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Hyperbolic explicit-Parabolic linearly implicit methods
Outline

∂tu + ∂x f (u) = ∂xxp(u), (x , t) ∈ [a,b]× [0,T ]

+ boundary conditions and initial datum
p(u) non linear, Lipschitz continuous, possibly degenerate (p′(u) = 0)

Nonlinear convection-diffusion equation

Explicit time integration:
I Very accurate, high order schemes, non linear reconstructions
I Computationally expensive: ∆t ≤ ch2

Implicit time integration:
I Parabolic equation is unconditionally stable
I Require non linear iterative solvers, converge for “small” ∆t

Numerical approaches for the parabolic term
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Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Parabolic non linear equation
Semi discrete scheme

I Avoid parabolic stability constraints, only ∆t ≤ ch
I Avoid to solve non linear implicit problems
I Develop high order schemes for smooth solutions
I Be accurate where solution is non smooth

Goals

Non linear Chernoff formula based schemes 1
qn = p(un)/ξ

qn+1 = qn + ∆t∂xxξqn+1

un+1 = un + qn+1 − qn

Stability is proved under condition ξ ≥ Lp
Poor accuracy, first order scheme

Linear implicit

1Berger, A.; Brezis, H. Rogers, J. A numerical method for solving the problem
ut − ∆f (u) = 0 RAIRO numerical analysis, 1979, 13, 297-312

3 / 17



Non linearity
Brezis scheme

Example p(u) = u3

very inaccurate
near degeneracy

inaccurate

Solution: more local1 2 3 form of ξ, in particular near degeneracy

1Jäger, W.; Kaĉur J., Solution of porous medium type systems by linear
approximation schemes, Numer. Math. (1991) 60: 407–427

2Pop, I.S.; Yong, W. A., A numerical approach to degenerate parabolic equations
Numer. Math. (2002) 92: 357–381

3Slodiĉka, M., Approximation of a nonlinear degenerate parabolic equation via a
linear relaxation scheme, Numerical Methods for Partial Differential Equations (2005)
Vol 21 Issue 2 191–212
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Accuracy
Locally corrected scheme

ξ = p′(un) : in general we do not have a stable scheme
Correction: we consider

ξ(un
h) = min (p′(un

h) + α(un
h),Lp)

with α(un
h) ≥ 0, for example

α ξ
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Convection Diffusion problem
First order modified

Explicit convection Linear implicit diffusion
qn =

p(un)

ξ(un)
qn+1 + ∆t∂x f (un) = qn + ∆t∂xx (ξ(un)qn+1)

un+1 = un + qn+1 − qn

I Linearly implicit: no iterative methods for non linear problems
I Accurate, generalizable to higher order IMEX schemes1

IMEX(1,1,1) scheme

1Ascher U.; Ruuth S.; Spiteri R., Implicit-explicit Runge-Kutta methods for
time-dependent partial differential equations, Applied Numerical Mathematics (1997)
Vol 25 Issue 2–3 151–167
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Space discretization


qn

i =
p(un

i )

ξ(un
i )

qn+1
i + ∆t(Dhun

h)i = qn
i + ∆t(Lhξ(un

h)qn+1
h )i

un+1
i = un

i + qn+1
i − qn

i

Fully discrete

Lh : discrete operator approximating ∂xx
Dh : discrete operator approximating ∂x f , for example

(Dhuh)i ≈ (∂x (f (u)))i ≈
F̂i+1/2(uh)− F̂i−1/2(uh)

h

where F̂ is a numerical flux, we can use non linear reconstructions
(ENO scheme)

Finite difference operators
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Analysis of first order scheme

We have the following results for convex p(u)

I The method is consistent with the problem
I Each system involved is non-singular for α ≥ 0

Consistency

I we can find α = C for which the scheme is stable if the
hyperbolic problem is stable (parabolic problem is unconditionally
stable in maximum norm, i.e. if ‖un‖∞ ≤ M then ‖un+1‖∞ ≤ M).

I If the analytical solution is sufficiently smooth on [a,b]× [tn, tn+1]
then C = c∆t ;

I C is bounded from above uniformly for ∆t ,h→ 0

Stability
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High Order accuracy
IMEX scheme

s stage implicit s + 1 stage explicit

0 0 0 · · · 0
c1 ã2,1 0 · · · 0
...

