Finite volume formulation

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Sac

An adaptive finite-volume method for a model of two-phase pedestrian flow

Stefan Berres

Departamento de Ciencias Matemáticas y Físicas Universidad Católica de Temuco

Padova, June 2012

Μ	o	tiv	a	tio	n
~		~	-	~	

Finite volume formulation

・ロト ・ 四ト ・ 日ト ・ 日ト

э

Sac

Numerical examples

Outline

Motivation

- Elliptic region
- Polydisperse suspensions
- Bidisperse suspension
- Symmetric case $\delta = 1, \gamma = -1$
- 2 Two dimensional pedestrian model
 - Modelling
 - Model of Huges
- Finite volume formulation
 - A finite-volume formulation
 - Multiresolution setting

Numerical examples

- Example 1: Flow towards exit targets
- Example 2: Battle of Agincourt
- Example 3: Countercurrent flow in a long channel
- Example 4: Countercurrent flow
- Example 5: Perpendicular flow with different velocity functions
- Example 6: Effect of diffusion and cross-diffusion

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

Elliptic region

Systems with elliptic region

We examine initial value problems for first-order systems

$$\partial_t \phi_1 + \partial_x f_1(\phi_1, \phi_2) = \mathbf{0},$$

$$\partial_t \phi_2 + \partial_x f_2(\phi_1, \phi_2) = \mathbf{0},$$
(1.1)

by applying multi-resolution schemes. We recall that the system (1.1) is called *hyperbolic* at a point (ϕ_1, ϕ_2) if the Jacobian \mathcal{J}_f of the flux vector $\mathbf{f} = (f_1, f_2)^{\mathrm{T}}$,

$$\mathcal{J}_{\mathbf{f}} = \begin{bmatrix} \frac{\partial f_1}{\partial \phi_1} & \frac{\partial f_1}{\partial \phi_2} \\ \frac{\partial f_2}{\partial \phi_1} & \frac{\partial f_2}{\partial \phi_2} \end{bmatrix} =: \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$

has real eigenvalues, i.e., if the discriminant

$$\Delta(\phi_1,\phi_2) := \left((J_{11} - J_{22})^2 + 4J_{12}J_{21} \right) (\phi_1,\phi_2) \tag{1.2}$$

is positive, and *strictly hyperbolic* if these eigenvalues are moreover distinct. If $\mathcal{J}_f(\phi_1, \phi_2)$ has a pair of complex conjugate eigenvalues (i.e., $\Delta(\phi_1, \phi_2) < 0$), then (1.1) is called *elliptic* at that point. The set of all elliptic points is called *elliptic* region.

Μ	ot	iv	ation	
0		0	00	

Finite volume formulation

Numerical examples

Polydisperse suspensions

Sedimentation of polydisperse suspensions

Vector of unknows: solids concentrations

$$\Phi = (\phi_1, \phi_2, \dots, \phi_N) \tag{1.3}$$

Cumulative solids fraction $\phi := \phi_1 + \cdots + \phi_N$, Hindered settling factor V(0) = 1, $V'(\phi) \le 0$, V(1) = 0, e.g.

$$V(\phi) = \begin{cases} (1-\phi)^{n-2} & \text{if } \Phi \in \mathcal{D}_{\phi_{\max}}, \\ 0 & \text{otherwise,} \end{cases} \quad n > 2.$$
(1.4)

Phase velocity of particle species i

$$v_i(\Phi) = \mu V(\phi) \left[d_i^2(\varrho_i - \varrho(\Phi)) - \sum_{m=1}^N d_m^2 \phi_m(\varrho_m - \varrho(\Phi)) \right], \quad i = 1, \dots, N.$$
(1.5)

