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probably, the most used approach for approximating CL.

Ü Mainly two basic formulations of the FV method: the cell-centered (CCFV)

and the node-centered (NCFV), one on triangular grids.

Ü A lot of current-day 2D CFD codes rely, almost exclusively, on formal

second order accurate FV schemes following the MUSCL-type framework

achieved in two stages: (a) solution reconstruction stage from cell-average

values (b) use of an (approximate) Riemann solver.

Ü High-order reconstruction can capture complex flow structures but may

entail non-physical oscillations near discontinuities which may lead to wrong

solutions or serious stability and convergence problems.

Ü Multidimensional limiting, based on the satisfaction of the Maximum

Principle (for monotonic reconstruction), Barth & Jespersen (1989), Venkatakrishnan

(1993-95), Batten et al. (1996), Hubbard (1999), Berger et al. (2005), Park et al. (2010-12).
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minimization problems at each computational cell and time step.

Ü Although current reconstruction and limiting approaches have enjoyed

relative success, there is no consensus on the optimal strategy to fulfill a

high-level of accuracy and robustness.

Ü May have to use different approaches for the CCFV and NCFV

formulations e.g in poor connected grids.

Ü Grid topology can be an issue, especially for distorted, stretched and

hybrid meshes, as well as boundary treatment. Different behavior may

exhibited on different meshes.

Ü May need to compare the CCFV approach with the NCFV (median dual

or centroid dual) one in a unified framework, e.g. Delis et al. (2011).
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(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

Ü Major requirement: to enable meaningful asymptotic order of

convergence use consistently refined grids, i.e. for N = degrees of

freedom, the characteristic length hN =
√

(Lx × Ly)/N

Ü For fair comparisons, also between the CCFV and NCFV approach, need

to derive equivalent meshes, based on the degrees of freedom N

Ü Term edge will refer to the line connecting neighboring data points

(locations of discrete solutions) and faces are the FV cell boundaries
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FV discretization schemes on triangles: CCFV approach∫∫
Tp

∂W
∂t

dxdy +
∮

∂Tp

(
Fñqx + Gñqy

)
dl =

∫∫
Tp

L dxdy

∂Wp

∂t
|Tp| =

∑
q∈K(p)

Φq +
∫∫

Tp

LdΩ,

with the usual one point quadrature at M ,

Φq = Numerical flux function,

evaluated at WL and WR reconstructed values.
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)
dl =

∫∫
Tp

L dxdy

∂Wp

∂t
|Tp| =

∑
q∈K(p)

Φq +
∫∫

Tp

LdΩ,

with the usual one point quadrature at M ,

Φq = Numerical flux function,

evaluated at WL and WR reconstructed values.

Linear reconstruction for the CCFV scheme
• Naive reconstruction (at point D)

(wi,p)L
D = wi,p + rpD · ∇wi,p;

(wi,q)R
D = wi,q − rDq · ∇wi,q,

• Monotonicity in the reconstruction will be enforced

by using edge-based slope limiters.
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FV discretization schemes on triangles: CCFV approach

• Limited naive reconstruction at point D

(wi,q)R
D = wi,q −

||rDq||
||rpq||

LIM

(
(∇wi,q)u · rpq, (∇wi,q)c · rpq

)
;

(wi,p)L
D = wi,p+

||rpD||
||rpq||

LIM

(
(∇wi,p)u · rpq, (∇wi,p)c · rpq

)
,

where (∇wi,q)c · rpq = wi,q − wi,p and (∇wi,p)u = 2 (∇wi,p)− (∇wi,p)c
.
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)
,

where (∇wi,q)c · rpq = wi,q − wi,p and (∇wi,p)u = 2 (∇wi,p)− (∇wi,p)c
.

• Directionaly corrected reconstruction at M
(wi,p)L

M = (wi,p)L
D + rDM · (∇wi,p) ,

(wi,q)R
M = (wi,q)R

D + rDM · (∇wi,q) .
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FV discretization schemes on triangles: CCFV approach

Finally the, now corrected and limited, left and right reconstructed values at

the flux integration point M are given as

(wi,p)L
M = (wi,p)L

D +
||rDM ||
||rpk2||

LIM

(
(∇wi,p)u · rpk2, (∇wi,p)c · rpk2

)
;

(wi,q)R
M = (wi,q)R

D +
||rDM ||
||rqm2||

LIM

(
(∇wi,q)u · rqm2, (∇wi,q)c · rqm2

)
.
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FV discretization schemes on triangles: CCFV approach

Finally the, now corrected and limited, left and right reconstructed values at

the flux integration point M are given as

(wi,p)L
M = (wi,p)L

D +
||rDM ||
||rpk2||

LIM

(
(∇wi,p)u · rpk2, (∇wi,p)c · rpk2

)
;

(wi,q)R
M = (wi,q)R

D +
||rDM ||
||rqm2||

LIM

(
(∇wi,q)u · rqm2, (∇wi,q)c · rqm2

)
.

