A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws

Argiris I. Delis

& Ioannis K. Nikolos (TUC)



#### Department of Sciences-Division of Mathematics Technical University of Crete (TUC), Chania, Greece



→ High-order Finite Volume (FV) schemes on unstructured meshes is, probably, the most used approach for approximating CL.

- → High-order Finite Volume (FV) schemes on unstructured meshes is, probably, the most used approach for approximating CL.
- → Mainly two basic formulations of the FV method: the cell-centered (**CCFV**) and the node-centered (**NCFV**), one on triangular grids.

- High-order Finite Volume (FV) schemes on unstructured meshes is, probably, the most used approach for approximating CL.
- → Mainly two basic formulations of the FV method: the cell-centered (CCFV) and the node-centered (NCFV), one on triangular grids.
- A lot of current-day 2D CFD codes rely, almost exclusively, on formal second order accurate FV schemes following the MUSCL-type framework achieved in two stages: (a) solution reconstruction stage from cell-average values (b) use of an (approximate) Riemann solver.



- High-order Finite Volume (FV) schemes on unstructured meshes is, probably, the most used approach for approximating CL.
- → Mainly two basic formulations of the FV method: the cell-centered (CCFV) and the node-centered (NCFV), one on triangular grids.
- A lot of current-day 2D CFD codes rely, almost exclusively, on formal second order accurate FV schemes following the MUSCL-type framework achieved in two stages: (a) solution reconstruction stage from cell-average values (b) use of an (approximate) Riemann solver.
- High-order reconstruction can capture complex flow structures but may entail non-physical oscillations near discontinuities which may lead to wrong solutions or serious stability and convergence problems.



- High-order Finite Volume (FV) schemes on unstructured meshes is, probably, the most used approach for approximating CL.
- → Mainly two basic formulations of the FV method: the cell-centered (CCFV) and the node-centered (NCFV), one on triangular grids.
- A lot of current-day 2D CFD codes rely, almost exclusively, on formal second order accurate FV schemes following the MUSCL-type framework achieved in two stages: (a) solution reconstruction stage from cell-average values (b) use of an (approximate) Riemann solver.
- High-order reconstruction can capture complex flow structures but may entail non-physical oscillations near discontinuities which may lead to wrong solutions or serious stability and convergence problems.
- Multidimensional limiting, based on the satisfaction of the Maximum Principle (for monotonic reconstruction), Barth & Jespersen (1989), Venkatakrishnan (1993-95), Batten et al. (1996), Hubbard (1999), Berger et al. (2005), Park et al. (2010-12).

However, need the use of non-differentiable functions like the min and max, and limit at the cost of multiple constrained, data dependent, minimization problems at each computational cell and time step.

- However, need the use of non-differentiable functions like the min and max, and limit at the cost of multiple constrained, data dependent, minimization problems at each computational cell and time step.
- Although current reconstruction and limiting approaches have enjoyed relative success, there is **no consensus** on the optimal strategy to fulfill a high-level of accuracy and robustness.

- However, need the use of non-differentiable functions like the min and max, and limit at the cost of multiple constrained, data dependent, minimization problems at each computational cell and time step.
- Although current reconstruction and limiting approaches have enjoyed relative success, there is **no consensus** on the optimal strategy to fulfill a high-level of accuracy and robustness.
- May have to use different approaches for the CCFV and NCFV formulations e.g in poor connected grids.



- However, need the use of non-differentiable functions like the min and max, and limit at the cost of multiple constrained, data dependent, minimization problems at each computational cell and time step.
- Although current reconstruction and limiting approaches have enjoyed relative success, there is **no consensus** on the optimal strategy to fulfill a high-level of accuracy and robustness.
- May have to use different approaches for the CCFV and NCFV formulations e.g in poor connected grids.
- Grid topology can be an issue, especially for distorted, stretched and hybrid meshes, as well as boundary treatment. Different behavior may exhibited on different meshes.

- However, need the use of non-differentiable functions like the min and max, and limit at the cost of multiple constrained, data dependent, minimization problems at each computational cell and time step.
- Although current reconstruction and limiting approaches have enjoyed relative success, there is **no consensus** on the optimal strategy to fulfill a high-level of accuracy and robustness.
- May have to use different approaches for the CCFV and NCFV formulations e.g in poor connected grids.
- Grid topology can be an issue, especially for distorted, stretched and hybrid meshes, as well as boundary treatment. Different behavior may exhibited on different meshes.
- → May need to compare the CCFV approach with the NCFV (median dual or centroid dual) one in a unified framework, e.g. Delis et al. (2011).