One-dimensional batch settling of a suspension

$$\partial_t \Phi + \partial_x \mathbf{f}(\Phi) = 0, \quad x \in (0, L), \quad t > 0,$$

$$\mathbf{f}(\Phi) = (f_1(\Phi), \dots, f_N(\Phi))^{\mathrm{T}}, \quad f_i(\Phi) = \phi_i v_i(\Phi), \quad i = 1, \dots, N,$$

(1.6)

Initial and zero-flux boundary conditions

$$\Phi(x,0) = \Phi_0(x), \quad x \in [0,L], \qquad f|_{x=0} = f|_{x=L} = 0. \tag{1.7}$$

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Bidisperse suspension

Model of bidisperse suspension

For case N = 2, it is convenient to introduce the parameter $\gamma := \overline{\varrho}_2/\overline{\varrho}_1 = (\varrho_2 - \varrho_r)/(\varrho_1 - \varrho_r)$, and we set $\delta := \delta_2 = d_1^2/d_2^2$.

$$f_1(\phi_1,\phi_2) = \phi_1 V(\phi_1 + \phi_2) \Big((1 - \phi_1)(1 - \phi_1 - \gamma \phi_2) - \delta \phi_2 \big((1 - \phi_2)\gamma - \phi_1 \big) \Big),$$

$$f_2(\phi_1,\phi_2) = \phi_2 V(\phi_1 + \phi_2) \Big(\delta (1 - \phi_2) \big((1 - \phi_2)\gamma - \phi_1 \big) - \phi_1 (1 - \phi_1 - \gamma \phi_2) \Big).$$

with $\delta \in (0, 1]$ and hindered settling factor $V(\phi) \ge 0$, $V'(\phi) < 0$ on $[0, \phi_{max})$

Motivation	Two dimensional pedestrian model	Finite volume formulation	Nume
00000	000	000	0000
Symmetric case $\delta =$	$= 1, \gamma = -1$		

Symmetric case $\delta = 1, \gamma = -1$ (B., Bürger, Kozakevicius 2009)

For the symmetric case, where $\delta = 1, \gamma = -1$, there are tangents on the axes $\phi_1 = 0$ and $\phi_2 = 0$ in

$$\phi_1 = \phi_2 = \frac{1}{2} \pm \frac{\sqrt{n^2 - 8n}}{2n}.$$
(1.8)

Depending on *n*, on the axes we have

٩

rical examples

Motivation	Two dimensional pedestrian model
0000	000
Symmetric case $\delta=1,\gamma=$	= -1

Case *n* = 8

Finite volume formulation

٩

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical examples

M	otivation	
0	0000	

Finite volume formulation

1

Sac

Numerical examples

Outline

Motivation

- Elliptic region
- Polydisperse suspensions
- Bidisperse suspension
- Symmetric case $\delta = 1, \gamma = -1$

Two dimensional pedestrian model

- Modelling
- Model of Huges

3 Finite volume formulation

- A finite-volume formulation
- Multiresolution setting

Numerical examples

- Example 1: Flow towards exit targets
- Example 2: Battle of Agincourt
- Example 3: Countercurrent flow in a long channel
- Example 4: Countercurrent flow
- Example 5: Perpendicular flow with different velocity functions
- Example 6: Effect of diffusion and cross-diffusion

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

うして 山田 マイボマ エリア しょう

Modelling

Two dimensional pedestrian model

• Simulation models for *vehicular traffic* have a more or less one-dimensional character as cars move in lanes on streets allowing cross-directional flow only at distinct crossing points.

• A special property of the Bick-Newell model

$$u_t + (u(1 - u - \beta v))_x = 0,$$

$$v_t + (-v(1 - \beta u - v))_x = 0,$$
(2.1)

is that its phase space contains an elliptic region.

• Pedestrian flow allows a genuine spatial structure: pedestrian movement can be directed principally to any direction and it is strongly influenced by human behavior. Therefore, simulation models for pedestrian traffic are twodimensional, having the form

$$\boldsymbol{u}_t + \boldsymbol{f}(\boldsymbol{u})_x + \boldsymbol{g}(\boldsymbol{u})_y = \boldsymbol{0},$$

where f and g are the fluxes in x and y directions, respectively.

