‘ Numerical results and Comparisons I (Shallow Water Flows) |

Scheme Description

CCFVcl Naive reconstruction (compact stencil gradient)
CCFVc2L Limited directional correction ( compact stencil gradient)
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CCFVw2L Limited directional correction (wide stencil gradient)
Unlimited | The basic CCFV scheme (linear MUSCL reconstruction, no limiting)
V-scheme The CCFV scheme using Venkatakrishnan’s V-limiter

MLPu2 The CCFV scheme using ML of Park et al, JCP, 2010
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I A 2D potential (steady) solution with topography
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I Ia A traveling vortex solution at t = 27" (On a type-IV distorted mesh)

n) CCVFw2L scheme

)

& HYP 2012, Padova 17



I Ib Some classical test problems

HLLC solver, N = 16000 on a type-ll mesh, CFL= 0.5
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I I c Transonic flow around NACA 0012 qirfoil
Case of M=0.8 and @ = 1.25°, HLLC solver, N = 6492 with 200 surface points
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I I c Transonic flow around NACA 0012 qirfoil
Case of M=0.8 and av = 1.25°, HLLC solver, N = 6492 with 200 surface points
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I I c Transonic flow around NACA 0012 qirfoil
Case of M=0.8 and av = 1.25°, HLLC solver, N = 6492 with 200 surface points
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I I c Transonic flow around NACA 0012 airfoil

Case of M=0.8 and av = 1.25°, HLLC solver, N = 6492 with 200 surface points
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e In the FV agpproach different behavior is exhibited for grids where the center
of the face does not coincide with the reconstruction location.

The proposed correction for the reconstruction values remedies the problem (for both the
compact and wide stencil G-G gradient computations)

For the wide stencil similar consistent convergence behavior for all grid types is achieved
along with improvements in accuracy

Convergence to steady-state solutions is greatly improved.
Accurate shock/bore computations can be obtained on all grid types

e The effect of the grid’s geometry at the boundary can lead to order
reduction for CCFV schemes, even for good quality grids

e Comparison using fruly multidimensional limiting methods produced more

consistent and accurate resultfs
e The proposed approach depends mostly on the mesh characteristics and is

independent on the Riemann solver used.
e Using an edge-based structure the method can be applied, relatively

straight forward, to existing 2D FV codes.
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