→ Different grids and grid terminology used (mostly) in this work



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.
- Use of MUSCL-type linear reconstruction, utilizing the Green-Gauss gradient computations and classical approximate Riemann solvers (Roe's and HLLC) and Runge-Kutta temporal discretization.



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.
- Use of MUSCL-type linear reconstruction, utilizing the Green-Gauss gradient computations and classical approximate Riemann solvers (Roe's and HLLC) and Runge-Kutta temporal discretization.
- Mesh geometrical considerations and the proposed linear reconstruction and edge-based limiting.



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.
- Use of MUSCL-type linear reconstruction, utilizing the Green-Gauss gradient computations and classical approximate Riemann solvers (Roe's and HLLC) and Runge-Kutta temporal discretization.
- Mesh geometrical considerations and the proposed linear reconstruction and edge-based limiting.
- Numerical tests and reults for the Non-linear Shallow Water Equations (using a well-balanced FV scheme).



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.
- Use of MUSCL-type linear reconstruction, utilizing the Green-Gauss gradient computations and classical approximate Riemann solvers (Roe's and HLLC) and Runge-Kutta temporal discretization.
- Mesh geometrical considerations and the proposed linear reconstruction and edge-based limiting.
- Numerical tests and reults for the Non-linear Shallow Water Equations (using a well-balanced FV scheme).
- → Numerical tests and results for the (inviscid) Euler equations.



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.
- Use of MUSCL-type linear reconstruction, utilizing the Green-Gauss gradient computations and classical approximate Riemann solvers (Roe's and HLLC) and Runge-Kutta temporal discretization.
- Mesh geometrical considerations and the proposed linear reconstruction and edge-based limiting.
- Numerical tests and reults for the Non-linear Shallow Water Equations (using a well-balanced FV scheme).
- → Numerical tests and results for the (inviscid) Euler equations.
- Comparisons with (truly) multidimensional limiters.



- → Different grids and grid terminology used (mostly) in this work
- Finite Volumes on triangles: the cell-centered (CCFV) and node-centered (NCFV) approach, in a unified framework.
- Use of MUSCL-type linear reconstruction, utilizing the Green-Gauss gradient computations and classical approximate Riemann solvers (Roe's and HLLC) and Runge-Kutta temporal discretization.
- Mesh geometrical considerations and the proposed linear reconstruction and edge-based limiting.
- Numerical tests and reults for the Non-linear Shallow Water Equations (using a well-balanced FV scheme).
- → Numerical tests and results for the (inviscid) Euler equations.
- Comparisons with (truly) multidimensional limiters.



(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)



(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

→ Major requirement: to enable meaningful asymptotic order of convergence use **consistently refined grids**, i.e. for N = degrees of freedom, the characteristic length  $h_N = \sqrt{(L_x \times L_y)/N}$ 



(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

- → Major requirement: to enable meaningful asymptotic order of convergence use **consistently refined grids**, i.e. for N = degrees of freedom, the characteristic length  $h_N = \sqrt{(L_x \times L_y)/N}$
- $\rightarrow$  For fair comparisons, also between the CCFV and NCFV approach, need to derive **equivalent meshes**, based on the degrees of freedom N





(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

- → Major requirement: to enable meaningful asymptotic order of convergence use **consistently refined grids**, i.e. for N = degrees of freedom, the characteristic length  $h_N = \sqrt{(L_x \times L_y)/N}$
- + For fair comparisons, also between the CCFV and NCFV approach, need to derive **equivalent meshes**, based on the degrees of freedom N
- Term edge will refer to the line connecting neighboring data points (locations of discrete solutions) and faces are the FV cell boundaries



$$\iint_{T_p} \frac{\partial \mathbf{W}}{\partial t} dx dy + \oint_{\partial T_p} \left( \mathbf{F} \widetilde{n}_{q_x} + \mathbf{G} \widetilde{n}_{q_y} \right) dl = \iint_{T_p} \mathcal{L} dx dy$$
$$\frac{\partial \mathbf{W}_p}{\partial t} |T_p| = \sum_{q \in K(p)} \mathbf{\Phi}_q + \iint_{T_p} \mathcal{L} d\Omega,$$

with the usual one point quadrature at  $\boldsymbol{M}$  ,

 $\mathbf{\Phi}_q =$  Numerical flux function,

evaluated at  $\mathbf{W}^L$  and  $\mathbf{W}^R$  reconstructed values.