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

Modelling

Two-dimensional model

The fluxes *f*, *g* in

$$\boldsymbol{u}_t + \boldsymbol{f}(\boldsymbol{u})_x + \boldsymbol{g}(\boldsymbol{u})_y = 0,$$

are composed by a total flux ${\bf h}$ and a direction contribution, which distributes the total local flow of a species as

$$f_{1}(u, v; x, y) = h_{1}(u, v)d_{1}^{x}(x, y), \quad g_{1}(u, v; x, y) = h_{1}(u, v)d_{1}^{y}(x, y),$$

$$f_{2}(u, v; x, y) = h_{2}(u, v)d_{2}^{x}(x, y), \quad g_{2}(u, v; x, y) = h_{2}(u, v)d_{2}^{y}(x, y).$$
(2.2)

The directions can be formally put into a direction matrix

$$D = \begin{pmatrix} d_1^{\mathrm{x}}(x,y) & d_1^{\mathrm{y}}(x,y) \\ d_2^{\mathrm{x}}(x,y) & d_2^{\mathrm{y}}(x,y) \end{pmatrix} = \begin{pmatrix} \boldsymbol{d}_1(\boldsymbol{x}) \\ \boldsymbol{d}_2(\boldsymbol{x}) \end{pmatrix} = \begin{pmatrix} \boldsymbol{d}^{\mathrm{x}}(\boldsymbol{x}) & | & \boldsymbol{d}^{\mathrm{y}}(\boldsymbol{x}) \end{pmatrix},$$

where the subscripts (1 or 2) denote the species and the superscripts (x or y) denote the direction component. E.g., $d_1^{y}(x, y)$ denotes that fraction of the flux of species 1 that flows in the y direction.

Motivation	Two dimensional pedestrian model	Finite volume formulation
Model of Huges		
Model of	Hughes	

The model of Hughes specifies the directions

$$\mathbf{d}_1(\mathbf{x}) = \begin{pmatrix} d_1^x(x,y) & d_1^y(x,y) \end{pmatrix}, \qquad \mathbf{d}_2(\mathbf{x}) = \begin{pmatrix} d_2^x(x,y) & d_2^y(x,y) \end{pmatrix},$$

Numerical examples

・ロト・日本・日本・日本・日本・日本

employing the potentials ϕ,ψ associated with phases 1 and 2, respectively, as

$$\begin{split} & \boldsymbol{d}_1^{\boldsymbol{x}}(\boldsymbol{x},\boldsymbol{y}) = \frac{\phi_{\boldsymbol{x}}}{\|\nabla\phi\|_2}, \quad \boldsymbol{d}_1^{\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y}) = \frac{\phi_{\boldsymbol{y}}}{\|\nabla\phi\|_2}, \\ & \boldsymbol{d}_2^{\boldsymbol{x}}(\boldsymbol{x},\boldsymbol{y}) = \frac{\psi_{\boldsymbol{x}}}{\|\nabla\psi\|_2}, \quad \boldsymbol{d}_2^{\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y}) = \frac{\psi_{\boldsymbol{y}}}{\|\nabla\psi\|_2}, \end{split}$$

where the gradient norms are

$$\|\nabla \phi\|_2 = \sqrt{\phi_x^2 + \phi_y^2}, \qquad \|\nabla \psi\|_2 = \sqrt{\psi_x^2 + \psi_y^2}$$

M	otivatio	1
0	0000	

Finite volume formulation

э

Sac

Numerical examples

Outline

Motivation

- Elliptic region
- Polydisperse suspensions
- Bidisperse suspension
- Symmetric case $\delta = 1, \gamma = -1$
- 2 Two dimensional pedestrian model
 - Modelling
 - Model of Huges

