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Euler equations

Euler equations

The governing equations are the compressible Euler equations:
ρ
ρu
ρv
E


t

+


ρu

ρu2 + p
ρuv

u(E + p)


x

+


ρv
ρuv

ρv 2 + p
v(E + p)


y

= 0, (1)

where ρ is the fluid density, u and v are the velocities, E is the total energy,
and p is the pressure.

This system is closed using the equation of state (EOS), which, for ideal gases,
reads:

E =
p

γ − 1
+
ρ

2
(u2 + v 2), γ = const. (2)

We also introduce the notation c :=
√
γp/ρ for the speed of sound, which will

be used throughout the presentation.
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Finite Difference discretization

Finite Difference discretization

We identifies different points:

internal points (red) Xjk ∈ Ω,
(j , k) ∈ I. These are the points where
we solve the problem, and for which
we write the differential equation.

Ghost points Xjk , (j , k) ∈ G.

Inactive points
Within ghost points, we distinguish between first layer (blue) L1 and second
layer (yellow) L2 : L1 ∪ L2 = G. The first layer of points is within one grid cell
from the boundary (in either direction).
The second layer is made of points within two grid points from the boundary,
which are not in the first layer.
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Finite Difference discretization

Finite Difference discretization (cont.)
Definition of the set of ODE’s

∂U

∂t
+
∂f

∂x
+
∂g

∂y
= 0

The Finite difference approximation is:

d ujk
dt

+
f̂j+ 1

2
,k − f̂j− 1

2
,k

∆x
+

ĝj,k+ 1
2
− ĝj,k− 1

2

∆y
, (j , k) ∈ I.

These equations require the computation of the fluxes, which are at interface
between internal cells, or between internal cells and first layer cells.

f̂j+ 1
2
,k = f̂ +

j+ 1
2
,k

+ f̂ −
j+ 1

2
,k

(3)

f̂ +

j+ 1
2
,k

= F̂+
j,k

(
xj+ 1

2
, yk
)
, f̂ −

j+ 1
2
,k

= F̂−
j+1,k

(
xj+ 1

2
, yk
)

(4)

ĝj,k+ 1
2

= ĝ+

j,k+ 1
2

+ ĝ−
j,k+ 1

2
(5)

ĝ+

j,k+ 1
2

= Ĝ+
j,k

(
xj , yk+ 1

2

)
, ĝ−

j,k+ 1
2

= Ĝ−
j,k+1

(
xj , yk+ 1

2

)
(6)

The four flux functions F̂±, Ĝ± have to be reconstructed in cells
(j , k) ∈ I ∪ L1 from the pointwise values:

fj,k = f (uj,k), gj,k = g(uj,k), (j , k) ∈ I ∪ G.
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Boundary treatment of Euler equations

Boundary treatment of Euler equations: Condition on the velocity

Let us denote by un = u · n and uτ = u · τ respectively the normal and
tangential velocity. The condition on the normal velocity is simply:

un = 0 on ∂Ω (7)

The condition on the tangential velocity is

∂uτ
∂n

= uτ k (8)

and it can be obtained in the following two manners.

n

τ

Ω

Figure: Locally convex
boundary k < 0.

n

τ

Ω
Figure: Locally concave
boundary k > 0.
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Boundary treatment of Euler equations

By imposing that the vorticity is zero.
This means imposing that∮

Γ

u · d l = 0

for each closed circuit Γ.

R+dR

R

Supposing that the uτ is constants along the arcs, we obtain:∮
Γ

u · d l = (R + ∆R) uτ |R+∆R − R uτ |R = 0. (9)

For Taylor we have:

uτ |R+∆R = uτ |R −
∂uτ
∂n

∆R +O(∆R2).

Plugging it into (9) and neglecting O(∆R2) terms, we obtain:

∂uτ
∂n

=
1

R
uτ |R .
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Boundary treatment of Euler equations

By imposing that the normal derivative of the total enthalpy is zero on the

boundary. Let us recall that the enthalpy is h =
1

2
u2 + e +

p

ρ
, where

e = e(ρ, p) =
p

(γ − 1)ρ
is the internal energy. The condition reads:

0 =
∂h

∂n
= u · ∂u

∂n
+

(
1

γ − 1
+ 1

)(
∂p

∂n

1

ρ
− p

ρ2

∂ρ

∂n

)
.

Using the boundary conditions on density and pressure (which will be
explained later) and the fact that u = uττ on the boundary, we obtain:

0 =
∂uτ
∂n

uτ +
γ

γ − 1

∂p

∂n

(
1

ρ
− p

c2
s ρ2

)
=
∂uτ
∂n

uτ −
γ

γ − 1
k u2

τ

(
1− p

c2
s ρ

)
where c2

s is the square of the speed sound. For a polytropic gas we have
c2
s = γp/ρ. Therefore:

0 =
∂uτ
∂n

uτ − k u2
τ =⇒ ∂uτ

∂n
= k uτ .
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Boundary treatment of Euler equations

Condition on the pressure

The equation of motion for a fluid particle (balance of momentum) for Euler
equations reads:

ρ
Du

Dt
+∇p = 0 (10)

where D/Dt = ∂/∂t + u · ∇ denotes the Lagrangian derivative.
Along the boundary of the domain, the velocity vector can be defined as
follows:

u = uττ

It is therefore:
Du

Dt
=

Duτ
Dt

τ + uτ
Dτ

Dt
= aττ + u2

τ k n (11)

where k denotes the curvature. The sign of k is negative for locally convex
regions, and positive for locally concave regions, and aτ denotes the tangential
acceleration of the fluid. By projecting Eq. (10) on the normal direction, and
making use of (11), one obtain the boundary condition on the pressure:

∂p

∂n
= −ρ u2

τ k.
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Boundary treatment of Euler equations

Condition on the density

Finally, the condition on the density is given by the requirement that the
boundary is adiabatic:

∂p

∂n
= c2

s
∂ρ

∂n
.
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Discretization of the boundary conditions

Discretization of the boundary conditions
We write a linear equation for each unknown of the system, i.e. for each vx(G),
vy (G), p(G), ρ(G), where G ∈ G is a ghost point. In details: let G be a ghost
point. We compute the projection point B on the interface:

B ≡ (xB , yB) = G − φ(G)nG = G − φ(G)

(
∇φ
|∇φ|

)∣∣∣∣
G

.

