▲□▶▲□▶▲□▶▲□▶ □ のQで

Two-waves PVM-WAF method for non-conservative systems

Manuel J. Castro Díaz¹, E.D Fernández Nieto², Gladys Narbona Reina² and Marc de la Asunción¹

 ¹ Departamento de Análisis Matemático University of Málaga (Spain)
 ² Departmento de Matemática Aplicada University of Sevilla (Spain)

Hyp 2012, Padova 25-29 June 2012

Introduction	WAF schemes	Numerical tests	Conclusions
Outline			

Introduction

- Path-conservative Roe-based schemes
- PVM methods
- WAF schemesPVM2U-WAF method

3 Numerical tests

000000	00	Numericai tests	Conclusions
Model problem			
Let us consider the	system		

$$w_t + F(w)_x + B(w) \cdot w_x = G(w)H_x, \tag{1}$$

where

- w(x,t) takes values on an open convex set $\mathcal{O} \subset \mathbb{R}^N$,
- *F* is a regular function from \mathcal{O} to \mathbb{R}^N ,
- *B* is a regular matrix function from \mathcal{O} to $\mathcal{M}_{N \times N}(\mathbb{R})$,
- *G* is a function from \mathcal{O} to \mathbb{R}^N , and
- *H* is a function from \mathbb{R} to \mathbb{R} .

By adding to (1) the equation $H_t = 0$, the system (1) can be rewritten under the form

$$W_t + \mathcal{A}(W) \cdot W_x = 0, \tag{2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where

W is the augmented vector

$$W = \left[\begin{array}{c} w\\ H \end{array}\right] \in \Omega = \mathcal{O} \times \mathbb{R} \subset \mathbb{R}^{N+1}$$

and

000000	00	Numerical tests	Conclusions
Model problem			
Let us consider the	system		

$$w_t + F(w)_x + B(w) \cdot w_x = G(w)H_x, \tag{1}$$

where

- w(x,t) takes values on an open convex set $\mathcal{O} \subset \mathbb{R}^N$,
- *F* is a regular function from \mathcal{O} to \mathbb{R}^N ,
- *B* is a regular matrix function from \mathcal{O} to $\mathcal{M}_{N \times N}(\mathbb{R})$,
- *G* is a function from \mathcal{O} to \mathbb{R}^N , and
- *H* is a function from \mathbb{R} to \mathbb{R} .

By adding to (1) the equation $H_t = 0$, the system (1) can be rewritten under the form

$$W_t + \mathcal{A}(W) \cdot W_x = 0, \tag{2}$$

where

 $\mathcal{A}(W)$ is the matrix whose block structure is given by:

$$\mathcal{A}(W) = \begin{bmatrix} A(w) & -G(w) \\ 0 & 0 \end{bmatrix},$$

where

$$A(w) = J(w) + B(w),$$
 being $J(w) = \frac{\partial F}{\partial w}(w).$

Difficulties

Main difficulties

- Non conservative products $\mathcal{A}(W) \cdot W_x$. Solutions may develop discontinuities and the concept of weak solution in the sense of distributions cannot be used. The theory introduced by DLM 1995 is used here to define the weak solutions of the system. This theory allows one to give a sense to the non conservative terms of the system as Borel measures provided a prescribed family of paths in the space of states.
- Derivation of numerical schemes for non-conservative systems: path-conservative numerical schemes (Parés 2006).
- The eigenstructure of systems like bilayer Shallow-Water system or two-phase flow model of Pitman Le are not explicitly known: PVM and/or WAF schemes.

Introduction	WAF schemes	Numerical tests	Conclusions
•••••	00		

Let us consider path-conservative numerical schemes that can be written as follows:

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(D_{i-1/2}^+ + D_{i+1/2}^- \right), \tag{3}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where

- Δx and Δt are, for simplicity, assumed to be constant;
- w_i^n is the approximation provided by the numerical scheme of the cell average of the exact solution at the *i*-th cell, $I_i = [x_{i-1/2}, x_{i+1/2}]$ at the *n*-th time level $t^n = n\Delta t$. H_i is the cell average of the function H(x).

