EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect

Paolo Corti

joint work with Siddhartha Mishra

ETH Zurich, Seminar for Applied Mathematics

24-29th June 2012, Hyp 2012, Padova

Formulation and motivation of the problem

- Theoretical analysis
- DG Formulation
- 1D Model
- Numerical Tests

Magnetic Reconnection

Change in topology of the magnetic field

Figure: Schematic of a reconnection.

Magnetic energy ⇒ kinetic and thermal energy
 Dissipation

MHD Equations

The equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{u}) \\ \frac{\partial (\rho \mathbf{u})}{\partial t} &= -\nabla \left\{ \rho \mathbf{u} \mathbf{u}^\top + \left(p + \frac{\mathbf{B}^2}{2} \right) \mathbf{I}_{3 \times 3} - \mathbf{B} \mathbf{B}^\top \right\} \\ \frac{\partial \mathcal{E}}{\partial t} &= -\nabla \left\{ \left(\mathcal{E} + p - \frac{B^2}{2} \right) \mathbf{u} + \mathbf{E} \times \mathbf{B} \right\} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \end{aligned}$$

are coupled through the equation of state

$$\mathcal{E} = \frac{p}{\gamma - 1} + \frac{\rho \mathbf{u}^2}{2} + \frac{B^2}{2}$$

To complete the formulation of the problem we need to state some equation for $\ensuremath{\mbox{E}}$

Ideal MHD

Standard model for **E**: Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B}$$

Problem: no dissipation \Rightarrow "frozen" condition.

Ideal MHD

Standard model for **E**: Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B}$$

Problem: no dissipation \Rightarrow "frozen" condition. We need to add dissipation Resistive MHD:

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J}$$

not sufficient for fast reconnection.

Ideal MHD

Standard model for **E**: Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B}$$

Problem: no dissipation \Rightarrow "frozen" condition. We need to add dissipation Resistive MHD:

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J}$$

not sufficient for fast reconnection.

We need another model...

Numerical simulation and laboratory experiment \Rightarrow Hall Effect

Generalized Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\delta_i}{L_0} \frac{\mathbf{J} \times \mathbf{B}}{\rho} - \frac{\delta_i}{L_0} \frac{\nabla \overset{\leftrightarrow}{\rho}}{\rho} + \left(\frac{\delta_e}{L_0}\right)^2 \frac{1}{\rho} \left[\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{J}\right]$$

Generalized Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\delta_i}{L_0} \frac{\mathbf{J} \times \mathbf{B}}{\rho} - \frac{\delta_i}{L_0} \frac{\nabla \overset{\leftrightarrow}{\rho}}{\rho} + \left(\frac{\delta_e}{L_0}\right)^2 \frac{1}{\rho} \left[\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{J}\right]$$

Resistivity

- Hall effect
- Electron pressure
- Electron inertia

Generalized Ohm's Law

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\delta_i}{L_0} \frac{\mathbf{J} \times \mathbf{B}}{\rho} - \frac{\delta_i}{L_0} \frac{\nabla \overset{\leftrightarrow}{\rho}}{\rho} + \left(\frac{\delta_e}{L_0}\right)^2 \frac{1}{\rho} \left[\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{J}\right]$$

Resistivity

Hall effect

Electron pressure

Electron inertia

J is the electric current given by Ampère's law

$$\mathbf{J} =
abla imes \mathbf{B}$$

X.Qian, J.Bablás, A. Bhattacharjee, H.Yang (2009)

Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

- Generalized Ohm law
- Ampère's law
- $\blacksquare \stackrel{\leftrightarrow}{p}$ isotropic.

Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Generalized Ohm law

- Ampère's law
- **\overrightarrow{p}** isotropic.

Are combined to obtain

$$\frac{\partial}{\partial t} \left[\mathbf{B} + \left(\frac{\delta_{\mathbf{e}}}{L_0}\right)^2 \frac{1}{\rho} \nabla \times (\nabla \times \mathbf{B}) \right] = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times (\nabla \times \mathbf{B}) \\ - \left(\frac{\delta_{\mathbf{e}}}{L_0}\right)^2 \frac{1}{\rho} \nabla \times ((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B})) - \frac{\delta_l}{L_0} \frac{1}{\rho} \nabla \times ((\nabla \times \mathbf{B}) \times \mathbf{B})$$

.....

Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Generalized Ohm law

- Ampère's law
- **\overrightarrow{p}** isotropic.

Are combined to obtain

$$\frac{\partial}{\partial t} \left[\mathbf{B} + \left(\frac{\delta_{\mathbf{e}}}{L_0}\right)^2 \frac{1}{\rho} \nabla \times (\nabla \times \mathbf{B}) \right] = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times (\nabla \times \mathbf{B}) \\ - \left(\frac{\delta_{\mathbf{e}}}{L_0}\right)^2 \frac{1}{\rho} \nabla \times ((\mathbf{u} \cdot \nabla)(\nabla \times \mathbf{B})) - \frac{\delta_l}{L_0} \frac{1}{\rho} \nabla \times ((\nabla \times \mathbf{B}) \times \mathbf{B})$$

This equation preserve the divergence of the magnetic field

$$rac{d}{dt}(
abla\cdot {f B})=0$$

Symmetrized Equation

Using the identity

 $\nabla \times (\mathbf{u} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{u} - \mathbf{B}(\nabla \cdot \mathbf{u}) + \mathbf{u}(\nabla \cdot \mathbf{B}) - (\mathbf{u} \cdot \nabla)\mathbf{B}$

Symmetrized Equation

Using the identity

$$abla imes (\mathbf{u} imes \mathbf{B}) = (\mathbf{B} \cdot
abla) \mathbf{u} - \mathbf{B} (
abla \cdot \mathbf{u}) + \mathbf{u} (
abla \cdot \mathbf{B}) - (\mathbf{u} \cdot
abla) \mathbf{B}$$

Since the magnetic field is solenoidal $\nabla \cdot \mathbf{B} = 0$ we subtract $\mathbf{u}(\nabla \cdot \mathbf{B})$ to the right side of the equation

$$\frac{\partial}{\partial t} \left[\mathbf{B} + \left(\frac{\delta_{\mathbf{e}}}{L_0} \right)^2 \nabla \times (\nabla \times \mathbf{B}) \right] = (\mathbf{B} \cdot \nabla) \mathbf{u} - \mathbf{B} (\nabla \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{B} - \eta \nabla \times (\nabla \times \mathbf{B}) \\
- \left(\frac{\delta_{\mathbf{e}}}{L_0} \right)^2 \frac{1}{\rho} \nabla \times ((\mathbf{u} \cdot \nabla) (\nabla \times \mathbf{B})) - \frac{\delta_i}{L_0} \frac{1}{\rho} \nabla \times ((\nabla \times \mathbf{B}) \times \mathbf{B}) \quad (1)$$

$$\begin{split} \Omega \subset \mathbb{R}^3 \text{ is a smooth domain} \\ \partial \Omega_{in} &= \{ \textbf{x} \in \partial \Omega | \textbf{n} \cdot \textbf{u} < 0 \} \text{ is the inflow boundary.} \end{split}$$

Natural BC

$$\eta(\mathbf{B} \times \mathbf{n}) = 0 \quad \text{on } \partial\Omega \setminus \partial\Omega_{in} \tag{2}$$

Inflow BC

$$\mathbf{B} = 0 \quad \text{on } \partial\Omega_{in}$$

$$\delta_i \mathbf{J} = 0 \quad \text{on } \partial\Omega_{in} \tag{3}$$

Estimate

Theorem

For $\mathbf{u} \in C^2(\Omega)$ and **B** solution of (1) satisfying (2) and (3), then this estimate holds

$$\frac{d}{dt} \left(\|\mathbf{B}\|_{L^{2}(\Omega)}^{2} + \left(\frac{\delta_{\mathbf{e}}}{L_{0}}\right)^{2} \frac{1}{\rho} \|\nabla \times \mathbf{B}\|_{L^{2}(\Omega)}^{2} \right) \\
\leq C_{1} \left(\|\mathbf{B}\|_{L^{2}(\Omega)}^{2} + \left(\frac{\delta_{\mathbf{e}}}{L_{0}}\right)^{2} \frac{1}{\rho} \|\nabla \times \mathbf{B}\|_{L^{2}(\Omega)}^{2} \right) \tag{4}$$

with C_1 a constant that depend on **u** and its derivative only.