Finite volume formulation

- A finite-volume formulation
- Multiresolution setting

Numerical examples

- Example 1: Flow towards exit targets
- Example 2: Battle of Agincourt
- Example 3: Countercurrent flow in a long channel
- Example 4: Countercurrent flow
- Example 5: Perpendicular flow with different velocity functions
- Example 6: Effect of diffusion and cross-diffusion

Two dimensional pedestrian model

Finite volume formulation ●○○ Numerical examples

・ロット (雪) ・ (目) ・ (日)

A finite-volume formulation

Finite volume formulation

Let $\mathcal{T}^0 \subset \cdots \mathcal{T}^\ell \cdots \subset \mathcal{T}^H$ be a family of nested admissible rectangular meshes. Denote the cell averages of u, v on $\mathcal{K}^\ell \in \mathcal{T}^\ell$ at time $t = t^n$ by

$$u_{K^{\ell}}^{n}:=\frac{1}{|K^{\ell}|}\int_{K^{\ell}}u(x,t^{n})\,dx,\quad v_{K^{\ell}}^{n}:=\frac{1}{|K^{\ell}|}\int_{K^{\ell}}v(x,t^{n})\,dx.$$

The resulting finite-volume scheme approximation defined on the resolution level ℓ , assumes values $u_{K^{\ell}}^{n}$ and $v_{K^{\ell}}^{n}$ for all $K^{\ell} \in \mathcal{T}^{\ell}$ at time $t = t^{n}$ and determines $u_{K^{\ell}}^{n+1}$ and $v_{K^{\ell}}^{n+1}$ for all $K^{\ell} \in \mathcal{T}^{\ell}$ at time $t = t^{n+1} = t^{n} + \Delta t$ by the marching formula and using a standard finite-volume approach, the system is discretized as

$$|\mathcal{K}^{\ell}| \frac{\boldsymbol{u}_{\mathcal{K}^{\ell}}^{n+1} - \boldsymbol{u}_{\mathcal{K}^{\ell}}^{n}}{\Delta t} - \sum_{\sigma \in \mathcal{E}_{int}(\mathcal{K}^{\ell})} \frac{|\sigma(\mathcal{K}^{\ell}, L^{\ell})|}{d(\mathcal{K}^{\ell}, L^{\ell})} \Big(\boldsymbol{F}(\boldsymbol{u}_{\mathcal{K}^{\ell}}^{n}, \boldsymbol{u}_{L^{\ell}}; \bar{\boldsymbol{x}}(\mathcal{K}^{\ell}, L^{\ell}); \boldsymbol{n}(\mathcal{K}^{\ell}, L^{\ell})) \cdot \boldsymbol{n}(\mathcal{K}^{\ell}, L^{\ell}) + \boldsymbol{n}(\mathcal{K}^{\ell}, L^{\ell}) + \frac{\boldsymbol{b}(\boldsymbol{u}_{\mathcal{L}^{\ell}}^{n}) + \boldsymbol{b}(\boldsymbol{u}_{\mathcal{K}^{\ell}}^{n})}{2} (\boldsymbol{u}_{\mathcal{L}^{\ell}}^{n} - \boldsymbol{u}_{\mathcal{K}^{\ell}}^{n}) \Big),$$

$$(3.1)$$

where $\mathbf{n}(K^{\ell}, L^{\ell}) = (n_1(K^{\ell}, L^{\ell}), n_2(K^{\ell}, L^{\ell}))^{\mathrm{T}}$ is the outer normal vector of cell K^{ℓ} pointing towards L^{ℓ} . such that

Motivation	Two dimensional pedestrian model	Finite volume formulation ○●○	Numerical examples
A finite-volume form	nulation		
Numerica	al flux		