Introduction	WAF schemes	Numerical tests	Conclusions
00000	00		

Let us consider path-conservative numerical schemes that can be written as follows:

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(D_{i-1/2}^+ + D_{i+1/2}^- \right), \tag{3}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$D_{i+1/2}^{\pm} = \frac{1}{2} \left(F(w_{i+1}) - F(w_i) + B_{i+1/2} \cdot (w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i) \right) \\ \pm Q_{i+1/2}(w_{i+1} - w_i - A_{i+1/2}^{-1}G_{i+1/2}(H_{i+1} - H_i)) \right),$$
(4)

where

• $A_{i+1/2} = J_{i+1/2} + B_{i+1/2}$. Here, $J_{i+1/2}$ is a Roe matrix of the Jacobian of the flux *F* in the usual sense:

$$J_{i+1/2} \cdot (w_{i+1} - w_i) = F(w_{i+1}) - F(w_i);$$

•
$$B_{i+1/2} \cdot (w_{i+1} - w_i) = \int_0^1 B(\Phi_w(s; W_i, W_{i+1})) \frac{\partial \Phi_w}{\partial s}(s; W_i, W_{i+1}) ds;$$

• $G_{i+1/2}(H_{i+1} - H_i) = \int_0^1 G(\Phi_w(s; W_i, W_{i+1})) \frac{\partial \Phi_H}{\partial s}(s; W_i, W_{i+1}) ds;$

• $Q_{i+1/2}$ is a numerical viscosity matrix.

Introduction	WAF schemes	Numerical tests	Conclusions
● ○ ○○○○	00		

Let us consider path-conservative numerical schemes that can be written as follows:

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(D_{i-1/2}^+ + D_{i+1/2}^- \right), \tag{3}$$

$$D_{i+1/2}^{\pm} = \frac{1}{2} \left(F(w_{i+1}) - F(w_i) + B_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i) + Q_{i+1/2}(w_{i+1} - w_i) - A_{i+1/2}^{-1}G_{i+1/2}(H_{i+1} - H_i)) \right),$$
(4)

Conservative systems

If the system is conservative and

$$\mathcal{F}_{i+1/2} = \frac{F(w_i) + F(w_{i+1})}{2} - \frac{1}{2}Q_{i+1/2}(w_{i+1} - w_i)$$

is a conservative flux, where $Q_{i+1/2}$ is defined in terms of $J_{i+1/2}$, then

$$D_{i+1/2}^- = \mathcal{F}_{i+1/2} - F(w_i)$$
 $D_{i+1/2}^+ = F(w_{i+1}) - \mathcal{F}_{i+1/2}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	WAF schemes	Numerical tests	Conclusions
●0 0000	00		

Let us consider path-conservative numerical schemes that can be written as follows:

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(D_{i-1/2}^+ + D_{i+1/2}^- \right), \tag{3}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

$$D_{i+1/2}^{\pm} = \frac{1}{2} \left(F(w_{i+1}) - F(w_i) + B_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i) + Q_{i+1/2}(w_{i+1} - w_i) - A_{i+1/2}^{-1}G_{i+1/2}(H_{i+1} - H_i) \right),$$
(4)

Different numerical schemes can be obtained for different definitions of $Q_{i+1/2}$

Introduction	WAF schemes	Numerical tests	Conclusions
00000	00		
PC-Roe-based scheme	s II		

• Roe scheme corresponds to the choice

$$Q_{i+1/2} = |A_{i+1/2}|,$$

• Lax-Friedrichs scheme:

$$Q_{i+1/2} = \frac{\Delta x}{\Delta t} Id,$$

being Id the identity matrix.

• Lax-Wendroff scheme:

$$Q_{i+1/2} = \frac{\Delta t}{\Delta x} A_{i+1/2}^2,$$

• FORCE and GFORCE schemes:

$$Q_{i+1/2} = (1-\omega)\frac{\Delta x}{\Delta t}Id + \omega\frac{\Delta t}{\Delta x}A_{i+1/2}^2,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

with $\omega = 0.5$ and $\omega = \frac{1}{1+\alpha}$, respectively, being α the CFL parameter.

Introduction	WAF schemes	Numerical tests	Conclusions
00000	00		
PVM methods			

We propose a class of finite volume methods defined by

$$Q_{i+1/2} = P_l(A_{i+1/2}),$$

being $P_l(x)$ a polynomial of degree l,

$$P_l(x) = \sum_{j=0}^l \alpha_j^{i+1/2} x^j,$$

and $A_{i+1/2}$ a Roe matrix. That is, $Q_{i+1/2}$ can be seen as a Polynomial Viscosity Matrix (PVM).