System of Equations with Auxiliary Variables

$$\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} + \mathbb{U}_{1}\mathbf{B} + (\mathbf{u}\nabla)\mathbf{B} &= -\eta\nabla\times\mathbf{J} - \alpha\nabla\times\tilde{\mathbf{E}}_{1} - \beta\nabla\times\tilde{\mathbf{E}}_{2} \\ \mathbf{J} &= \nabla\times\mathbf{B} \\ \tilde{\mathbf{E}}_{1} &= \mathbf{J}\times\mathbf{B} \\ \tilde{\mathbf{E}}_{2} &= (\frac{\partial \mathbf{J}}{\partial t} + (\mathbf{u}\nabla)\mathbf{J}) \end{aligned}$$

Boundary Condition:

$$\eta(\mathbf{B} \times \mathbf{n}) = 0 \quad \text{on } \partial\Omega$$
$$\mathbf{B} = G_1 \quad \text{on } \partial\Omega_{in}$$
$$\beta \mathbf{J} = G_2 \quad \text{on } \partial\Omega_{in}.$$

$$\mathbb{U}_1$$
 depends on $rac{\partial u_i}{\partial x_j}$, $lpha=rac{\delta_i}{L_0
ho}$ and $eta=rac{\delta_e^2}{L_0^2
ho}$

Define

$$(v, w)_{\mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} \int_K v(x) w(x) \, dx$$
$$\langle v, w \rangle_{\mathsf{Faces}} = \sum_{f \in \mathsf{Faces}} \int_e v(x) w(x) \, ds$$

where T_h a triangulation of Ω . Faces can be

- $\blacksquare \mathcal{F}_h$ set of faces in \mathcal{T}_h .
- $\blacksquare \mathcal{F}_h^{\mathcal{I}}$ set of inner faces in \mathcal{T}_h .
- \square Γ_h set of boundary faces in \mathcal{T}_h .
- \square Γ_h^+ set of outflow boundary faces in \mathcal{T}_h .
- \square Γ_h^- set of inflow faces boundary in \mathcal{T}_h .

To have unique valued on faces we define:

- averages {.}
- normal jumps [.]_N
- tangential jumps [[.]]_T

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Find
$$\mathbf{B}_{h}, \mathbf{E}_{h}, \mathbf{J}_{h} \in \mathcal{V}_{h}$$

 $\left(\frac{\partial \mathbf{B}_{h}}{\partial t} + \mathbb{U}_{2}\mathbf{B}_{h}, \bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} - \left(\mathbf{B}_{h}, (u\nabla)\bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} + \eta \left(\mathbf{J}_{h}, \nabla \times \bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}}$
 $+ \alpha \left(\tilde{\mathbf{E}}_{h,1}, \nabla \times \bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} + \beta \left(\tilde{\mathbf{E}}_{h,2}, \nabla \times \bar{\mathbf{B}}_{h}\right)_{\mathcal{T}_{h}} + \sum_{i} \langle \mathbf{u} B^{i}_{h}, [\![\bar{B}^{i}_{h}]\!]_{N} \rangle_{\Gamma_{h}^{+} \cup \mathcal{F}_{h}^{\mathcal{I}}}$
 $- \eta \langle \mathbf{J}_{h}, \bar{\mathbf{B}}_{h} \rangle_{\mathcal{F}_{h}} - \alpha \langle \widetilde{\mathbf{E}}_{h,1}, \bar{\mathbf{B}}_{h} \rangle_{\mathcal{F}_{h}} - \beta \langle \widetilde{\mathbf{E}}_{h,2}, \bar{\mathbf{B}}_{h} \rangle_{\mathcal{F}_{h}} = -\langle (\mathbf{u} \cdot \mathbf{n}) \mathbf{G}_{1}, \bar{\mathbf{B}}_{h} \rangle_{\Gamma_{h}^{-}}$
 $\forall \bar{\mathbf{B}}_{h} \in \mathcal{V}_{h}$
 $\left(\mathbf{J}_{h}, \bar{\mathbf{E}}_{h}\right)_{\mathcal{T}_{h}} - \left(\mathbf{B}_{h}, \nabla \times \bar{\mathbf{E}}_{h}\right)_{\mathcal{T}_{h}} + \langle \mathbf{B}_{h}, [\![\bar{\mathbf{E}}_{h}]\!]_{\mathcal{T}} \rangle_{\mathcal{F}_{h}^{\mathcal{I}}} = 0$
 $\forall \bar{\mathbf{E}}_{h} \in \mathcal{V}_{h}$
 $\left(\tilde{\mathbf{E}}_{h,1} - \mathbf{J}_{h} \times \mathbf{B}_{h}, \bar{\mathbf{J}}_{h}\right)_{\mathcal{T}_{h}} = 0$
 $\langle \bar{\mathbf{E}}_{h,2} + (\nabla \cdot \mathbf{u}) \mathbf{J}_{h} - \frac{\partial \mathbf{J}_{h}}{\partial t}, \bar{\mathbf{J}}_{h} \rangle_{\mathcal{T}_{h}} + \left(\mathbf{B}_{h}, (\mathbf{u}\nabla) \bar{\mathbf{J}}_{h}\right)_{\mathcal{T}_{h}} - \sum_{i} \langle \mathbf{u} \mathbf{J}_{h}^{i}, [\![\bar{\mathbf{J}}_{h}^{i}]]_{N} \rangle_{\Gamma_{h}^{+} \cup \mathcal{F}_{h}^{\mathcal{I}}}$
 $= -\langle (\mathbf{u} \cdot \mathbf{n}) \mathbf{G}_{2}, \bar{\mathbf{J}}_{h} \rangle_{\Gamma_{h}^{-}}$