As numerical flux, we choose the local Lax-Friedrichs flux, which is defined as

$$\begin{split} \mathbf{f}(\mathbf{u}_{K^{\ell}}^{n},\mathbf{u}_{L^{\ell}}^{n};\bar{\mathbf{x}}) &= \frac{\mathbf{f}(\mathbf{u}_{K^{\ell}}^{n};\bar{\mathbf{x}}) + \mathbf{f}(\mathbf{u}_{L^{\ell}}^{n};\bar{\mathbf{x}})}{2} - \frac{\mathbf{a}^{\mathrm{x}}(K^{\ell},L^{\ell})}{2}(\mathbf{u}_{K^{\ell}}^{n} - \mathbf{u}_{L^{\ell}}^{n}),\\ \mathbf{g}(\mathbf{u}_{K^{\ell}}^{n},\mathbf{u}_{L^{\ell}}^{n};\bar{\mathbf{x}}) &= \frac{\mathbf{g}(\mathbf{u}_{K^{\ell}}^{n};\bar{\mathbf{x}}) + \mathbf{g}(\mathbf{u}_{L^{\ell}}^{n};\bar{\mathbf{x}})}{2} - \frac{\mathbf{a}^{\mathrm{y}}(K^{\ell},L^{\ell})}{2}(\mathbf{u}_{K^{\ell}}^{n} - \mathbf{u}_{L^{\ell}}^{n}), \end{split}$$

where we used the abbrevation $\bar{x} = \bar{x}(K^{\ell}, L^{\ell})$. The coefficients a^x, a^y are determined as the maximum spectral radius on the cell interface

$$\begin{aligned} \mathbf{a}^{\mathsf{x}}(\mathbf{K}^{\ell}, \mathbf{L}^{\ell}) &= \max(\varrho(f'(\mathbf{u}_{\mathbf{K}^{\ell}}^{n})), \varrho(f'(\mathbf{u}_{\mathbf{L}^{\ell}}^{n}))), \\ \mathbf{a}^{\mathsf{y}}(\mathbf{K}^{\ell}, \mathbf{L}^{\ell}) &= \max(\varrho(g'(\mathbf{u}_{\mathbf{K}^{\ell}}^{n})), \varrho(g'(\mathbf{u}_{\mathbf{L}^{\ell}}^{n}))), \end{aligned}$$

or upper estimates of that radius; here, the flux Jacobians $f'(\mathbf{u}_{K^{\ell}})$, $g'(\mathbf{u}_{K^{\ell}})$ are evaluated for the solution value $\mathbf{u}_{K^{\ell}}$ and $\varrho(f'(\mathbf{u}_{K^{\ell}}))$, $\varrho(g'(\mathbf{u}_{K^{\ell}}))$ are the corresponding spectral radii. The point $\bar{\mathbf{x}}(K^{\ell}, L^{\ell})$ is the position of the interface between the cells K^{ℓ} and L^{ℓ} .

Two dimensional pedestrian model

Finite volume formulation

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

500

Numerical examples

Multiresolution setting

Multiresolution setting

Figure : Sketch of a graded tree structure. Here K^{ℓ} is a parent node on level $\ell = H - 1$, its children nodes (including $S^{\ell+1}$) belong to $\mathcal{L}(\Lambda)$; L^{ℓ} is a virtual node and $T^{\ell+1}$ is a virtual leaf.

M	otivation	
0	0000	

Finite volume formulation

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

1

Sac

Numerical examples

Outline

Motivation

- Elliptic region
- Polydisperse suspensions
- Bidisperse suspension
- Symmetric case $\delta = 1, \gamma = -1$

Two dimensional pedestrian model

- Modelling
- Model of Huges
- Finite volume formulation
 - A finite-volume formulation
 - Multiresolution setting

Numerical examples

- Example 1: Flow towards exit targets
- Example 2: Battle of Agincourt
- Example 3: Countercurrent flow in a long channel
- Example 4: Countercurrent flow
- Example 5: Perpendicular flow with different velocity functions
- Example 6: Effect of diffusion and cross-diffusion

