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Elliptic region

Systems with elliptic region

Finite volume formulation

We examine initial value problems for first-order systems

01 + Oxfi(¢1, ¢2) =0,

(1.1)

Orp2 + Oxfo(d1, ¢2) = 0,

by applying multi-resolution schemes. We recall that the system (1.1) is
called hyperbolic at a point (¢1, ¢2) if the Jacobian J7 of the flux vector

f= (f17 fZ)Ty
o
efod
on
01

Jr=

ofi.
A2 . {Jn J12]
ot | |J1 e
02

has real eigenvalues, i.e., if the discriminant

A1, ¢2) = ((Ji1 — Joz)? + 4d12d21) (1, B2)

(1.2)

is positive, and strictly hyperbolic if these eigenvalues are moreover distinct.
If T¢(¢1,p2) has a pair of complex conjugate eigenvalues (i.e.,
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points is called elliptic region.

A(¢1, ¢2) < 0), then (1.1) is called elliptic at that point. The set of all elliptic
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Polydisperse suspensions

Sedimentation of polydisperse suspensions

Vector of unknows: solids concentrations

¢:(¢17¢27"'7¢N) (13)

Cumulative solids fraction ¢ := ¢1 + - - - + ¢n,
Hindered settling factor V(0) =1, V'(¢) <0, V(1) =0, e.g.

(1 - ¢)n72 if & € D¢max7
V(o) = n>2. 1.4
(4) {0 otherwise, (14)

Phase velocity of particle species i

N
Vi(®) = V() |dF(oi — 0(®)) = > dadmlom — o(®))|, i=1,...,N.

m=1
(1.5)
One-dimensional batch settling of a suspension
P+ oxf(®)=0, xe(0,L), t>0,
(1.6)

f(®) = (A(P),....IW(®)", £(®)=gwi(®), i=1,...,N,
Initial and zero-flux boundary conditions
®(x,0) = do(x), x€]0,L], flx—o = flx= = 0. (1.7)
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Bidisperse suspension

Model of bidisperse suspension

For case N = 2, it is convenient to introduce the parameter
v = 02/01 = (02 — 0:)/(01 — o), and we set § := &, = d?/dz.

(61, 02) = 01 V(61 + 62) (1 = d1)(1 = 61 = 7e2) — 6 ((1 = d)y — 1) ),
(61, 62) = 92 V(61 + 02) (3(1 = 62) ((1 = d2)y — é1) = 61(1 = &1 — 702) ).

with 6 € (0, 1] and hindered settling factor V(¢) > 0, V/(¢) < 0 on [0, dmax)
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Symmetriccase § = 1, v = —1

Symmetric case § = 1,7 = —1 (B., Blirger, Kozakevicius 2009)

For the symmetric case, where 6 = 1,y = —1, there are tangents on the axes
¢1 :Oandqﬁg:Oin

1 n? —8n
¢1—¢2—51T~ (1.8)
Depending on n, on the axes we have
1 T
&, \
)
0.8
»F‘\
”’\
0.6
| n<8 no tangent
‘ n=28 one tangent
0.4
“ n>8 two tangents
0-2
0 0.2 0.4 0.6 0.8 ‘1)1 1
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Symmetriccase § = 1, v = —1

Casen=238
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Modelling

Two dimensional pedestrian model

e Simulation models for vehicular traffic have a more or less one-dimensional
character as cars move in lanes on streets allowing cross-directional flow
only at distinct crossing points.

¢ A special property of the Bick-Newell model

U+ (u(1—u—pv))x=0,

Vi + (—v(1 — Bu—v))x =0, (2.1)

is that its phase space contains an elliptic region.

e Pedestrian flow allows a genuine spatial structure: pedestrian movement
can be directed principally to any direction and it is strongly influenced by
human behavior. Therefore, simulation models for pedestrian traffic are
twodimensional, having the form

U+ F(u): + g(u)y =0,

where f and g are the fluxes in x and y directions, respectively.
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Modelling

Two-dimensional model

The fluxes f, g in
ur + f(u)x + g(u)y =0,

are composed by a total flux h and a direction contribution, which distributes
the total local flow of a species as

iU vixy) = m(u ey, giuvixy) = mundy), o
b(u,vix,y) = h(u,v)ds(x,y),  ge(u,vix,y) = he(u,v)dy(x,y).