$$\iint_{T_p} \frac{\partial \mathbf{W}}{\partial t} dx dy + \oint_{\partial T_p} \left( \mathbf{F} \widetilde{n}_{q_x} + \mathbf{G} \widetilde{n}_{q_y} \right) dl = \iint_{T_p} \mathcal{L} dx dy$$
$$\frac{\partial \mathbf{W}_p}{\partial t} |T_p| = \sum_{q \in K(p)} \mathbf{\Phi}_q + \iint_{T_p} \mathcal{L} d\Omega,$$

with the usual one point quadrature at  $\boldsymbol{M}$  ,

 $\mathbf{\Phi}_q =$  Numerical flux function,

evaluated at  $\mathbf{W}^L$  and  $\mathbf{W}^R$  reconstructed values.

**Linear reconstruction for the CCFV scheme** • Naive reconstruction (at point D)

$$(w_{i,p})_D^L = w_{i,p} + \mathbf{r}_{pD} \cdot \nabla w_{i,p}; (w_{i,q})_D^R = w_{i,q} - \mathbf{r}_{Dq} \cdot \nabla w_{i,q},$$







$$\iint_{T_p} \frac{\partial \mathbf{W}}{\partial t} dx dy + \oint_{\partial T_p} \left( \mathbf{F} \widetilde{n}_{q_x} + \mathbf{G} \widetilde{n}_{q_y} \right) dl = \iint_{T_p} \mathcal{L} dx dy$$
$$\frac{\partial \mathbf{W}_p}{\partial t} |T_p| = \sum_{q \in K(p)} \mathbf{\Phi}_q + \iint_{T_p} \mathcal{L} d\Omega,$$

with the usual one point quadrature at  $\boldsymbol{M}$  ,

 $\mathbf{\Phi}_q =$  Numerical flux function,

evaluated at  $\mathbf{W}^L$  and  $\mathbf{W}^R$  reconstructed values.

**Linear reconstruction for the CCFV scheme** • Naive reconstruction (at point D)

$$(w_{i,p})_D^L = w_{i,p} + \mathbf{r}_{pD} \cdot \nabla w_{i,p};$$
  
$$(w_{i,q})_D^R = w_{i,q} - \mathbf{r}_{Dq} \cdot \nabla w_{i,q},$$

 Monotonicity in the reconstruction will be enforced by using edge-based slope limiters.









Directionaly corrected reconstruction at  $\mathbf{M}$  $(w_{i,p})_{\mathbf{M}}^{L} = (w_{i,p})_{D}^{L} + \mathbf{r}_{DM} \cdot (\nabla w_{i,p}),$ 

$$(w_{i,q})_{\mathbf{M}}^{R} = (w_{i,q})_{D}^{R} + \mathbf{r}_{DM} \cdot (\nabla w_{i,q}).$$

• Limited directionally corrected reconstruction at point  $\mathbf{M}$ , for  $(w_{i,p})_{\mathbf{M}}^{L}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j$ , j = 1, 2, 3, that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .



• Limited directionally corrected reconstruction at point  ${f M}$ , for  $(w_{i,p})^L_{f M}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j$ , j = 1, 2, 3, that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .

• Choose as a reference

triangle that for which  $\overline{pl_j}$  has the smallest angle with  $\overline{DM}$ 



• Limited directionally corrected reconstruction at point  ${f M}$ , for  $(w_{i,p})^L_{f M}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j$ , j = 1, 2, 3, that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .

• Choose as a reference triangle that for which  $\overline{pl_i}$  has the smallest angle with  $\overline{DM}$ 

ullet Project its cell center in the direction of  $\overline{DM}$  (i.e.  $\overline{pk_2}$  )

• Limited directionally corrected reconstruction at point  ${f M}$ , for  $(w_{i,p})^L_{{f M}}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j$ , j = 1, 2, 3, that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .

• Choose as a reference triangle that for which  $\overline{pl_i}$  has the smallest angle with  $\overline{DM}$ 

- Project its cell center in the direction of  $\overline{DM}$  (i.e.  $\overline{pk_2}$  )
- $\bullet$  The extrapolated value at  $k_2$  can be given as

$$w_{i,k2} = w_{i,l_2} + \mathbf{r}_{l_2k_2} \cdot (\nabla w_{i,l_2})$$

• Limited directionally corrected reconstruction at point  ${f M}$ , for  $(w_{i,p})^L_{{f M}}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j, j = 1, 2, 3$ , that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .

- $\bullet$  Choose as a reference triangle that for which  $\overline{pl_{i}}$  has the smallest angle with  $\overline{DM}$
- ullet Project its cell center in the direction of  $\overline{DM}$  (i.e.  $\overline{pk_2}$  )
- ullet The extrapolated value at  $k_2$  can be given as

$$w_{i,k2} = w_{i,l_2} + \mathbf{r}_{l_2k_2} \cdot (\nabla w_{i,l_2})$$

• The local central reference gradient is defined now as

$$\left(\nabla w_{i,p}\right)^{\mathsf{C}} \cdot \mathbf{r}_{pk_2} = w_{i,k_2} - w_{i,p}$$

• Limited directionally corrected reconstruction at point  ${f M}$ , for  $(w_{i,p})^L_{{f M}}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j, j = 1, 2, 3$ , that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .

- $\bullet$  Choose as a reference triangle that for which  $\overline{pl_{i}}$  has the smallest angle with  $\overline{DM}$
- Project its cell center in the direction of  $\overline{DM}$  (i.e.  $\overline{pk_2}$  )
- ullet The extrapolated value at  $k_2$  can be given as

$$w_{i,k2} = w_{i,l_2} + \mathbf{r}_{l_2k_2} \cdot (\nabla w_{i,l_2})$$

• The local central reference gradient is defined now as

$$\left(\nabla w_{i,p}\right)^{\mathsf{C}} \cdot \mathbf{r}_{pk_2} = w_{i,k_2} - w_{i,p}$$

ullet Compute the upwind gradient  $w_{i,p}-w_{i,k_2'}$  to get

$$\left(\nabla w_{i,p}\right)^{\mathsf{U}} = 2\left(\nabla w_{i,p}\right) - \left(\nabla w_{i,p}\right)^{\mathsf{C}}$$

• Limited directionally corrected reconstruction at point  ${f M}$ , for  $(w_{i,p})^L_{{f M}}$ 



• Identify triangles  $T_{l_j}$ , with indices  $l_j, j = 1, 2, 3$ , that have a common vertex with  $T_p$  in the direction of  $\overline{DM}$ .

- $\bullet$  Choose as a reference triangle that for which  $\overline{pl_{i}}$  has the smallest angle with  $\overline{DM}$
- Project its cell center in the direction of  $\overline{DM}$  (i.e.  $\overline{pk_2}$  )
- ullet The extrapolated value at  $k_2$  can be given as

$$w_{i,k2} = w_{i,l_2} + \mathbf{r}_{l_2k_2} \cdot (\nabla w_{i,l_2})$$

• The local central reference gradient is defined now as

$$\left(\nabla w_{i,p}\right)^{\mathsf{C}} \cdot \mathbf{r}_{pk_2} = w_{i,k_2} - w_{i,p}$$

ullet Compute the upwind gradient  $w_{i,p}-w_{i,k_2'}$  to get

$$\left(\nabla w_{i,p}\right)^{\mathsf{U}} = 2\left(\nabla w_{i,p}\right) - \left(\nabla w_{i,p}\right)^{\mathsf{C}}$$

Finally the, now corrected and limited, left and right reconstructed values at the flux integration point  ${\bf M}$  are given as



$$(w_{i,p})_{\mathbf{M}}^{L} = (w_{i,p})_{D}^{L} + \frac{||\mathbf{r}_{DM}||}{||\mathbf{r}_{pk_{2}}||} \mathsf{LIM}\left((\nabla w_{i,p})^{\mathsf{U}} \cdot \mathbf{r}_{pk_{2}}, (\nabla w_{i,p})^{\mathsf{C}} \cdot \mathbf{r}_{pk_{2}}\right);$$
$$(w_{i,q})_{\mathbf{M}}^{R} = (w_{i,q})_{D}^{R} + \frac{||\mathbf{r}_{DM}||}{||\mathbf{r}_{qm_{2}}||} \mathsf{LIM}\left((\nabla w_{i,q})^{\mathsf{U}} \cdot \mathbf{r}_{qm_{2}}, (\nabla w_{i,q})^{\mathsf{C}} \cdot \mathbf{r}_{qm_{2}}\right)$$
## FV discretization schemes on triangles: CCFV approach