Finite volume formulation

Numerical examples

Numerical examples (B., Ruiz-Baier, Schwandt, Tory (2011))

In the numerical examples, the convection coefficients are normalized to $a_1 = a_2 = 1$. The diffusion matrix is assumed to be constant taking the form

$$\mathbf{b}(\boldsymbol{u}) = \begin{pmatrix} \varepsilon & \delta \\ \delta & \varepsilon \end{pmatrix}$$
(4.1)

うして 山田 マイボマ エリア しょう

with self-diffusion rate ε and cross-diffusion rate δ . The cross-diffusion rate δ is assumed to vanish in all examples, except the last one. If not otherwise specified, in the numerical examples we set the velocity function to V(u, v) = 1 - u - v, the domain to $\Omega = [-1, 1]^2$, and on the boundary we impose absorbing boundary conditions.

Μ	oti	vati	on
0	oc	00)

Finite volume formulation

ヘロト 人間ト 人間ト 人間ト

Numerical examples

ъ

590

Example 1: Flow towards exit targets

Example 1

Figure : Example 1. Species' densities u (top) and v (bottom) at times t = 2.0, t = 4.0, and t = 18.0.

٩

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

Example 2: Battle of Agincourt

The initial data are set to (0,0) all over the domain $\Omega = [-1,1] \times [-1,1]$. The two populations enter the domain through doors of width *w*, which for the test case is specified to be w = 0.1. The two inlets are positioned at $\{-1\} \times [-1, -1 + w]$ and $\{-1\} \times [1 - w, 1]$. The entrance flow is specified by Neumann boundary conditions as

$$f_1(\boldsymbol{u}; \boldsymbol{x}) = f_{SW} \text{ for } \boldsymbol{x} \in \{-1\} \times [-1, -1 + w], \\ f_2(\boldsymbol{u}; \boldsymbol{x}) = f_{NW} \text{ for } \boldsymbol{x} \in \{-1\} \times [1 - w, 1], \end{cases}$$

with $f_{NW} = f_{SW} = 0.5$. The exit fluxes are defined at the outlets $\{1\} \times [1 - w, 1]$ and $\{1\} \times [-1, -1 + w]$ as

$$f_1(\boldsymbol{u}; \boldsymbol{x}) = up, \ f_2(\boldsymbol{u}; \boldsymbol{x}) = 0 \quad \text{for} \quad \boldsymbol{x} \in \{1\} \times [-1, -1 + w], \\ f_2(\boldsymbol{u}; \boldsymbol{x}) = vq, \ f_1(\boldsymbol{u}; \boldsymbol{x}) = 0, \quad \text{for} \quad \boldsymbol{x} \in \{1\} \times [1 - w, 1], \end{cases}$$

with p = q = 1. Moreover $a_1 = a_2 = 1$, $\varepsilon = 0.01$, $\delta = 0$. The crowd dynamics are oriented towards exit targets which are located in the centers of the respective exit doors and are located at $(x_1, y_1) = (1, 1 - w/2)$, $(x_2, y_2) = (1, -1 + w/2)$. The directions towards the targets (exit points) (x_1, y_1) , (x_2, y_2) for species 1 and 2, respectively, are given by

$$\boldsymbol{d}_i(\boldsymbol{x}) = \frac{\tilde{\boldsymbol{d}}_i(\boldsymbol{x})}{\|\tilde{\boldsymbol{d}}_i(\boldsymbol{x})\|_2}, \quad \tilde{\boldsymbol{d}}_i(\boldsymbol{x}) = \begin{pmatrix} x - x_i & y - y_i \end{pmatrix}, \quad i = 1, 2.$$

Motivation	Two dimensional pedestrian model	Finite volume formulation	Numerical examples
Example 2: Battle of	of Agincourt		
Example	2		

Species' densities u (left), v (right), and corresponding phase diagram where the elliptic region is depicted, for times t = 0.1 (top), t = 0.5 (center) and t = 1.5 (bottom).