"Prototype" limiter function, the modified Van Albada-Van Leer limiter:

LIM (a, b) =


(
a2 + e

)
b+

(
b2 + e

)
a

a2 + b2 + 2e
if ab > 0,

0 if ab ≤ 0,
0 < e << 1

• Continuous differentiable (helps in achieving smooth transitions)

• Can achieve second-order accuracy in all usual norms
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Green-Gauss (GG) gradient operators Barth & Jespersen (1989)

Three element (compact stencil) gradient
∇wi,p =

1
|Cc

p|
∑

q,r∈K(p)
r 6=q

1
2

(
wi,q + wi,r

)
nqr.
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• Satisfies the good neighborhood for Van Leer limiting (Swartz, 1999)
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Typical behavior of the CCFV scheme at internal and boundary faces

• In an ideal unstructured grid, variables are extrapolated at M which will

coincide with D (intersection point of face ∂Tq ∩ ∂Tp and pq).
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Typical behavior of the CCFV scheme at internal and boundary faces

• In an ideal unstructured grid, variables are extrapolated at M which will

coincide with D (intersection point of face ∂Tq ∩ ∂Tp and pq).

• Ghost cells are used and the method of characteristics to enforce boundary

conditions.

• There can be a large distance between M and D (also on boundary

faces, where ghost cells are used).

• However, the compact stencil has to be used for the GG gradient

computation at the boundary.
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FV discretization schemes on triangles: NCFV approach
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FV discretization schemes on triangles: NCFV approach

(e) Centroid Dual (f) Hybrid mesh
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FV discretization schemes on triangles: NCFV approach

(e) Centroid Dual (f) Hybrid mesh (g) GG gradient stencil

∂WP

∂t
|CP |+

∑
Q∈KP

ΦPQ + ΦP,out =
∫∫

CP

L dxdy where

ΦPQ = Numerical flux function and ΦP,out = boundary flux

evaluated again at WL
PQ and WR

PQ reconstructed values.
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Numerical results and Comparisons I (Shallow Water Flows)

Scheme Description
CCFVc1 Naive reconstruction (compact stencil gradient)

CCFVc2L Limited directional correction ( compact stencil gradient)

CCFVw1 Naive reconstruction (wide stencil gradient)

CCFVw2L Limited directional correction (wide stencil gradient)

Unlimited The basic CCFV scheme (linear MUSCL reconstruction, no limiting)

V-scheme The CCFV scheme using Venkatakrishnan’s V-limiter

MLPu2 The CCFV scheme using ML of Park et al, JCP, 2010
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Ib A 2D potential (steady) solution with topography
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Ic A 2D Riemann problem
Ω = [−100, 100]× [−100, 100], N = 4000
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Numerical results and Comparisons II (Euler equations)

IIa A traveling vortex solution

HLLC solver used for all schemes
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IIa A traveling vortex solution at t = 2T (On a type-IV distorted mesh)

(l) V-scheme (K = 1) (m) MLPu2 (K = 1) (n) CCVFw2L scheme
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IIb Some classical test problems

HLLC solver, N = 16000 on a type-II mesh, CFL= 0.5
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IIb Some classical test problems

HLLC solver, N = 16000 on a type-II mesh, CFL= 0.5

(o) Sod’s problem (p) Harten-Lax problem (q) Supersonic expansion
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IIc Transonic flow around NACA 0012 airfoil
Case of M=0.8 and α = 1.25◦, HLLC solver, N = 6492 with 200 surface points
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• For the wide stencil similar consistent convergence behavior for all grid types is achieved

along with improvements in accuracy

• Convergence to steady-state solutions is greatly improved.

• Accurate shock/bore computations can be obtained on all grid types

• The effect of the grid’s geometry at the boundary can lead to order

reduction for CCFV schemes, even for good quality grids

• Comparison using truly multidimensional limiting methods produced more

consistent and accurate results

• The proposed approach depends mostly on the mesh characteristics and is

independent on the Riemann solver used.

• Using an edge-based structure the method can be applied, relatively

straight forward, to existing 2D FV codes.
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