Finally the, now corrected and limited, left and right reconstructed values at the flux integration point  ${\bf M}$  are given as



$$(w_{i,p})_{\mathbf{M}}^{L} = (w_{i,p})_{D}^{L} + \frac{||\mathbf{r}_{DM}||}{||\mathbf{r}_{pk_{2}}||} \mathsf{LIM}\left((\nabla w_{i,p})^{\mathsf{U}} \cdot \mathbf{r}_{pk_{2}}, (\nabla w_{i,p})^{\mathsf{C}} \cdot \mathbf{r}_{pk_{2}}\right);$$
$$(w_{i,q})_{\mathbf{M}}^{R} = (w_{i,q})_{D}^{R} + \frac{||\mathbf{r}_{DM}||}{||\mathbf{r}_{qm_{2}}||} \mathsf{LIM}\left((\nabla w_{i,q})^{\mathsf{U}} \cdot \mathbf{r}_{qm_{2}}, (\nabla w_{i,q})^{\mathsf{C}} \cdot \mathbf{r}_{qm_{2}}\right)$$

"Prototype" limiter function, the modified Van Albada-Van Leer limiter:

$$\mathrm{LIM}\,(a,b) = \begin{cases} \frac{\left(a^2 + e\right)b + \left(b^2 + e\right)a}{a^2 + b^2 + 2e} & \text{if } ab > 0, \\ 0 & \text{if } ab \leq 0, \end{cases} \qquad 0 < e << 1$$

- Continuous differentiable (helps in achieving smooth transitions)
- Can achieve second-order accuracy in all usual norms

HYP 2012, Padova



$$\nabla w_{i,p} = \frac{1}{|C_p^c|} \sum_{\substack{q,r \in K(p) \\ r \neq q}} \frac{1}{2} \Big( w_{i,q} + w_{i,r} \Big) \mathbf{n}_{qr}.$$











Extended element (wide stencil) gradient

$$\nabla w_{i,p} = \frac{1}{|C_p^w|} \sum_{\substack{l,r \in K'(p) \\ r \neq l}} \frac{1}{2} \Big( w_{i,l} + w_{i,r} \Big) \mathbf{n}_{lr}$$





Extended element (wide stencil) gradient

$$\nabla w_{i,p} = \frac{1}{|C_p^w|} \sum_{\substack{l,r \in K'(p) \\ r \neq l}} \frac{1}{2} \Big( w_{i,l} + w_{i,r} \Big) \mathbf{n}_{lr}$$

Satisfies the good neighborhood for Van Leer limiting (Swartz, 1999)





• In an ideal unstructured grid, variables are extrapolated at M which will coincide with D (intersection point of face  $\partial T_q \cap \partial T_p$  and  $\overline{pq}$ ).



- In an ideal unstructured grid, variables are extrapolated at M which will coincide with D (intersection point of face  $\partial T_q \cap \partial T_p$  and  $\overline{pq}$ ).
- **Ghost cells** are used and the method of characteristics to enforce boundary conditions.



- In an ideal unstructured grid, variables are extrapolated at M which will coincide with D (intersection point of face  $\partial T_q \cap \partial T_p$  and  $\overline{pq}$ ).
- **Ghost cells** are used and the method of characteristics to enforce boundary conditions.
- There can be a large distance between  ${f M}$  and D (also on boundary faces, where ghost cells are used).





- In an ideal unstructured grid, variables are extrapolated at M which will coincide with D (intersection point of face  $\partial T_q \cap \partial T_p$  and  $\overline{pq}$ ).
- **Ghost cells** are used and the method of characteristics to enforce boundary conditions.
- There can be a large distance between  ${f M}$  and D (also on boundary faces, where ghost cells are used).
- However, the compact stencil has to be used for the GG gradient computation at the boundary.