DG Fluxes

LDG:

$$\begin{split} \widehat{\mathbf{B}_{h}} &= \{\mathbf{B}_{h}\} + \mathfrak{b}[\![\mathbf{B}_{h}]\!]_{T} \\ \widehat{\mathbf{J}_{h}} &= \begin{cases} \{\mathbf{J}_{h}\} - \mathfrak{b}[\![\mathbf{J}_{h}]\!]_{T} + \mathfrak{a}^{0}[\![\mathbf{B}_{h}]\!]_{T} & \text{internal edges} \\ \{\mathbf{J}_{h}\} + \mathfrak{a}^{0}[\![\mathbf{B}_{h}]\!]_{T} & \text{boundary edges} \end{cases} \\ \widehat{\mathbf{E}_{h,i}} &= \begin{cases} \{\mathbf{E}_{h,i}\} - \mathfrak{b}[\![\mathbf{E}_{h,i}]\!]_{T} + \mathfrak{a}^{i}[\![\mathbf{B}_{h}]\!]_{T} & \text{internal edges} \\ \{\mathbf{E}_{h,i}\} + \mathfrak{a}^{i}[\![\mathbf{B}_{h}]\!]_{T} & \text{boundary edges} \end{cases} \end{split}$$

I.Perugia, D. Schötzau (2002)

Upwind:

$$\widehat{\mathbf{u}B_h^i} = \{\mathbf{u}B_h^i\} + \mathfrak{c}\llbracket B_h^i \rrbracket_N$$
$$\widehat{\mathbf{u}J_h^i} = \{\mathbf{u}J_h^i\} + \mathfrak{c}\llbracket J_h^j \rrbracket_N$$

with $\mathfrak{c} = |\mathbf{n}\mathbf{u}|/2$.

Upwind:

$$\widehat{\mathbf{u}B_h^i} = \{\mathbf{u}B_h^i\} + \mathfrak{c}\llbracket B_h^i \rrbracket_N$$
$$\widehat{\mathbf{u}J_h^i} = \{\mathbf{u}J_h^i\} + \mathfrak{c}\llbracket J_h^j \rrbracket_N$$

with $\mathfrak{c} = |\mathbf{nu}|/2$.

Figure: In the case the flux $\mathbf{u}B_h^i$ will be $\mathbf{u}B_{h,left}^i$.

With this Fluxes \Rightarrow Discrete Energy estimate.

1D Model

$$\partial_t b + u \partial_x b - \eta \partial_{xx} b - \beta (\partial_{xxt} b + \partial_x (u \partial_{xx} b)) = 0$$
 in (0, 1).

With boundary conditions

$$\begin{split} b(0,t) &= b(1,t) = 0,\\ \beta \partial_x b(0,t) &= g_l(t) \quad \text{when } v(0,t) > 0,\\ \beta \partial_x b(1,t) &= g_r(t) \quad \text{when } v(1,t) < 0. \end{split}$$

\Rightarrow Energy Estimate.