See also: P. Degond, P.F. Peyrard, G. Russo, Ph. Villedieu. *Polynomial upwind schemes for hyperbolic systems*. C. R. Acad. Sci. Paris 1 328, 479-483, 1999.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

Introduction	WAF schemes	Numerical tests	Conclusions
00000	00		
PVM methods			

We propose a class of finite volume methods defined by

$$Q_{i+1/2} = P_l(A_{i+1/2}),$$

being $P_l(x)$ a polynomial of degree l,

$$P_l(x) = \sum_{j=0}^l \alpha_j^{i+1/2} x^j,$$

and $A_{i+1/2}$ a Roe matrix. That is, $Q_{i+1/2}$ can be seen as a Polynomial Viscosity Matrix (PVM).

 $Q_{i+1/2}$ has the same eigenvectors than $A_{i+1/2}$ and if $\lambda_{i+1/2}$ is an eigenvalue of $A_{i+1/2}$, then $P_l(\lambda_{i+1/2})$ is an eigenvalue of $Q_{i+1/2}$.

Introduction	WAF schemes	Numerical tests	Conclusions
00000	00		
PVM methods			

We propose a class of finite volume methods defined by

$$Q_{i+1/2} = P_l(A_{i+1/2}),$$

being $P_l(x)$ a polynomial of degree l,

$$P_l(x) = \sum_{j=0}^l \alpha_j^{i+1/2} x^j,$$

and $A_{i+1/2}$ a Roe matrix. That is, $Q_{i+1/2}$ can be seen as a Polynomial Viscosity Matrix (PVM).

Some well-known solvers as Lax-Friedrichs, Rusanov, FORCE/GFORCE, HLL, Roe, Lax-Wendroff, ... can be recovered as PVM methods

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
PVM-1U(S_L , S_R) or HI	LL method		

$$P_1(x) = \alpha_0 + \alpha_1 x$$
 such as $P_1(S_L) = |S_L|, P_1(S_R) = |S_R|.$

$$Q_{i+1/2} = \alpha_0 Id + \alpha_1 A_{i+1/2}$$

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
PVM-1U(Sr	S_{P}) or HLL method		

The usual HLL scheme coincides with PVM-1U(S_L , S_R) in the case of conservative systems.

Let us suppose that the system is conservative. Then, the conservative flux associated to PVM-1U(S_L, S_R) is $\mathcal{F}_{i+1/2} = D_{i+1/2}^- + F(w_i)$. Taking into account that

$$\alpha_0 = \frac{S_R |S_L| - S_L |S_R|}{S_R - S_L}, \quad \alpha_1 = \frac{|S_R| - |S_L|}{S_R - S_L},$$

then

$$\mathcal{F}_{i+1/2} = \frac{F(w_i)(S_R + |S_R| - S_L - |S_L|) + F(w_{i+1})(S_R - |S_R| - S_L + |S_L|)}{2S_R - 2S_L}$$
$$-\frac{(S_R|S_L| - S_L|S_R|)(w_{i+1} - w_i)}{2S_R - 2S_L}$$
$$= \frac{S_R^+ F(w_i) - S_L^- F(w_{i+1}) + (S_R^+ S_L^-)(w_{i+1} - w_i)}{S_R^+ - S_L^-}$$

which is a compact definition of the HLL flux, being $S_R^+ = \max(S_R, 0)$ and $S_L^- = \min(S_L, 0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	WAF schemes	Numerical tests	Conclusions
00000	00		
$PVM_2U(S_L, S_D)$ meth	od		

$$P_2(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2,$$

such as

$$P_2(S_m) = |S_m|, P_2(S_M) = |S_M|, P'_2(S_M) = \operatorname{sgn}(S_M),$$

where

$$S_{M} = \begin{cases} S_{L} & \text{if } |S_{L}| \ge |S_{R}|, \\ S_{R} & \text{if } |S_{L}| < |S_{R}|. \end{cases} S_{m} = \begin{cases} S_{R} & \text{if } |S_{L}| \ge |S_{R}|, \\ S_{L} & \text{if } |S_{L}| < |S_{R}|. \end{cases}$$

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
WAE mothod			

Let us consider the following Riemann problem:

$$\begin{cases} \frac{\partial w}{\partial t} + \frac{\partial F(w)}{\partial x} = 0;\\ w(x,0) = \begin{cases} w_i & x < 0;\\ w_{i+1} & x > 0. \end{cases} \end{cases}$$

We denote by S_i for $i = 1, \dots, N$ some approximation of the characteristic velocities.

$$\mathcal{F}_{i+1/2}^{\text{WAF}} = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} F(w(x, \frac{\Delta t}{2})) dx.$$

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
WAE mothed (Tone [10	(1001)		

•
$$\omega_k = \frac{1}{2}(c_k - c_{k-1}),$$

• $c_0 = -1, c_{N+1} = 1$ and $c_l = \frac{\Delta t}{\Delta x}S_l$, for $1 \le l \le N$,

• N is the number of waves.