The directions can be formally put into a direction matrix

di(x,y) di(x, y)) d:(x) )
D= 1x 1 — — (d*(x o (x 7
(dz(x, W dxy)) = () = @) 1 @)
where the subscripts (1 or 2) denote the species and the superscripts (x or y)

denote the direction component. E.g., d(x, y) denotes that fraction of the
flux of species 1 that flows in the y direction.
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Model of Huges

Model of Hughes

The model of Hughes specifies the directions

di(x) = (di(x,y) di(x,y)),  da(x) = (d5(x,y)

Numerical examples
00000000000

ay(x,y))

employing the potentials ¢, ¢ associated with phases 1 and 2, respectively, as

K y) = 2 d(xy) =

Vel Rz
X _ d)X _ wy
EXD) = ol XN = [wu

where the gradient norms are

IVollz =1/e%+ 65, [IVYlla = \/v5 + 4
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A finite-volume formulation

Finite volume formulation

Let7° c---7T*-.. c T" be a family of nested admissible rectangular
meshes. Denote the cell averages of u, v on K* € T* attime t = t" by

1 1
Upe = —— ulx,t"dx, Ve ::—/ v(x, ") dx.
K¢ ‘K£| /’;Z ( ) K¢ |K£| P ( )

The resulting finite-volume scheme approximation defined on the resolution
level ¢, assumes values u}, and vy, for all K* € T* attime ¢ = " and
determines uy;" and vi" forall K* € T* attime t = t""' = t” + At by the
marching formula and using a standard finite-volume approach, the system is
discretized as

n+1

up' — uy A
‘KF‘ K¢ K¢ E M F(UI;(Z,uLi;i(KZ,LZ);n(K£7LZ))~
At d(K*, L")
oEEm(KY) ’

b(uje) + b(ug:)

2w — af)).
(3.1)

where n(K*, L*) = (n (K", L"), (K", L*))" is the outer normal vector of cell
K* pointing towards L*. such that

n(K*, L*) +
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A finite-volume formulation

Numerical flux

As numerical flux, we choose the local Lax-Friedrichs flux, which is defined as

fuge: X) + f(ufe;X)  a' (KLY, ,

f(uge, uje; X) = 5 - 3 (uge — uly),
n .3 n .y L L
g(Uge, e X) = 9(texi %) ;rg(ULZVX) B aY(ngL )(”7(@ —uje),

where we used the abbrevation X = X(K*, L*). The coefficients &', & are
determined as the maximum spectral radius on the cell interface

a'(K*, L") = max(o(f'(Uke)), o(f' (u]2))),

a(K*, L) = max(o(g' (uke)), o(d' (u]r))),
or upper estimates of that radius; here, the flux Jacobians f'(uy:), g'(Ux¢)
are evaluated for the solution value uy: and o(f'(uk:)), o(9'(uk:)) are the

corresponding spectral radii. The point X(K*, L) is the position of the
interface between the cells K* and L.
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Multiresolution setting

Multiresolution setting

(=H-1

Figure : Sketch of a graded tree structure. Here K* is a parent node on level
£ = H — 1, its children nodes (including S¢*') belong to £(A); L¢ is a virtual node and
T4+ is a virtual leaf.
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Numerical examples (B., Ruiz-Baier, Schwandt, Tory (2011))

In the numerical examples, the convection coefficients are normalized to
a; = a» = 1. The diffusion matrix is assumed to be constant taking the form

o) = (5 2) (@)

with self-diffusion rate e and cross-diffusion rate ¢. The cross-diffusion rate ¢
is assumed to vanish in all examples, except the last one. If not otherwise
specified, in the numerical examples we set the velocity function to

V(u,v) =1 — u— v, the domain to Q = [-1, 1], and on the boundary we
impose absorbing boundary conditions.
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Example 1: Flow towards exit targets

Example 1
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Figure : Example 1. Species’ densities u (top) and v (bottom) at times ¢ = 2.0,
€ t=4.0,and t = 18.0.
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Example 2: Battle of Agincourt
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The initial data are set to (0, 0) all over the domain Q = [-1,1] x [-1,1]. The
two populations enter the domain through doors of width w, which for the test
case is specified to be w = 0.1. The two inlets are positioned at

{—1} x[-1,—1 4+ w]and {—1} x [1 — w, 1]. The entrance flow is specified
by Neumann boundary conditions as

fi(u;x) =fsw for xe{—1} x [-1,—1 4+ w],
h(u;x)=hw for xe{-1} x[1 - w,1],

with fisw = fsw = 0.5. The exit fluxes are defined at the outlets
{1} x[1 —w,1]and {1} x [-1,—1 + w] as

fi(u;x) =up, L(u;x)=0 for xe {1} x[-1,—-1+w],
h(u;x)=vq, fi(u;x) =0, for xe {1} x[1—w,1],

with p =g = 1. Moreovera; = a =1, =0.01,§ = 0.