Auxiliary variables

$$\partial_t b + u \partial_x b - \eta \partial_x j - \beta \partial_x e = 0$$

$$j = \partial_x b$$

$$e = \partial_t j + u \partial_x j$$

Build DG Formulation (as for the Vector Equation)

- Use Upwind fluxes for Advection Part.
- Use LDG fluxes for the diffusive part.
- Matrix Formulation (Semi-discrete).
- Eliminate Auxiliary Variables.

-

$$(\mathbb{M} - \beta \mathbb{W}(\mathfrak{b}))\mathbf{b}_t = -(\eta \mathfrak{a}^0 + \beta \mathfrak{a}^1) \mathbb{Q}\mathbf{b} + \eta \mathbb{W}(\mathfrak{b})\mathbf{b} + \mathbb{Z}(\mathfrak{c})\mathbf{b} - \tilde{\mathbb{Z}}(\mathfrak{c})\mathbf{b}$$

Mass Matrix
"Laplace Parts"
"Advection Parts"

$$(\mathbb{M} - \beta \mathbb{W}(\mathfrak{b}))\mathbf{b}_t = -(\eta \mathfrak{a}^0 + \beta \mathfrak{a}^1) \mathbb{Q} \mathbf{b} + \eta \mathbb{W}(\mathfrak{b})\mathbf{b} + \mathbb{Z}(\mathfrak{c})\mathbf{b} - \tilde{\mathbb{Z}}(\mathfrak{c})\mathbf{b}$$

- Mass Matrix
- "Laplace Parts"
- "Advection Parts"

Implicit-Explicit Time Discretization:

$$(\mathbb{M} - \beta \mathbb{W}) \frac{\mathbf{b}^{n+1} - \mathbf{b}^n}{\Delta t} = -(\eta \mathfrak{a}^0 + \beta \mathfrak{a}^1) \mathbb{Q} \mathbf{b}^{n+1} + \eta \mathbb{W} \mathbf{b}^{n+1} + \mathbb{Z} \mathbf{b}^n - \tilde{\mathbb{Z}} \mathbf{b}^n$$

Choosing:
$$a^1 = \frac{a^0}{\Delta t}$$

$$(\mathbb{M}-\underbrace{(\beta+\Delta t\eta)}_{:=\gamma}(\mathbb{W}-\mathfrak{a}^{0}\mathbb{Q}))\mathbf{b}^{n+1}=(\mathbb{M}-\beta\mathbb{W}+\Delta t(\mathbb{Z}-\tilde{\mathbb{Z}}))\mathbf{b}^{n}$$

 $\mathbb{A}_{\mathsf{DG}}(\gamma) := \mathbb{M} - \gamma(\mathbb{W} - \mathfrak{a}^0 \mathbb{Q})$

Choosing:
$$a^1 = \frac{a^0}{\Delta t}$$

$$(\mathbb{M}-\underbrace{(\beta+\Delta t\eta)}_{:=\gamma}(\mathbb{W}-\mathfrak{a}^{0}\mathbb{Q}))\mathbf{b}^{n+1}=(\mathbb{M}-\beta\mathbb{W}+\Delta t(\mathbb{Z}-\tilde{\mathbb{Z}}))\mathbf{b}^{n}$$

$$\mathbb{A}_{\mathsf{DG}}(\gamma) := \mathbb{M} - \gamma(\mathbb{W} - \mathfrak{a}^0\mathbb{Q})$$

- Solve $\mathbb{A}_{DG}(\gamma)\mathbf{x} = \mathbf{I}$
- $\mathbb{A}_{DG}(\gamma)$ is the DG discretization of $u \gamma \partial_{xx} u$.
- Use Conform Discretization $(\mathbb{A}_{CG}(\gamma)) \Rightarrow$ Auxiliary Space Preconditioner.