So, we can write the numerical flux as follows:

$$\mathcal{F}_{i+1/2}^{\text{WAF}} = rac{1}{2}(F_i + F_{i+1}) - rac{1}{2}\sum_{k=1}^N c_k \,\Delta F_{i+1/2}^{(k)},$$

where

• $F_{i+1/2}^{(k)}$ is the value of the flux function in the interval $k_{i} \rightarrow \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle$

WAF method			
000000	©	Numerical tests	Conclusions

TVD WAF method (Toro [1989])

We denote $\chi(v)$ a flux limiter function, and

$$\Psi(v,c) = 1 - (1 - |c|)\chi(v).$$

So the TVD-WAF flux function is defined by:

$$\mathcal{F}_{i+1/2}^{\text{waF}} = \frac{1}{2}(F_i + F_{i+1}) - \frac{1}{2}\sum_{k=1}^N sign(S_k)\Psi_k\,\Delta F_{i+1/2}^{(k)},$$

where

$$\Psi_k = \Psi(v^{(k)}, c_k) = 1 - (1 - |c_k|)\chi(v^{(k)}).$$

Some suitable choices for χ can be found in [Toro]. Let us consider here the Van Albada's limiter:

$$\chi(v^{(k)}) = \begin{cases} 0 & \text{if } v^{(k)} \le 0 \\ \frac{v^{(k)}(1+v^{(k)})}{1+v^{(k)^2}} & \text{if } v^{(k)} \ge 0 \end{cases}, \text{ where } v^{(k)} = \begin{cases} \frac{p_i^{(k)} - p_{i-1}^{(k)}}{p_{i+1}^{(k)} - p_i^{(k)}} & \text{if } S_k > 0 \\ \frac{p_{i+2}^{(k)} - p_{i+1}^{(k)}}{p_{i+1}^{(k)} - p_i^{(k)}} & \text{if } S_k < 0 \end{cases}$$

being $p^{(k)}$ a scalar value.

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
HLL-WAF method			

We consider now
$$N = 2$$
, $S_1 = S_L$, $S_2 = S_R$, $F_{i+1/2}^1 = F(w_i)$, $F_{i+1/2}^3 = F(w_{i+1})$ and

$$F_{i+1/2}^{(2)} = \frac{S_R F_i - S_L F_{i+1} + S_R S_L (w_{i+1} - w_i)}{S_R - S_L}$$

$$\mathcal{F}_{i+1/2}^{\text{HLL-WAF}} = \frac{1}{2} (F_i + F_{i+1}) - \frac{1}{2} (\nu_1(\chi_L, \chi_R)(w_{i+1} - w_i) + \nu_2(\chi_L, \chi_R)(F_{i+1} - F_i)) \\ - \frac{1}{2} \frac{\Delta t}{\Delta x} (\mu_1(\chi_L, \chi_R)(w_{i+1} - w_i) + \mu_2(\chi_L, \chi_R)(F_{i+1} - F_i)),$$

where

$$\nu_{1}(\chi_{L},\chi_{R}) = \frac{S_{L}S_{R}((1-\chi_{L})sgn(S_{L}) - (1-\chi_{R})sgn(S_{R}))}{S_{R} - S_{L}}$$

$$\nu_{2}(\chi_{L},\chi_{R}) = \frac{(1-\chi_{R})|S_{R}| - (1-\chi_{L})|S_{L}|}{S_{R} - S_{L}}$$

$$\mu_{1}(\chi_{L},\chi_{R}) = \frac{S_{L}S_{R}(S_{L}\chi_{L} - S_{R}\chi_{R})}{S_{R} - S_{L}}$$

$$\mu_{2}(\chi_{L},\chi_{R}) = \frac{S_{R}^{2}\chi_{R} - S_{L}^{2}\chi_{L}}{S_{R} - S_{L}}.$$

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
HLL-WAF method as a	N PVM-type method		

Then, we can rewrite the HLL-WAF method as follows:

$$\mathcal{F}_{i+1/2}^{\text{HLL-WAF}} = \frac{1}{2} (F_{i+1} + F_i) - \frac{1}{2} Q_{i+1/2}^{\text{HLL-WAF}} (w_{i+1} - w_i),$$

$$Q_{i+1/2}^{HLL-WAF}(\chi_{L},\chi_{R}) = Q_{o1,i+1/2}^{HLL-WAF}(\chi_{L},\chi_{R}) + \frac{\Delta t}{\Delta x} Q_{o2,i+1/2}^{HLL-WAF}(\chi_{L},\chi_{R})$$

with

$$\begin{aligned} Q_{o1,i+1/2}^{HLL-WAF}(\chi_L,\chi_R) &= \nu_1(\chi_L,\chi_R)I + \nu_2(\chi_L,\chi_R)A_{i+1/2} \\ Q_{o2,i+1/2}^{HLL-WAF}(\chi_L,\chi_R) &= \mu_1(\chi_L,\chi_R)I + \mu_2(\chi_L,\chi_R)A_{i+1/2}. \end{aligned}$$