Let us define two 3× 3 stencils: St
(I )
G (blue) and St

(II )
G (red).

G

BΩ
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Discretization of the boundary conditions

Let us recall the boundary conditions we want to use in order to extrapolate u,
p, ρ in ghost points:

un = 0 (12)

∂uτ
∂n
− uτ k = 0 (13)

∂p

∂n
= −ρ k u2 (14)

∂ρ

∂n
=

1

c2
s

∂p

∂n
(15)

Let us denote by L[ω; St] the biquadratic interpolant of ω in the stencil St.
The four linear equations for the ghost point G are:

L[un; St
(I )
G ](B) = 0 (16)

∂L[uτ ;St
(I )
G ](B)

∂n
− L[uτ ; St

(I )
G ](B) k = 0 (17)

∂L[p; St
(I )
G ](B)

∂n
= −ρ k

(
L[uτ ; St

(II )
G ](B)

)2

(18)

∂L[ρ; St
(I )
G ](B)

∂n
=

1

c2
s

∂L[p; St
(II )
G ](B)

∂n
(19)
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Discretization of the boundary conditions

The linear system is solved by an iterative scheme. In particular, we transform
the system of the boundary conditions into a time dependent problem with a
fictitious time τ :

∂un
∂τ

+ un = 0 (20)

∂uτ
∂τ

+ µ1
∂uτ
∂n

= µ1uτ k (21)

∂p

∂p
+ µ2

∂p

∂n
= −µ2ρ k u2 (22)

∂ρ

∂ρ
+ µ3

∂ρ

∂n
= µ3

1

c2
s

∂p

∂n
(23)

where µi , i = 1, 2, 3 are suitable constants.
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Discretization of the boundary conditions

Treatment of moving boundaries

Let us assume that the normal boundary velocity is given by a function
V (x, t). Such a function can be easily computed, for example, in the case in
which the distance function is known analytically, as is the case of the motion
of a rigid body: if φ (x, t) is a signed distance function, then one has

∂φ

∂t
+ V |∇φ| = 0⇒ V (x, t) = −∂φ

∂t
.

In the case of a moving boundary, the boundary conditions on ∂Ω for the
velocity (i.e. (7) and (8)) become:

un = V (24)

∂uτ
∂n

= uτ k. (25)
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Discretization of the boundary conditions

The condition for the pressure is obtained as follows. The velocity of the fluid
on the boundary is given by:

u = uττ + Vn. (26)

From the equation of motion, one has:

ρ
Du

Dt
+∇p = 0.

Projecting this relation along the normal to the line, one has:

−∂p
∂n

= ρ
Du

Dt
· n.

Differentiating (26) along the trajectory, taking the scalar product with n,

considering that τ · n = 0 and
Dn

Dt
· n = 0, one has:

−1

ρ

∂p

∂n
= uτn · Dτ

Dt
+

DV

Dt

Furthermore,

Dτ

Dt
=

∂τ

∂t
+ u · ∇τ =

∂τ

∂t
+ uτ

∂τ

∂τ
=
∂τ

∂t
+ uτ k n

which gives

− 1

ρ

∂p

∂n
= n · ∂τ

∂t
uτ + u2

τ k +
DV

Dt
. (27)
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Preliminar numerical tests

Numerical tests: Moving Shock- Steady Ball
All the numerical tests are taken from:

Chertock, A., Kurganov, A., A simple Eulerian finite-volume method for
compressible fluids in domains with moving boundaries, Commun. Math.
Sci., Volume no. 6 (2008), 531-556.

We consider a flow generated by a right moving vertical shock, initially
positioned at x = 0.25:

(ρ(x , y , 0), u(x , y , 0), v(x , y , 0), p(x , y , 0)) =

{
(4/3, 35/99, 0, 1.5), x < 0.25,
(1, 0, 0, 1), x ≥ 0.25.
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Preliminar numerical tests
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Figure: Top: Finite-Volume; bottom: finite-difference.
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Preliminar numerical tests

Validation of the BC for uτ :
∂uτ
∂n

= 0
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Preliminar numerical tests

Validation of the BC for uτ :
∂uτ
∂n

= uτ k
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Preliminar numerical tests

No Shock - Slow-Moving Ball
In this example, the ball moves periodically up and down with a small
amplitude (A = 0,B = 0.01, ω = 10π):

xc(0) = 0, ẋc(t) = A ω cos(ω t),

yc(0) = 0, ẏc(t) = B ω cos(ω t),

and it is placed in an initially steady flow with

ρ(x , y , 0) ≡ p(x , y , 0) ≡ 1, u(x , y , 0) ≡ v(x , y , 0) ≡ 0.

Figure: Finite-volume.
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Figure: Finite-difference.
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Preliminar numerical tests

No Shock - Vertically Moving Ball
We now consider the same setting as in the previous example, but with 10
times larger and faster ball oscillations (A = 0,B = 0.1).
Top: finite-volume; Bottom: finite-difference.
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