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Hyperbolic systems of conservation laws

u : R+ × Rm → Rk is the unknown vector function.
F : Rk → Rk×m is the known "flux function".

∂tu + divx(F (u)) = 0

u(0, ·) = u0 .
(1)

The system is strictly hyperbolic if the matrix (∂`F ij(v)ξj)`i has k
distinct real eigenvalues for every v ∈ Rk , ξ ∈ Sk−1.

It is well known that solutions of (1) develop singularities (shocks) in
finite time (generically!).

Problem
Develop a theory which allows to go beyond the singularities.
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Gas dynamics: a primary example

Isentropic gas dynamics in Eulerian coordinates: the unknowns of the
system, which consists of n + 1 equations, are the density ρ and the
velocity v of the gas:

∂tρ+ divx(ρv) = 0
∂t(ρv) + divx(ρv ⊗ v) +∇[p(ρ)] = 0
ρ(0, ·) = ρ0

v(0, ·) = v0

(2)

The pressure p is a function of ρ, which is determined from the
constitutive thermodynamic relations of the gas in question and
satisfies the assumption p′ > 0.

A typical example is p(ρ) = kργ , with constants k > 0 and γ > 1,

Recall that the internal energy density ε satisfies p(r) = r2ε′(r).
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Incompressible Euler: for future reference

Incompressible Euler is a system of PDEs which is NOT a hyperbolic
system of conservation laws:

divxv = 0
∂tv + divx(v ⊗ v) +∇p = 0
v(0, ·) = v0

(3)

In particular ρ is constant, p is an unknown function and the initial
condition does not involve p.

Nonetheless this system will play an important role later in this talk.
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Hyperbolic systems of conservation laws II

A well established theory and a lot of literature exists when m = 1:
well-posedness holds if weak solutions are required to satisfy a
suitable admissibility condition.
Much less is known for m > 1, aside from very interesting works on the
stability of sufficiently smooth shock waves.

The space of BV functions plays a prominent role in the 1-dimensional
setting, but

Theorem (Rauch 1986)
Well-posedness in BV can be expected only if the following
commutator condition holds

DF i · DF j = DF j · DF i .
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The Keyfitz-Kranzer system

A very simple example which develops singularities is given by
∂tu + divx(f (|u|)⊗ u) = 0

u(0, ·) = u0

(4)

which can be decoupled in a scalar conservation law and n − 1
transport equations.

Serre: is it possible to prove well-posedness for (4) using this
structure?

Theorem (Bressan 2003)
There is f Lipschitz (piecewise linear) such that (4) is ill-posed in L∞.
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The Keyfitz-Kranzer system II

In 2002 Ambrosio extends the DiPerna-Lions theory of transport
equations with W 1,p coefficients to the BV case. Therefore

Theorem (Ambrosio-Bouchut-D 2004)
The Cauchy problem for the Keyfitz-Kranzer system is well-posed if
|u0| ∈ BVloc ∩ L∞.

The Keyfitz-Kranzer system satisfies Rauch’s commutator condition,
but nonetheless

Theorem (D 2005)
Generically, even if u0 ∈ BV, the BV norm of the solution blows up
instantaneously.
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Which space?

Key point: BV is a "bad space for transport phenomena" in more than
one space dimension.

Problem
Is there a "better" function space?

Loosely speaking there are two options:
I Look for a larger space.
I Look for a smaller space.

We will focus on the first option.
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Which space ? II

Bressan:
(a) Is it possible to recast the DiPerna-Lions theory in a more

classical framework, with apriori estimates?
(b) Is there a function space which contains BV, embeds compactly in

L1 and is well behaved with respect to the transport equations?

Theorem (Crippa-D 2008)

(a) has a positive answer for the W 1,p theory (BV still open!).

Theorem (Crippa-D 2006)
(b) has a negative answer.
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L∞

There does not seem to be a good candidate between L1 (or L∞) and
BV . Is it possible to have well-posedness in L∞?