That is, the usual two-waves HLL-WAF method can be seen as a non-linear combination of two PVM schemes associated to the first order polynomials:

$$P_1^{o1}(x) = \nu_1(\chi_L, \chi_R) + \nu_2(\chi_L, \chi_R)x$$
 and $P_1^{o2}(x) = \mu_1(\chi_L, \chi_R) + \mu_2(\chi_L, \chi_R)x$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Introd	lucti	
000	000	

WAF schemes

Numerical tests

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

HLL-WAF method as a PVM-type method

Introduction	WAF schemes	Numerical tests	Conclusio
000000	00		

HLL-WAF method as a PVM-type method

Remarks

For systems with N=2. If $S_1 = \lambda_{1,i+1/2}$ and $S_2 = \lambda_{2,i+1/2}$ being $\lambda_{j,i+1/2}$ the eigenvalues of Roe matrix, then

- HLL-WAF method coincides with Lax-Wendroff method if ($\chi_L = \chi_R = 1$). For N > 2 it is not true!
- HLL-WAF method coincides with HLL if $(\chi_L = \chi_R = 0)$ $(N \ge 2)$.

Introduction	WAF schemes	Numerical tests	Concl
000000	00		

HLL-WAF method as a PVM-type method

sions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Objective

We want to define a new two-wave WAF method so that coincides with Lax-Wendroff for N > 2 if $\chi_L = \chi_R = 1$

Introduction

WAF schemes ●○ Numerical tests

Conclusions

Two-waves PVM2U-WAF methods

We consider

$$\mathcal{F}_{i+1/2}^{2U-FL} = \frac{F_i + F_{i+1}}{2} - \frac{1}{2} \mathcal{Q}_{i+1/2}^{2U-FL}(\chi_L, \chi_R)(w_{i+1} - w_i),$$

where $Q_{i+1/2}^{2U-FL}(\chi_L,\chi_R)$ is defined as follows:

$$Q_{i+1/2}^{2U-FL}(\chi_L,\chi_R) = Q_{o1,i+1/2}^{2U-FL}(\chi_L,\chi_R) + \frac{\Delta t}{\Delta x} Q_{o2,i+1/2}^{2U-FL}(\chi_L,\chi_R),$$

with

$$Q_{o1,i+1/2}^{2U-FL}(\chi_L,\chi_R) = \frac{\operatorname{sgn}(S_L)(1-\chi_L) + \operatorname{sgn}(S_R)(1-\chi_R)}{2} A_{i+1/2}$$

+
$$\frac{\operatorname{sgn}(S_R)(1-\chi_R)}{2}P_{2,\alpha_R}(A_{i+1/2}) - \frac{\operatorname{sgn}(S_L)(1-\chi_L)}{2}P_{2,\alpha_L}(A_{i+1/2}),$$

and

$$Q_{o2,i+1/2}^{2U-FL}(\chi_L,\chi_R) = \frac{S_L\chi_L + S_R\chi_R}{2} A_{i+1/2} + \frac{S_R\chi_R}{2} P_{2,\alpha_R}(A_{i+1/2}) - \frac{S_L\chi_L}{2} P_{2,\alpha_L}(A_{i+1/2}),$$

where

$$\alpha_K = 1 - (1 - \chi_K)(1 - \alpha), \quad K = L, R$$

$$\alpha = \frac{(S_R - S_L)sgn(S_M) - (S_R + S_L)}{4S_M - 2(S_L + S_R)},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction

WAF schemes ●○ Numerical tests

Conclusions

Two-waves PVM2U-WAF methods

We consider

$$\mathcal{F}_{i+1/2}^{2U\text{-}FL} = \frac{F_i + F_{i+1}}{2} - \frac{1}{2} \mathcal{Q}_{i+1/2}^{2U-FL}(\chi_L, \chi_R)(w_{i+1} - w_i),$$

where $Q_{i+1/2}^{2U-FL}(\chi_L,\chi_R)$ is defined as follows:

$$Q_{i+1/2}^{2U-FL}(\chi_L,\chi_R) = Q_{o1,i+1/2}^{2U-FL}(\chi_L,\chi_R) + \frac{\Delta t}{\Delta x} Q_{o2,i+1/2}^{2U-FL}(\chi_L,\chi_R),$$

with

$$Q_{o1,i+1/2}^{2U-FL}(\chi_L,\chi_R) = \frac{\operatorname{sgn}(S_L)(1-\chi_L) + \operatorname{sgn}(S_R)(1-\chi_R)}{2} A_{i+1/2}$$