200

Motivation	Two dimensional pedestrian model	Finite volume formulation	Numerical examples
Example 2: Battle o	f Agincourt		
Example	2		

Example 2 gives an account of the Battle of Agincourt, 1415, a relatively well documented medieval war. The flow is assumed to be in opposite directions

$$\boldsymbol{d}_1(\boldsymbol{x}) = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \boldsymbol{d}_2(\boldsymbol{x}) = \begin{pmatrix} -1 & 0 \end{pmatrix}.$$

For this countercurrent flow, the governing equations are specified as

$$u_t + (u(1-u-v))_x = \varepsilon \Delta u, \qquad v_t - (v(1-u-v))_x = \varepsilon \Delta v.$$

The boundary conditions are absorbing. Introducing the zig-zag curve

$$z(y) = 4A\left(\left|Fy - \lfloor Fy \rfloor - \frac{1}{2}\right| - \frac{1}{4}\right),$$

where $\lfloor \cdot \rfloor$ gives the next lower integer, the domain $\Omega = \Omega_u \cup \Omega_v$ is splitted as

$$\Omega_u = \{-1 \le x \le z(y), \ 0 \le y \le 2\}, \quad \Omega_v = \{z(y) < x \le 1, \ 0 \le y \le 2\},$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The initial conditions are constant in each subdomain, with small perturbations.

Two dimensional pedestrian model

Finite volume formulation

◆□▶ ◆□▶ ◆注▶ ◆注▶

Numerical examples

590

Þ

Example 3: Countercurrent flow in a long channel

Example 3

Figure : Example 3. Species' densities u, v at times t = 2, t = 4, t = 8.

Motivation	Two dimensional pedestrian model	Finite volume formulation	Numerical example	
00000	000	000	0000000000	
Example 3: Countercurrent flow in a long channel				

Example 3

In Example 3, the domain is specified to be a long channel having the domain $\Omega = [-5,5] \times [-1,1]$. The parameters are set to $a_1 = a_2 = 1$, $\varepsilon = 2.5 \times 10^{-3}$, $\delta = 0$. Initially, the domain is assumed to be empty with $u(\mathbf{x}, t = 0) = v(\mathbf{x}, t = 0) = 0$ for all $\mathbf{x} \in \Omega$. Both populations move in opposite directions

$$\boldsymbol{d}_1(\boldsymbol{x}) = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \boldsymbol{d}_2(\boldsymbol{x}) = \begin{pmatrix} -1 & 0 \end{pmatrix},$$

such that they are expected to meet somewhere in the middle. The two populations access the domain at two opposite edges; at the left and right edges of the domain, an inflow is imposed:

$$\boldsymbol{f}(\boldsymbol{u},\boldsymbol{x}) - \varepsilon \partial_{\boldsymbol{x}} \boldsymbol{u} = (f_{\mathrm{W}}(t) \quad 0))^{\mathrm{T}} \quad \text{at} \quad \boldsymbol{x} \in \{-5\} \times [-1,1],$$

 $f(\boldsymbol{u},\boldsymbol{x}) - \varepsilon \partial_{\boldsymbol{x}} \boldsymbol{u} = \begin{pmatrix} 0 & f_{\mathrm{E}}(t) \end{pmatrix}^{\mathrm{I}} \text{ at } \boldsymbol{x} \in \{5\} \times [-1,1].$

The boundaries of the longer edges are assigned with zero flux, i.e.,

$$\boldsymbol{g}(\boldsymbol{u};\boldsymbol{x}) - \varepsilon \partial_{\boldsymbol{y}} \boldsymbol{u} = \boldsymbol{0}, \quad \boldsymbol{x} \in [-5,5] \times \{-1,1\}.$$

The populations finally leave the domain with a constant rate at the respective target side

$$f(\boldsymbol{u},\boldsymbol{x}) - \varepsilon \partial_{\boldsymbol{x}} \boldsymbol{u} = -\boldsymbol{u}$$
 at $\boldsymbol{x} \in \{-5,5\} \times [-1,1]$.