Theorem (D-Székelyhidi 2010)
For any pressure law p there are bounded initial data (ρ0, v0) with
ρ0 ≥ c > 0 with infinitely many bounded weak solutions (ρ, v) with
ρ ≥ c > 0 satisfying the "usual" entropy admissibility condition.


∂tρ+ divx(ρv) = 0
∂t(ρv) + divx(ρv ⊗ v) +∇[p(ρ)] = 0
ρ(0, ·) = ρ0

v(0, ·) = v0

(5)

∂t

[
ρε(ρ) +

ρ|v |2

2

]
+ divx

[(
ρε(ρ) +

ρ|v |2

2
+ p(ρ)

)
v
]
≤ 0 (6)
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Differential inclusions and Tartar’s wave analysis

The proof is based on a previous work on the incompressible Euler
equations where

I Following DiPerna and Tartar we split the system of PDEs in linear
equations and constitutive relations.

I Following Tartar we analyze the wave cone for the linear equation.
I We apply techniques from the theory of differential inclusions (see

Cellina, Bressan, Dacorogna-Marcellini, Müller-Šverak,
Kirchheim) to construct very oscillatory solutions.

With some "ad hoc" adjustments we adapt this construction to produce
solutions of the compressible Euler equations.

Problem
Is it possible to apply this framework directly to compressible Euler?
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Weak-strong uniqueness

The initial data of the last ill-posedness theorem must be sufficiently
irregular because

Theorem (Dafermos-DiPerna)
As long as a Lipschitz solution exists, any bounded admissible solution
must coincide with it.

In fact this theorem holds even for measure valued solutions
(Brenier-D-Székelyhidi 2010).

First of all the "problem" lies in the irregularity of the velocity:

Theorem (Chiodaroli 2011)
The same ill-posedness result can occur even with pairs (ρ0, v0) where
ρ0 is smooth.
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Nonstandard solutions with Riemann data

Consider Riemann initial data in 2d which can be reduced to the 1d
Riemann problem.

(ρ0, v0)(x) =
{

(ρ+, v+) if x1 > 0
(ρ−, v−) if x1 < 0

(7)

Theorem (Chiodaroli-D 2012)
There are smooth pressure laws p with p′ > 0 for which the following
holds. There are admissible L∞ solutions of isentropic Euler with initial
data (7) which depend also on x2.

Inspired by a work of Székelyhidi which proves the same theorem for
incompressible Euler with the classical shear flow initial data.
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x1, x2

t

(ρ−, v−)

Big mess!

(ρ+, v+)
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Important remarks

I The pressure law p is quite specific and does not satisfy
2p′(ρ) + ρp′′(ρ) > 0, nonetheless the 1-d Riemann problem with
the data of the previous theorem has a unique solution.

I The data is not "small" in L∞;
I The solution of the Riemann problem has a contact discontinuity.
I The proof is not completely in the "compressible world", but,

compared to the D-Székelyhidi result, it exploits much more
several specific properties of compressible Euler.
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Dafermos’ entropy rate admissibility criterion

Is it possible to impose further admissibility conditions to rule out these
non-standard solutions?

I do not expect that Dafermos’ entropy rate admissibility criterion does
it, because

Theorem (Székelyhidi 2011)
There are weak solutions of incompressible Euler with the classical
shear flow initial data which dissipate the kinetic energy (and have a
nontrivial dependence on x2).

Observe that the solution of Navier Stokes with the same initial data
depends only on x1 and t .
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Does all this have a "physical" meaning?

I DON’T KNOW
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But...

I would not regard it as a pure academic speculation. Indeed the
techniques and ideas which produce these theorems can also be
extended to prove the following

Theorem (D-Székelyhidi 2012)
There are Hölder continuous solutions of incompressible Euler which
dissipate the kinetic energy.

And the existence of these solutions were predicted by Lars Onsager
in 1949 in his famous note on statistical hydrodynamics.
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Thank you
for your attention!
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