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Magnetic Reconnection

Change in topology of the magnetic field

U in

U in

U outU out

Figure: Schematic of a reconnection.

Magnetic energy⇒ kinetic and thermal energy

Dissipation
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MHD Equations
The equations

∂ρ

∂t
= −∇ · (ρu)

∂(ρu)
∂t

= −∇

{
ρuu⊤ +

(
p +

B2

2

)
I3×3 − BB⊤

}

∂E

∂t
= −∇

{(
E + p −

B2

2

)
u + E× B

}

∂B
∂t

= −∇× E

are coupled through the equation of state

E =
p

γ − 1
+

ρu2

2
+

B2

2

To complete the formulation of the problem we need to state some
equation for E
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Ideal MHD

Standard model for E:
Ohm’s Law

E = −u× B

Problem:
no dissipation⇒ “frozen” condition.
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not sufficient for fast reconnection.
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Ideal MHD

Standard model for E:
Ohm’s Law

E = −u× B

Problem:
no dissipation⇒ “frozen” condition.
We need to add dissipation
Resistive MHD:

E = −u× B + ηJ

not sufficient for fast reconnection.

We need another model...
Numerical simulation and laboratory experiment⇒ Hall Effect
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Generalized Ohm’s Law

E = −u× B + ηJ +
δi

L0

J× B
ρ
−

δi

L0

∇
↔

p
ρ

+

(
δe

L0

)2 1
ρ

[
∂J
∂t

+ (u · ∇)J
]
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Generalized Ohm’s Law

E = −u× B + ηJ +
δi

L0

J× B
ρ
−

δi

L0

∇
↔

p
ρ

+

(
δe

L0

)2 1
ρ

[
∂J
∂t

+ (u · ∇)J
]

Resistivity

Hall effect

Electron pressure

Electron inertia

J is the electric current given by Ampère’s law

J = ∇× B

X.Qian, J.Bablás, A. Bhattacharjee, H.Yang (2009)
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General Induction Equation
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General Induction Equation
Faraday’s law

∂B
∂t

= −∇× E

Generalized Ohm law
Ampère’s law
↔

p isotropic.
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General Induction Equation
Faraday’s law

∂B
∂t

= −∇× E

Generalized Ohm law
Ampère’s law
↔

p isotropic.
Are combined to obtain

∂

∂t

[
B +

(
δe

L0

)2 1
ρ
∇× (∇× B)

]
= ∇× (u× B)− η∇× (∇× B)

−

(
δe

L0

)2 1
ρ
∇× ((u · ∇)(∇× B))−

δi

L0

1
ρ
∇× ((∇× B)× B)
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General Induction Equation
Faraday’s law

∂B
∂t

= −∇× E

Generalized Ohm law
Ampère’s law
↔

p isotropic.
Are combined to obtain

∂

∂t

[
B +

(
δe

L0

)2 1
ρ
∇× (∇× B)

]
= ∇× (u× B)− η∇× (∇× B)

−

(
δe

L0

)2 1
ρ
∇× ((u · ∇)(∇× B))−

δi

L0

1
ρ
∇× ((∇× B)× B)

This equation preserve the divergence of the magnetic field

d
dt

(∇ · B) = 0
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Symmetrized Equation

Using the identity

∇× (u× B) = (B · ∇)u− B(∇ · u) + u(∇ · B)− (u · ∇)B
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Symmetrized Equation

Using the identity

∇× (u× B) = (B · ∇)u− B(∇ · u) + u(∇ · B)− (u · ∇)B

Since the magnetic field is solenoidal ∇ · B = 0 we subtract u(∇ · B)
to the right side of the equation

∂

∂t

[
B +

(
δe

L0

)2

∇× (∇× B)

]
=

(B · ∇)u− B(∇ · u)− (u · ∇)B− η∇× (∇× B)

−

(
δe

L0

)2 1
ρ
∇× ((u · ∇)(∇× B))−

δi

L0

1
ρ
∇× ((∇× B)× B) (1)
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Boundary Condition

Ω ⊂ R3 is a smooth domain
∂Ωin = {x ∈ ∂Ω|n · u < 0} is the inflow boundary.

Natural BC

η(B× n) = 0 on ∂Ω\∂Ωin (2)

Inflow BC

B = 0 on ∂Ωin

δiJ = 0 on ∂Ωin (3)

P. Corti 24-29th June 2012, Hyp 2012, Padova p. 9



Outline MHD Theoretical Analysis Discontinuous Galerkin One Dimensional Model Numerical Examples Conclusion

Estimate

Theorem
For u ∈ C2(Ω) and B solution of (1) satisfying (2) and (3), then this
estimate holds

d
dt

(
‖B‖2

L2(Ω) +

(
δe

L0

)2 1
ρ
‖∇ × B‖2

L2(Ω)

)

≤ C1

(
‖B‖2

L2(Ω) +

(
δe

L0

)2 1
ρ
‖∇× B‖2

L2(Ω)

)
(4)

with C1 a constant that depend on u and its derivative only.
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System of Equations with Auxiliary Variables

∂B
∂t

+ U1B + (u∇)B = −η∇× J− α∇× Ẽ1 − β∇× Ẽ2

J = ∇× B

Ẽ1 = J× B

Ẽ2 = (
∂J
∂t

+ (u∇)J)

Boundary Condition:

η(B× n) = 0 on ∂Ω

B = G1 on ∂Ωin

βJ = G2 on ∂Ωin.