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

590

Example 4: Countercurrent flow

Example 4

Figure : Example 4. Species' densities u, v (top), void fraction 1 - u - v (bottom-left), and corresponding phase diagram where the elliptic region is depicted (bottom-right). The simulated time is t = 2.

Motivation	Two dimensional pedestrian model	Finite volume formulation	Numerical examples		
Example 4: Countercurrent flow					
Example 4					

In Example 4, countercurrent flow is modelled, where two groups of pedestrians move in the opposite directions $d_1(x) = (0, 1)$ and $d_2(x) = (0, -1)$. Inside the domain $\Omega = [-1, 1]^2$, the initial data are set to be randomly perturbed around a state $u_0 = (0.4, 0.35)^T$ which is located inside the elliptic region. More specifically, initial conditions are set to

$$u(\mathbf{x}, t = 0) = u_0 + \eta_u(\mathbf{x}), \quad v(\mathbf{x}, t = 0) = v_0 + \eta_v(\mathbf{x}), \text{ for } \mathbf{x} \in \Omega = [-1, 1]^2,$$
(4.2)

where η_u , η_v are uniformly distributed random noise with variations of 10% and 1.5% for *u* and *v*, respectively. The boundary conditions are set to be absorbing. Here the diffusion matrix has the values $\varepsilon = 1.5 \times 10^{-3}$, whereas $\delta = 0$. For the multiresolution setting, L = 10 resolution levels are used with a reference tolerance of $\varepsilon_{\rm ref} = 1.25 \times 10^{-2}$.

Two dimensional pedestrian model

Finite volume formulation

Numerical examples

Example 5: Perpendicular flow with different velocity functions

Example 5

Μ	otiv	atio	n
0	00	00	

Finite volume formulation

Example 5: Perpendicular flow with different velocity functions

Example 5

In Example 5, a crossing with perpendicular flow directions $d_1(x) = (1,0)$, $d_2(x) = (0,1)$ is considered in the domain $\Omega = [-1,1]^2$. Self-diffusion and cross-diffusion are set to $\varepsilon = 1 \times 10^{-3}$, $\delta = 0$, respectively. As in Example 4, there are absorbing boundary conditions and homogeneous initial data (4.2) with $u_0 = (0.4, 0.35)^T$ are taken inside the elliptic region. Moreover, we consider different velocity functions which are intended to describe real and hypothesized forces during interactions between pedestrians. The velocity function V(u, v) = 1 - u - v assumes a slow-down that is proportional to u + v. This choice falls in the more general class of velocity functions that have the desirable property that V(u, v) is convex and satisfies

$$V(0,0) = 1, V(1,0) = 0, V(0,1) = 0.$$
 (4.3)

Two dimensional pedestrian model

Finite volume formulation

A D F A P F A D F A D F

Numerical examples

ъ

Example 6: Effect of diffusion and cross-diffusion

Example 6

Densities for species u at time t = 2.0. Here, $\varepsilon = 0.01$, and, from top-left, $\delta \in \{0, 0.01, 1, 2.5, 5, 10\}$

Motivation	Two dimensional pedestrian model	Finite volume formulation	Numerical examples
Example 6: Effect of diffusion and cross-diffusion			
Example 7			

Behavior of the numerical solution depending on the diffusion and cross-diffusion parameters ε and δ .

ε	δ	Unstable	Stable patterns	Steep patterns
0	0, 0.01, 1, 2.5, 5, 10	•		
0.001	0, 1		•	
0.001	1.5, 2.5			•
0.001	5, 10	•		
0.01	0, 0.01, 0.1		•	
0.01	1, 2.5, 5, 10			•
0.1	0, 0.01, 0.1		•	
0.1	1, 2.5, 5, 10	•		

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