## FV discretization schemes on triangles: NCFV approach



### FV discretization schemes on triangles: NCFV approach





# FV discretization schemes on triangles: NCFV approach



evaluated again at  $\mathbf{W}_{PQ}^L$  and  $\mathbf{W}_{PQ}^R$  reconstructed values.

| Scheme    | Description                                                      |
|-----------|------------------------------------------------------------------|
| CCFVc1    | Naive reconstruction (compact stencil gradient)                  |
| CCFVc2L   | Limited directional correction ( compact stencil gradient)       |
| CCFVw1    | Naive reconstruction (wide stencil gradient)                     |
| CCFVw2L   | Limited directional correction (wide stencil gradient)           |
| Unlimited | The basic CCFV scheme (linear MUSCL reconstruction, no limiting) |
| V-scheme  | The CCFV scheme using Venkatakrishnan's V-limiter                |
| MLPu2     | The CCFV scheme using ML of Park et al, JCP, 2010                |

| Scheme    | Description                                                      |
|-----------|------------------------------------------------------------------|
| CCFVc1    | Naive reconstruction (compact stencil gradient)                  |
| CCFVc2L   | Limited directional correction ( compact stencil gradient)       |
| CCFVw1    | Naive reconstruction (wide stencil gradient)                     |
| CCFVw2L   | Limited directional correction (wide stencil gradient)           |
| Unlimited | The basic CCFV scheme (linear MUSCL reconstruction, no limiting) |
| V-scheme  | The CCFV scheme using Venkatakrishnan's V-limiter                |
| MLPu2     | The CCFV scheme using ML of Park et al, JCP, 2010                |

I a **A traveling vortex solution** (with periodic boundary conditions)

Using Roe's Riemann solver



| Scheme    | Description                                                      |
|-----------|------------------------------------------------------------------|
| CCFVc1    | Naive reconstruction (compact stencil gradient)                  |
| CCFVc2L   | Limited directional correction ( compact stencil gradient)       |
| CCFVw1    | Naive reconstruction (wide stencil gradient)                     |
| CCFVw2L   | Limited directional correction (wide stencil gradient)           |
| Unlimited | The basic CCFV scheme (linear MUSCL reconstruction, no limiting) |
| V-scheme  | The CCFV scheme using Venkatakrishnan's V-limiter                |
| MLPu2     | The CCFV scheme using ML of Park et al, JCP, 2010                |

#### I a **A traveling vortex solution** (with periodic boundary conditions)

Using Roe's Riemann solver





| Scheme    | Description                                                      |
|-----------|------------------------------------------------------------------|
| CCFVc1    | Naive reconstruction (compact stencil gradient)                  |
| CCFVc2L   | Limited directional correction ( compact stencil gradient)       |
| CCFVw1    | Naive reconstruction (wide stencil gradient)                     |
| CCFVw2L   | Limited directional correction (wide stencil gradient)           |
| Unlimited | The basic CCFV scheme (linear MUSCL reconstruction, no limiting) |
| V-scheme  | The CCFV scheme using Venkatakrishnan's V-limiter                |
| MLPu2     | The CCFV scheme using ML of Park et al, JCP, 2010                |

#### I a **A traveling vortex solution** (with periodic boundary conditions)























### Ib A 2D potential (steady) solution with topography



#### Ib A 2D potential (steady) solution with topography



#### Ib A 2D potential (steady) solution with topography





#### ${\tt I} \subset$ A 2D Riemann problem

 $\Omega = [-100, 100] \times [-100, 100]$  , N = 4000



### ${\tt I} \subset$ A 2D Riemann problem

 $\Omega = [-100, 100] \times [-100, 100]$  , N = 4000



(h) 1st order scheme on a type-II grid



#### ${\tt I\,c}$ A 2D Riemann problem

 $\Omega = [-100, 100] \times [-100, 100]$  , N = 4000



(h) 1st order scheme on a type-II grid

(i) CCFVw2L scheme on a type-II grid



#### ${\tt I} \subset$ A 2D Riemann problem

 $\Omega = [-100, 100] \times [-100, 100]$  , N = 4000

40







(i) CCFVw2L scheme on a type-II grid





(j) V-scheme (K=0) on a type-II grid



#### I C A 2D Riemann problem

 $\Omega = [-100, 100] \times [-100, 100]$ , N = 4000





(k) V-scheme (K = 1) on a type-II grid



(j) V-scheme (K = 0) on a type-II grid

-20

0

х

20

40

### Numerical results and Comparisons I I (Euler equations)

IIa A traveling vortex solution

## Numerical results and Comparisons II (Euler equations)

#### IIa A traveling vortex solution





## Numerical results and Comparisons I I (Euler equations)

#### IIa A traveling vortex solution





## Numerical results and Comparisons I I (Euler equations)

#### IIa A traveling vortex solution





## Numerical results and Comparisons II (Euler equations)

#### IIa A traveling vortex solution





## Numerical results and Comparisons II (Euler equations)

#### IIa A traveling vortex solution


### Numerical results and Comparisons II (Euler equations)

#### IIa A traveling vortex solution

#### HLLC solver used for all schemes







(1) V-scheme  $\left(K=1\right)$  (m) MLPu2  $\left(K=1\right)$  (n) CCVFw2L scheme