+
$$\frac{\operatorname{sgn}(S_R)(1-\chi_R)}{2}P_{2,\alpha_R}(A_{i+1/2}) - \frac{\operatorname{sgn}(S_L)(1-\chi_L)}{2}P_{2,\alpha_L}(A_{i+1/2}),$$

and

$$Q_{o2,i+1/2}^{2U-FL}(\chi_L,\chi_R) = \frac{S_L\chi_L + S_R\chi_R}{2} A_{i+1/2} + \frac{S_R\chi_R}{2} P_{2,\alpha_R}(A_{i+1/2}) - \frac{S_L\chi_L}{2} P_{2,\alpha_L}(A_{i+1/2}),$$

$$P_{2,\alpha}(x) = \alpha P_{2M}(x) + (1 - \alpha)P_{1M}(x),$$

and

$$P_{1M}(x) = \frac{-2S_R S_L}{S_R - S_L} + \frac{S_R + S_L}{S_R - S_L} x.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
Two-wave PVM_2U_W	A F method		

Properties

- Only uses the information of the two fastest waves.
- If N = 2 it coindices with the usual HLL-WAF scheme.
- If $\chi_L = \chi_R = 0$, then we recover the PVM-2U first order scheme for $N \ge 2$.

• If $\chi_L = \chi_R = 1$, then scheme reduces to Lax-Wendroff scheme for $N \ge 2$.

Introduction	WAF schemes	Numerical tests	Conclusions
	0		
Two-wave PVM-2U-W	AF method		

Remark

A natural extension to balance laws and non-conservative system is straightforward:

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} (D_{i-1/2}^+ + D_{i+1/2}^-),$$

with

$$D_{i+1/2}^{\pm} = \frac{1}{2} \left(F(w_{i+1}) - F(w_i) + B_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i) \right)$$

$$\pm Q_{i+1/2}(w_{i+1} - w_i - A_{i+1/2}^{-1}G_{i+1/2}(H_{i+1} - H_i)) \right),$$

being

$$Q_{i+1/2} = Q_{i+1/2}^{2U-FL}(\chi_L,\chi_R)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

But it is not second order.

 Introduction
 WAF schemes
 Numerical tests
 Conclusions

 000000
 0

Two-wave PVM-2U-WAF method

To recover the second order, new terms appear in the Lax-Wendroff scheme due to the non-conservative products and source terms (see Castro, Pares & Toro Math. Comp. 2010):

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(D_{i-1/2}^+ + D_{i+1/2}^- \right) + \frac{\Delta t^2}{4\Delta x^2} \left(\mathcal{R}(\chi_L, \chi_R)_{i-1/2}^n + \mathcal{R}(\chi_L, \chi_R)_{i+1/2}^n \right)$$

with

$$\begin{aligned} \mathcal{R}(\chi_L,\chi_R)_{i+1/2}^n &= \frac{1}{2} \left(\begin{array}{c} \chi_L DA(W_i) [A_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i), w_{i+1} - w_i] \\ &+ \chi_R DA(W_{i+1}) [A_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i), w_{i+1} - w_i] \\ &- \chi_L DA(W_i) [w_{i+1} - w_i, A_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i)] \\ &- \chi_R DA(W_{i+1}) [w_{i+1} - w_i, A_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i)] \\ &- \chi_L G_w(w_i) (A_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i)) (H_{i+1} - H_i) \\ &- \chi_R G_w(w_{i+1}) (A_{i+1/2}(w_{i+1} - w_i) - G_{i+1/2}(H_{i+1} - H_i)) (H_{i+1} - H_i) \end{aligned} \end{aligned}$$

being $DA(W)[U, V] = \left(\sum_{l=1}^{N} u_l \partial_{w_l} A(W)\right) V$ and $\partial_{w_l} A(W)$ is the $N \times N$ matrix whose (i, j) element is $\partial_{w_l} a_{ij}(W)$. $G_w(w)$ denotes the Jacobian matrix of G(w).