Fast Approximated Solution: Auxiliary Space

joint work with Ralf Hiptmair

```
 \begin{split} & \text{Solve } \mathbb{A}_{DG}(\gamma)\mathbf{x} = \mathbf{I}: \\ & \mathbf{x} \leftarrow \mathbf{x_0} \\ & \text{for } i \leq N_{\text{iter}} \text{ do} \\ & \mathbf{x} \leftarrow \text{Smoother}(\mathbf{x}, \mathbb{A}_{DG}, \mathbf{I}) \\ & \mathbf{r} \leftarrow \mathbf{I} - \mathbb{A}_{DG}\mathbf{x} \\ & \rho \leftarrow \mathbb{P}^\top \mathbf{r} \\ & \kappa \leftarrow \mathbb{A}_{CG}\kappa = \rho \\ & \mathbf{x} \leftarrow \mathbf{x} + \mathbb{P}\kappa \\ & \mathbf{x} \leftarrow \text{Smoother}(\mathbf{x}, \mathbb{A}_{DG}, \mathbf{I}) \\ & \text{end for} \end{split}
```

Auxiliary \mathbb{P} Prolongation operator from Conform to Discontinuous Space.

-

Numerical Tests

Advection:
$$\beta = \eta = 0$$

$$b_0(x) = \left\{ egin{array}{cc} (1-(4x^2-1))^4 & 0 \leq x < 1/2 \ 0 & 1/2 \leq x \leq 1 \end{array}
ight.$$

$$u(x) = c \Rightarrow b(x, t) = b_0(x - ct),$$

 $u(x) = cx \Rightarrow b(x, t) = b_0(xe^{-ct}).$
Heat Equation: $\beta = u = 0.$

$$b(x,t) = e^{-\pi^2 \eta t} \sin(\pi x) + \frac{1}{2} e^{-4\pi^2 \eta t} \sin(2\pi x)$$

Advection Diffusion: $\beta = 0$ and u = c

$$b(x,t)=e^{\frac{c}{2\eta}x}(e^{-\lambda_1t}\sin(\pi x)+\frac{e^{-\lambda_1t}}{2}\sin(2\pi x)+\frac{e^{-\lambda_1t}}{4}\sin(3\pi x)).$$

with
$$\lambda_k = \frac{c^2 + 4\pi^2 k^2 \eta^2}{4\eta}$$

ETH

Figure: Convergence plot for test problems, at time T = 1. The reference triangle has a slope of 2, i.e. convergence order of 2.

Forced Solution: Solving

$$\partial_t b + u \partial_x b = \eta \partial_{xx} b + \beta (\partial_{xxt} b + \partial_x (u \partial_{xx} b)) + f$$

Choose $f(x, t, \beta)$ so that

$$b(x,t) = e^{\frac{c}{2\eta}x}(e^{-\lambda_1 t}\sin(\pi x) + \frac{e^{-\lambda_1 t}}{2}\sin(2\pi x) + \frac{e^{-\lambda_1 t}}{4}\sin(3\pi x)).$$

with $\lambda_k = \frac{c^2 + 4\pi^2 k^2 \eta^2}{4\eta}$ is solution.

Figure: Convergence plot for solution of Forced Problem at T = 1. The reference triangle has a slope of 2, i.e. convergence order of 2.

Initial Data

$$b_0(x) = \left\{ egin{array}{cc} 2e^{rac{-1}{(1-(4x-2)^2)}} & 1/4 < x < 3/4 \ 0 & ext{elsewhere.} \end{array}
ight.$$

Figure: Solution for u = 3/4, $\eta = 0.1$. On the left β is 0.02 on the right 0.002.

Preconditoner

Figure: Time to obtain the solution for u = 3/4, $\eta = 0.1$, $\beta = 0.02$ and T = 0.2 with and without preconditioner.

Conclusion

- The solution of the induction equation with Hall term possesses an energy estimate.
- We can build a DG discretization which satisfies a similar estimate.
- ➡ stability granted for exact-time evolution of the discrete system.
- We presented a1D Model based on the full equations.
 - Space-time Discretization was presented.
 - Preconditioner for time evolution.
 - Numerical Examples and Test.

Conclusion

- The solution of the induction equation with Hall term possesses an energy estimate.
- We can build a DG discretization which satisfies a similar estimate.
- ➡ stability granted for exact-time evolution of the discrete system.
- We presented a1D Model based on the full equations.
 - Space-time Discretization was presented.
 - Preconditioner for time evolution.
 - Numerical Examples and Test.

Thank You!