The crowd dynamics are oriented towards exit targets which are located in
the centers of the respective exit doors and are located at

(x1,y1) = (1,1 =w/2), (x2,y2) = (1,—1 + w/2). The directions towards the
targets (exit points) (x1, y1), (X2, y2) for species 1 and 2, respectively, are
given by

di(x) ~

di(x) = dix)=(x-x y-y), _i=1.2

(0.
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Example 2: Battle of Agincourt

Example 2

Species’ densities u (left), v (right), and corresponding phase diagram where
the elliptic region is depicted, for times t = 0.1 (top), t = 0.5 (center) and
t = 1.5 (bottom).
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Example 2: Battle of Agincourt

Example 2

Example 2 gives an account of the Battle of Agincourt, 1415, a relatively well
documented medieval war. The flow is assumed to be in opposite directions

di(x)=(1 0), dz(x)=(-1 0).
For this countercurrent flow, the governing equations are specified as
u+ (U1 —u—v)), =eAu, vi— (v(1—u—v)) =eAv.

The boundary conditions are absorbing. Introducing the zig-zag curve
z(y) = 4A[( |F) —LFj—l 1
y)= y Yi=351732)
where | -] gives the next lower integer, the domain Q = Q, U Q, is splitted as

Qu={-1<x<2z(y),0<y<2}, Q={z(y)<x<1,0<y<2}

The initial conditions are constant in each subdomain, with small
perturbations.
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Example 3: Countercurrent flow in a long channel

Example 3
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Figure : Example 3. Species’ densities u, v attimest=2,t=4,t=8.
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Example 3: Countercurrent flow in a long channel
Example 3
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In Example 3, the domain is specified to be a long channel having the domain
Q = [-5,5] x [-1,1]. The parameters are setto a; = a» =1,

e=25x 1073, 6 = 0. Initially, the domain is assumed to be empty with
u(x,t=0)=v(x,t=0) =0 for all x € Q. Both populations move in
opposite directions

di(x)=(1 0), dx(x)= (-1 0),
such that they are expected to meet somewhere in the middle. The two

populations access the domain at two opposite edges; at the left and right
edges of the domain, an inflow is imposed:

f(u,x) —coxu = (fu(t) 0))" at xe{-5}x[-1,1],
f(u,x) —edu= (0 fi(t))" at xe {5} x[-1,1].
The boundaries of the longer edges are assigned with zero flux, i.e.,
g(u;x) —e0,u=0, xec[-575]x{-1,1}.

The populations finally leave the domain with a constant rate at the
respective target side

f(u,x) —edu=—u at xec{-55}x[-1,1].
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Example 4: Countercurrent flow

Example 4

& Figure : Example 4. Species’ densities u, v (top), void fraction 1 — u — v (bottom-left),

and corresponding phase diagram where the elliptic region is depicted (bottom-right).
The simulated time is { = 2.
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Example 4: Countercurrent flow

Example 4

In Example 4, countercurrent flow is modelled, where two groups of
pedestrians move in the opposite directions dy(x) = (0,1) and

d>(x) = (0, —1). Inside the domain Q = [—1, 1]?, the initial data are set to be
randomly perturbed around a state up = (0.4, 0.35)" which is located inside
the elliptic region. More specifically, initial conditions are set to

u(x,t=0) = tp + nu(x), v(x,t=0)=vo+n(x), for xeQ=[-11]
(4.2)

where ny, v are uniformly distributed random noise with variations of 10%
and 1.5% for u and v, respectively. The boundary conditions are set to be
absorbing. Here the diffusion matrix has the values ¢ = 1.5 x 1073, whereas
0 = 0. For the multiresolution setting, L = 10 resolution levels are used with a
reference tolerance of e, = 1.25 x 1072,
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Example 5: Perpendicular flow with different velocity functions

Example 5

In Example 5, a crossing with perpendicular flow directions

di(x) = (1,0), da(x) = (0,1) is considered in the domain Q = [-1, 1]°.
Self-diffusion and cross-diffusion are setto e = 1 x 1073, § = 0, respectively.
As in Example 4, there are absorbing boundary conditions and
homogeneous initial data (4.2) with up = (0.4,0.35)" are taken inside the
elliptic region. Moreover, we consider different velocity functions which are
intended to describe real and hypothesized forces during interactions
between pedestrians. The velocity function V(u,v) =1 — u — v assumes a
slow-down that is proportional to v + v. This choice falls in the more general
class of velocity functions that have the desirable property that V(u, v) is
convex and satisfies

V(0,0)=1, V(1,00=0, V(0,1)=0. (4.3)
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Example 6: Effect of diffusion and cross-diffusion

Example 6
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Example 6: Effect of diffusion and cross-diffusion

Example 7

Behavior of the numerical solution depending on the diffusion and
cross-diffusion parameters ¢ and 4.

€ 1) Unstable Stable patterns  Steep patterns
0 0,0.01,1,2.5,5,10 °

0.001 0,1 .

0.001 1.5,2.5 .

0.001 5,10 °

0.01 0, 0.01, 0.1 .

0.01 1,2.5,5,10 .

0.1 0, 0.01, 0.1 .

0.1 1,2.5,5,10 °
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