...
...

. . .
...

cs−1 ãs,1 ãs,2 · · · 0
b̃1 b̃2 · · · b̃s

c1 a1,1 0 · · · 0
c2 a2,1 a2,2 · · · 0
...

...
...

. . .
...

cs as,1 a2,s · · · as,s

b1 b2 · · · bs

IMEX(s,s + 1,p) scheme



qn
h =

p(un
h )

ξ(un
h )
, q(0)

h = qn
h , u(0)

h = un
h

For i=1,. . . ,s

q(i)
h = qn

h + ∆t
i∑

k=1

ai,jLh(ξ(un
h )q(j)

h )−∆t
i−1∑
j=0

ãi+1,j+1Dh(u(j)
h )

u(i)
h = un

h + q(i)
h − qn

h

qn+1
h = qn

h + ∆t
s∑

i=1

biLh(ξ(un
h )q(i)

h )−∆t
s∑

i=0

b̃i+1Dh(u(i)
h )

un+1
h = un

h + qn+1
h − qn

h

High order scheme
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Analysis of high order schemes

If we use an IMEX method of order r ≥ 2, if the solution is sufficiently
smooth, then the consistency error of the scheme is 2 provided that
α(un

h) = O(∆t).
Stability in the general case has yet to be proved
However, for both regular and non regular solutions the estimates
given in the first order case seem reliable for higher order cases: for
smooth solutions we can find C = O(∆t) and obtain a “stable” and
second order accurate scheme.

Accuracy

10 / 17



Numerical tests
Convergence


∂tu + ∂x (u2) = ∂xxu3 (x , t) ∈ [−3/2,3/2]× [0,0.01]

u(x ,0) = cos2(
π

2
x)χ[−1,1] x ∈ [−3/2,3/2]

u(±1, t) = 0 t ∈ [0,0.01];

u(x ,0.01) ∈ C2(−3/2,3/2)

Burger + Porous media

IMEX(1,1,1) IMEX(2,3,2) IMEX(3,4,3)
N E1 r E1 r E1 r
10 1.86e-01 1.86e-01 1.86e-01
30 2.25e-02 1.92 8.25e-03 2.84 6.14e-03 3.11
90 6.98e-03 1.07 6.61e-04 2.30 2.72e-04 2.84

270 2.04e-03 1.12 5.89e-05 2.20 1.15e-05 2.88
810 6.80e-04 1.00 5.90e-06 2.09 1.16e-06 2.09
2430 2.27e-04 0.99 6.32e-07 2.03 1.34e-07 1.96

Error and rates
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Numerical tests

Initial datum: step function

u(x ,0) = 5χ[−1/2,1/2]

IMEX(3,4,3) + third order spatial accuracy, N = 200

Comparison : “Exact solution”, numerical solution with non constant
ξ, numerical solution with constant ξ
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Numerical tests
Accuracy

Approximation: IMEX(2,3,2) + 2nd order spatial operators, N = 100

Comparison : “Exact solution”(-) and Numerical solution with
Chernoff modified scheme (-o), Numerical solution of non linear
scheme+Newton (-o)
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Numerical tests
Linear vs. non linear

Smooth solution Non-smooth solution

Corrected Chernoff scheme (-) and Non-linear scheme (- -),
IMEX(1,1,1), IMEX(2,3,2), IMEX(3,4,3)
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Numerical tests
Non convex diffusion

Non convex convection f (u) =
u2

u2 + (1− u)2

Non convex diffusion p(u) = 10−2(2u2 − 4
3

u3)

Initial datum u(x ,0) = χ[1/2,3/4]

Problem
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Conclusions and perspectives

I Developed high order schemes
I Linearly implicit
I Second order Chernoff correction
I Hyperbolic stability constraint
I Estimate of correction term α

Conclusions

I Study high order schemes
I Extend the analysis to the non convex case and refine the

estimate for α
I Study the strongly degenerate case
I Improve the choice of the time integration method
I Study mesh and method adaptivity
I Consider system of PDEs

Perspectives
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