Introduction	WAF schemes	Numerical tests	Conclusions
A # 1.14			

Multilayer shallow water system

$$\begin{cases} \partial_t h_j + \partial_x q_j = 0, \\ \\ \partial_t q_j + \partial_x \left(\frac{q_j^2}{h_j} + \frac{1}{2}gh_j^2\right) + gh_j \partial_x (z_b + \sum_{k>j} h_k + \sum_{k< j} \frac{\rho_k}{\rho_j} h_k) = 0. \end{cases} \qquad j = 1, \dots, m,$$

where *m* is the number of layers, h_j , j = 1, ..., m are the fluid depths, $q_j = h_j u_j$ are the discharges, u_j are the velocites and $z_b(x)$ is the topography. *g* is the gravity constant and ρ_j the densisites of the stratified fluid layers, with

$$0 < \rho_1 < \cdots < \rho_m$$

We use the Van Albada's limiter with a smooth indicator of the fluid interfaces. Total energy of the system provides also good results.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
1LSW: Stationary subc	ritical solution over bun	np	

• *I* = [0, 20].

•
$$z_b(x) = 0.2e^{-0.16(x-10)^2}$$

• Boundary conditions: q(0,t) = 4.42 and h(20,t) = 2.0

• $\Delta x = 1/20.$

•
$$cfl = 0.9$$
.

Nodes	L^1 err h	L^1 order h	$L^1 \operatorname{err} q$	L^1 order q
20	1.58×10^{-3}	-	5.02×10^{-3}	-
40	5.07×10^{-4}	1.646	1.21×10^{-3}	2.0513
80	1.3×10^{-4}	1.967	3.04×10^{-4}	1.9965
160	3.2×10^{-5}	1.995	7.6×10^{-5}	1.9985
320	9×10^{-6}	1.904	1.9×10^{-5}	1.9987

Table: Errors and order. Subcritical stationary solution.

Introduction	WAF schemes	Numerical tests	Conclusions
1LSW: Order of accura	acy		

- I = [0, 1], T = 0.1.
- $z_b(x) = \operatorname{sen}^2(\pi x)$.
- Initial condition: $h(x, 0) = 5 + e^{\cos(2\pi x)}, \quad q(x, 0) = \sin(\cos(2\pi x)),$
- CFL = 0.8.
- Reference solution computed with ROE scheme with $\Delta x = 1/12800$.

Nodes	$L^1 \operatorname{err} h$	L^1 order h	$L^1 \operatorname{err} q$	L^1 order q
25	2.802×10^{-2}	-	3.14×10^{-1}	-
50	1.021×10^{-2}	1.45	9.702×10^{-2}	1.69
100	3.228×10^{-3}	1.66	2.677×10^{-2}	1.85
200	9.15×10^{-4}	1.81	6.594×10^{-3}	2.02
400	2.53×10^{-4}	1.85	1.553×10^{-3}	2.08
800	6.45×10^{-5}	1.97	3.78×10^{-4}	2.02

Table: Errors and order.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
11 SW stationary trans	pritical flow with a shock		

- *I* = [0, 20]
- bottom topography:

$$z_b(x) = \begin{cases} 0.2 - 0.05(x - 10)^2 & 8 < x < 12\\ 0 & otherwise \end{cases}$$

٠

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Initial condition

$$h(x, 0) = 0.33 - z_b, q(x, 0) = 0.$$

- Boundary conditions: q = 0.18 at x=0 and h = 0.33 at x = 20
- $\Delta x = 1/10$ and *CFL* = 0.9.
- Concerning CPU time similar results are obtained for Roe solver and PVM-2U WAF method.

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		

1LSW stationary transcritical flow with a shock

Introduction	WAF scheme	Numerical tests	Conclusions
000000	00		
AT 0777 T			

2LSW: Internal dam break problem.

• *I* = [0, 10].

•
$$zb(x) = 0$$

• Initial condition:

$$\begin{aligned} q_1(x,0) &= q_2(x,0) = 0, \quad \forall x \in [0,10], \\ h_1(x,0) &= \begin{cases} 0.9 & \text{if } x < 5, \\ 0.1 & \text{if } x \ge 5, \end{cases} \\ h_2(x,0) &= 1.0 - h_1(x,0) \quad \forall x \in [0,10]. \end{aligned}$$

- Open boundary conditions
- $\Delta x = 1/20.$
- A reference solution is computed Roe scheme with $\Delta x = 1/200$.
- *r* = 0.99,
- cfl = 0.9.
- Concerning CPU time PVM-2U-WAF method is 2.8 times faster than Roe and similar to original HLL-WAF scheme.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
2I SW. Internal dam br	eak problem		