### $\tt IIb$ Some classical test problems

### ${\tt IIb}$ Some classical test problems





### ${\tt IIb}$ Some classical test problems



#### IIb Some classical test problems



#### IIb Some classical test problems

HLLC solver, N=16000 on a type-II mesh, CFL= 0.5



HYP 2012, Padova

Case of M=0.8 and  $\alpha = 1.25^{\circ}$ , HLLC solver, N = 6492 with 200 surface points

Case of M=0.8 and  $\alpha=1.25^\circ$  , HLLC solver, N=6492 with 200 surface points





Case of M=0.8 and  $\alpha=1.25^\circ$  , HLLC solver, N=6492 with 200 surface points





Case of M=0.8 and  $\alpha=1.25^\circ$  , HLLC solver, N=6492 with 200 surface points





#### $\ensuremath{ \ensuremath{ I \ensuremath{ \ensuremath{\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \e$

Case of M=0.8 and  $\alpha=1.25^\circ$  , HLLC solver, N=6492 with 200 surface points





HYP 2012, Padova

#### $\ensuremath{ \ensuremath{ I \ensuremath{ \ensuremath{\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \e$

Case of M=0.8 and  $lpha=1.25^\circ$  , HLLC solver, N=6492 with 200 surface points



HYP 2012, Padova



• In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy
- Convergence to steady-state solutions is greatly improved.

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy
- Convergence to steady-state solutions is greatly improved.
- Accurate shock/bore computations can be obtained on all grid types

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy
- Convergence to steady-state solutions is greatly improved.
- Accurate shock/bore computations can be obtained on all grid types
- The effect of the grid's geometry at the boundary can lead to order reduction for CCFV schemes, even for good quality grids

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy
- Convergence to steady-state solutions is greatly improved.
- Accurate shock/bore computations can be obtained on all grid types
- The effect of the grid's geometry at the boundary can lead to order reduction for CCFV schemes, even for good quality grids
- Comparison using truly multidimensional limiting methods produced more consistent and accurate results

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy
- Convergence to steady-state solutions is greatly improved.
- Accurate shock/bore computations can be obtained on all grid types
- The effect of the grid's geometry at the boundary can lead to order reduction for CCFV schemes, even for good quality grids
- Comparison using truly multidimensional limiting methods produced more consistent and accurate results
- The proposed approach depends mostly on the mesh characteristics and is independent on the Riemann solver used.

- In the FV approach different behavior is exhibited for grids where the center of the face does not coincide with the reconstruction location.
- The proposed correction for the reconstruction values remedies the problem (for both the compact and wide stencil G-G gradient computations)
- For the wide stencil similar consistent convergence behavior for all grid types is achieved along with improvements in accuracy
- Convergence to steady-state solutions is greatly improved.
- Accurate shock/bore computations can be obtained on all grid types
- The effect of the grid's geometry at the boundary can lead to order reduction for CCFV schemes, even for good quality grids
- Comparison using truly multidimensional limiting methods produced more consistent and accurate results
- The proposed approach depends mostly on the mesh characteristics and is independent on the Riemann solver used.
- Using an edge-based structure the method can be applied, relatively straight forward, to existing 2D FV codes.

#### Some References

• A.I.D., I.K. Nikolos and M.Kazolea, "Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows", Archives of Computational Methods in Engineering, 18(1), p. 1-62, 2011

• A.I.D. and I.K. Nikolos, "A novel multidimensional solution reconstruction and edge-based limiting procedure for unstructured cell-centered finite volumes with application to shallow water dynamics", International J. for Numerical Methods in Fluids (in press), 2012.

• I.K. Nikolos and A.I.D., "Solution reconstruction and limiting for unstructured finite volumes: application to the Euler equations", (in preparation),

#### THANK YOU FOR YOUR ATTENTION!