U1 depends on ∂ui
∂xj

, α = δi
L0ρ

and β =
δ2

e

L2
0ρ
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Define

(v ,w)
Th

=
∑

K∈Th

∫

K
v(x)w(x)dx

〈v ,w〉Faces =
∑

f∈Faces

∫

e
v(x)w(x)ds

where Th a triangulation of Ω.
Faces can be

Fh set of faces in Th.

FI
h set of inner faces in Th.

Γh set of boundary faces in Th.

Γ+h set of outflow boundary faces in Th.

Γ−h set of inflow faces boundary in Th.
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To have unique valued on faces we define:

averages {.}

normal jumps [[.]]N

tangential jumps [[.]]T
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Find Bh,Eh, Jh ∈ Vh(
∂Bh

∂t
+ U2Bh, B̄h

)

Th

−
(
Bh, (u∇)B̄h

)
Th

+ η
(
Jh,∇× B̄h

)
Th

+ α
(

Ẽh,1,∇× B̄h

)
Th

+ β
(

Ẽh,2,∇× B̄h

)
Th

+
∑

i

〈ûBi
h, [[B̄i

h]]N〉Γ+
h ∪FI

h

− η〈Ĵh, B̄h〉Fh
− α〈

̂̃Eh,1, B̄h〉Fh
− β〈

̂̃Eh,2, B̄h〉Fh
= −〈(u · n)G1, B̄h〉Γ−

h

∀ B̄h ∈ Vh
(
Jh, Ēh

)
Th
−
(
Bh,∇× Ēh

)
Th

+ 〈B̂h, [[Ēh]]T 〉FI

h
= 0

∀ Ēh ∈ Vh(
Ẽh,1 − Jh × Bh, J̄h

)
Th

= 0 ∀ J̄h ∈ Vh

(
Ẽh,2 + (∇ · u)Jh −

∂Jh

∂t
, ¯̄Jh

)

Th

+
(

Bh, (u∇) ¯̄Jh

)
Th

−
∑

i

〈ûJ i
h, [[

¯̄J i
h]]N〉Γ+

h ∪FI

h

= −〈(u · n)G2,
¯̄Jh〉Γ−

h
∀ ¯̄Jh ∈ Vh
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DG Fluxes

LDG:

B̂h = {Bh}+ b[[Bh]]T

Ĵh =

{
{Jh} − b[[Jh]]T + a

0[[Bh]]T internal edges
{Jh}+ a

0[[Bh]]T boundary edges

Êh,i =

{
{Eh,i} − b[[Eh,i ]]T + a

i [[Bh]]T internal edges
{Eh,i}+ a

i [[Bh]]T boundary edges

I.Perugia, D. Schötzau (2002)
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Upwind:

ûBi
h = {uBi

h}+ c[[Bi
h]]N

ûJ i
h = {uJ i

h}+ c[[J i
h]]N

with c = |nu|/2.

u

e

Bh,left

Bh,right

Figure: In the case the flux ̂uBi
h will be uBi

h,left .
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Upwind:

ûBi
h = {uBi

h}+ c[[Bi
h]]N

ûJ i
h = {uJ i

h}+ c[[J i
h]]N

with c = |nu|/2.

u

e

Bh,left

Bh,right

Figure: In the case the flux ̂uBi
h will be uBi

h,left .

With this Fluxes⇒ Discrete Energy estimate.
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1D Model

∂t b + u∂xb − η∂xx b − β(∂xxt b + ∂x (u∂xx b)) = 0 in (0, 1).

With boundary conditions

b(0, t) = b(1, t) = 0,

β∂x b(0, t) = gl (t) when v(0, t) > 0,

β∂x b(1, t) = gr (t) when v(1, t) < 0.

⇒ Energy Estimate.

P. Corti 24-29th June 2012, Hyp 2012, Padova p. 17
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Auxiliary variables

∂t b + u∂xb − η∂x j − β∂x e = 0

j = ∂x b

e = ∂t j + u∂x j

Build DG Formulation (as for the Vector Equation)

Use Upwind fluxes for Advection Part.

Use LDG fluxes for the diffusive part.

Matrix Formulation (Semi-discrete).

Eliminate Auxiliary Variables.