Figure: Internal dam break: free surface and interface at t = 20 seg.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
2I SW: Stationary trans	critical flow with an inte	rnal shock	

- *I* = [0, 10]
- Bottom topography:

$$z_b(x) = 0.5e^{(x-5)^2}$$

• Initial condition: $q_1(x, 0) = q_2(x, 0) = 0$. and

$$h_1(x,0) = \begin{cases} 0.48 & \text{if } x < 5, \\ 0.5 & \text{if } x \ge 5, \end{cases} \quad h_2(x,0) = 1 - h_1(x,0) - z_b(x),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $\rho_1/\rho_2 = 0.99$.
- Free boundary conditions.
- *CFL* = 0.9, $\Delta x = 1/20$. Reference solution computed with $\Delta x = 1/200$.

Introduction

WAF schemes

Numerical tests

Conclusions

2LSW: Stationary transcritical flow with an internal shock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	WAF schemes	Numerical tests	Conclusions
4LSW: Internal dam bi	reaks.		

- *I* = [0, 10]
- Bottom topography:

$$z_b(x) = 0.0$$

• Initial condition: $q_i(x, 0) = 0, i = 1, ..., 4$ and

$$h_1(x,0) = \begin{cases} 0.9 & \text{if } x < 5, \\ 0.1 & \text{if } x \ge 5, \end{cases}$$

$$h_2(x,0) = 1 - h_1(x,0), \quad h_3(x,0) = h_1(x,0), \quad h_4(x,0) = h_2(x,0)$$

•
$$\rho_1/\rho_4 = 0.85, \rho_2/\rho_4 = 0.9, \rho_3/\rho_4 = 0.95$$

- Free boundary conditions.
- *CFL* = 0.9, $\Delta x = 1/20$. Reference solution computed with $\Delta x = 1/200$.
- Concerning CPU time PVM-2U-WAF method is 9.8 times faster than Roe and similar to original HLL-WAF scheme.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		

4LSW: Internal dam breaks.

Figure: Internal dam breaks: free surface and interfaces at t = 5 seg.

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
2D 1LSW: Circular dam break			

- $D = [-2, 2] \times [-2, 2]$
- Bottom topography:

$$zb(x,y) = 0.8 e^{-x^2 - y^2}$$

• Initial condition: $q_x(x, y, 0) = q_y(x, y, 0) = 0$ and

$$h(x, y, 0) = \begin{cases} 1 - zb(x, y) + 0.5 & \text{if } \sqrt{x^2 + y^2} < 0.5\\ 1 - zb(x, y) & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Wall boundary conditions

•
$$\Delta x = \Delta y = 1/100, CFL = 0.9$$

- Three implementations are considered: first and second order HLL and PVM-2U-WAF method.
- Algorithms implemented on GPUs: speedups of more than 200 for the three numerical schemes,
- The extension by the method of lines of 1D PVM-2U-WAF method to multidimensional problems is NOT second order accurate.

	WAF schemes	Numerical tests	Conclusions
2D 1LSW: Circular dat	m break		

(a) PVM-2U WAF t = 1.0 s

Figure: 2D circular dam break: free surface at t = 1 seg.

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
2D 1LSW: Circular dam break			

(a) PVM-2U WAF t = 1.0 s

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Figure: 2D circular dam break: free surface at t = 1 seg.

Introduction	WAF schemes	Numerical tests	Conclusions
000000	00		
2D 1LSW: Circular dar	n break		

(a) PVM-2U WAF t = 2.0 s

(b) HLL t = 2.0 s

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Figure: 2D circular dam break: free surface at t = 1 seg.

Introduct	ion
00000	

WAF schemes

Numerical tests

Conclusions

2D 1LSW: Circular dam break

(a) PVM-2U WAF t = 2.0 s

(b) Second order HLL t = 2.0 s

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Figure: 2D circular dam break: free surface at t = 2 seg.

Introduction 000000	WAF schemes 00	Numerical tests	Conclusions
Conclusions			

Conclusions

- The original two-wave HLL-WAF method can be seen as a PVM-based flux-limiting scheme.
- A new two-wave WAF method that ensured second order of accuracy for N > 2 is defined using PVM framework.
- It can be applied to conservative, balance laws and non-conservative systems.
- Its performance increases with the complexity of the system. It can be 10 times faster than Roe solver for the 1D 4LSW.
- Extension to 2D that preserves second order accuracy: comming soon, it is NOT straight forward.

▲□▶▲□▶▲□▶▲□▶ □ のQで