P. Corti 24-29th June 2012, Hyp 2012, Padova p. 18
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(M− βW(b))bt = −(ηa
0 + βa1)Qb + ηW(b)b + Z(c)b− Z̃(c)b

Mass Matrix

"Laplace Parts"

"Advection Parts"
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(M− βW(b))bt = −(ηa
0 + βa1)Qb + ηW(b)b + Z(c)b− Z̃(c)b

Mass Matrix

"Laplace Parts"

"Advection Parts"

Implicit-Explicit Time Discretization:

(M− βW)
bn+1 − bn

∆t
= −(ηa0 + βa1)Qbn+1 + ηWbn+1 + Zbn − Z̃bn
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Choosing: a1 = a
0

∆t

(M− (β +∆tη)︸ ︷︷ ︸
:=γ

(W− a
0Q))bn+1 = (M− βW+∆t(Z− Z̃))bn

ADG(γ) := M− γ(W− a
0Q)
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Choosing: a1 = a
0

∆t

(M− (β +∆tη)︸ ︷︷ ︸
:=γ

(W− a
0Q))bn+1 = (M− βW+∆t(Z− Z̃))bn

ADG(γ) := M− γ(W− a
0Q)

Solve ADG(γ)x = l

ADG(γ) is the DG discretization of u − γ∂xx u.

Use Conform Discretization (ACG(γ))⇒ Auxiliary Space
Preconditioner.
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Fast Approximated Solution: Auxiliary Space
joint work with Ralf Hiptmair

Solve ADG(γ)x = l:
x← x0

for i ≤ Niter do
x← Smoother(x,ADG, l)
r← l− ADGx
ρ← P⊤r
κ← ACGκ = ρ
x← x + Pκ
x← Smoother(x,ADG, l)

end for
Auxiliary P Prolongation operator from Conform to Discontinuous
Space.

P. Corti 24-29th June 2012, Hyp 2012, Padova p. 21
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Numerical Tests
Advection: β = η = 0

b0(x) =
{

(1− (4x2 − 1))4 0 ≤ x < 1/2
0 1/2 ≤ x ≤ 1

u(x) = c ⇒ b(x , t) = b0(x − ct),
u(x) = cx ⇒ b(x , t) = b0(xe−ct).
Heat Equation: β = u = 0.

b(x , t) = e−π2ηt sin(π x) +
1
2

e−4π2ηt sin(2π x)

Advection Diffusion: β = 0 and u = c

b(x , t) = e
c

2η x (e−λ1 t sin(π x) +
e−λ1t

2
sin(2π x) +

e−λ1 t

4
sin(3π x)).

with λk = c2+4π2k2η2

4η
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Figure: Convergence plot for test problems, at time T = 1. The reference
triangle has a slope of 2, i.e. convergence order of 2.
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Forced Solution:
Solving

∂tb + u∂x b = η∂xx b + β(∂xxt b + ∂x (u∂xx b)) + f

Choose f (x , t , β) so that

b(x , t) = e
c

2η x (e−λ1t sin(π x) +
e−λ1 t

2
sin(2π x) +

e−λ1t

4
sin(3π x)).

with λk = c2+4π2k2η2

4η is solution.
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u=3/4, eta=0.05, beta=0.01

Figure: Convergence plot for solution of Forced Problem at T = 1. The
reference triangle has a slope of 2, i.e. convergence order of 2.
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Initial Data

b0(x) =

{
2e

−1
(1−(4x−2)2) 1/4 < x < 3/4

0 elsewhere.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Solution with u=3/4 eta=0.1 beta=0.0

x

 

 
T=0
T=0.1
T=0.2

Figure: Solution for u = 3/4, η = 0.1 and β = 0.
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Figure: Solution for u = 3/4, η = 0.1. On the left β is 0.02 on the right 0.002.
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Preconditoner
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Preconditioner
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T
im

e 
[s
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Direct Inversion
Preconditioned

Figure: Time to obtain the solution for u = 3/4, η = 0.1, β = 0.02 and
T = 0.2 with and without preconditioner.

P. Corti 24-29th June 2012, Hyp 2012, Padova p. 28



Outline MHD Theoretical Analysis Discontinuous Galerkin One Dimensional Model Numerical Examples Conclusion

Conclusion

The solution of the induction equation with Hall term possesses
an energy estimate .

We can build a DG discretization which satisfies a similar
estimate.

⇒ stability granted for exact-time evolution of the discrete
system.
We presented a1D Model based on the full equations.

Space-time Discretization was presented.
Preconditioner for time evolution.
Numerical Examples and Test.
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Conclusion

The solution of the induction equation with Hall term possesses
an energy estimate .

We can build a DG discretization which satisfies a similar
estimate.

⇒ stability granted for exact-time evolution of the discrete
system.
We presented a1D Model based on the full equations.

Space-time Discretization was presented.
Preconditioner for time evolution.
Numerical Examples and Test.

Thank You!
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