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Elliptic region

Systems with elliptic region

We examine initial value problems for first-order systems

∂tφ1 + ∂x f1(φ1, φ2) = 0,

∂tφ2 + ∂x f2(φ1, φ2) = 0,
(1.1)

by applying multi-resolution schemes. We recall that the system (1.1) is
called hyperbolic at a point (φ1, φ2) if the Jacobian Jf of the flux vector
f = (f1, f2)T,

Jf =


∂f1
∂φ1

∂f1
∂φ2

∂f2
∂φ1

∂f2
∂φ2

 =:

[
J11 J12

J21 J22

]

has real eigenvalues, i.e., if the discriminant

∆(φ1, φ2) :=
(
(J11 − J22)2 + 4J12J21

)
(φ1, φ2) (1.2)

is positive, and strictly hyperbolic if these eigenvalues are moreover distinct.
If Jf (φ1, φ2) has a pair of complex conjugate eigenvalues (i.e.,
∆(φ1, φ2) < 0), then (1.1) is called elliptic at that point. The set of all elliptic
points is called elliptic region.
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Polydisperse suspensions

Sedimentation of polydisperse suspensions

Vector of unknows: solids concentrations

Φ = (φ1, φ2, . . . , φN) (1.3)

Cumulative solids fraction φ := φ1 + · · ·+ φN ,
Hindered settling factor V (0) = 1, V ′(φ) ≤ 0, V (1) = 0, e.g.

V (φ) =

{
(1− φ)n−2 if Φ ∈ Dφmax ,

0 otherwise,
n > 2. (1.4)

Phase velocity of particle species i

vi (Φ) = µV (φ)

[
d2

i (%i − %(Φ))−
N∑

m=1

d2
mφm(%m − %(Φ))

]
, i = 1, . . . ,N.

(1.5)

One-dimensional batch settling of a suspension

∂t Φ + ∂x f (Φ) = 0, x ∈ (0, L), t > 0,

f (Φ) =
(
f1(Φ), . . . , fN(Φ)

)T
, fi (Φ) = φivi (Φ), i = 1, . . . ,N,

(1.6)

Initial and zero-flux boundary conditions

Φ(x , 0) = Φ0(x), x ∈ [0, L], f |x=0 = f |x=L = 0. (1.7)
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Bidisperse suspension

Model of bidisperse suspension

For case N = 2, it is convenient to introduce the parameter
γ := %̄2/%̄1 = (%2 − %r)/(%1 − %r), and we set δ := δ2 = d2

1/d
2
2 .

f1(φ1, φ2) = φ1V (φ1 + φ2)
(

(1− φ1)(1− φ1 − γφ2)− δφ2
(
(1− φ2)γ − φ1

))
,

f2(φ1, φ2) = φ2V (φ1 + φ2)
(
δ(1− φ2)

(
(1− φ2)γ − φ1

)
− φ1(1− φ1 − γφ2)

)
.

with δ ∈ (0, 1] and hindered settling factor V (φ) ≥ 0, V ′(φ) < 0 on [0, φmax)
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Symmetric case δ = 1, γ = −1

Symmetric case δ = 1, γ = −1 (B., Bürger, Kozakevicius 2009)

For the symmetric case, where δ = 1, γ = −1, there are tangents on the axes
φ1 = 0 and φ2 = 0 in

φ1 = φ2 =
1
2
±
√

n2 − 8n
2n

. (1.8)

Depending on n, on the axes we have
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n < 8 no tangent
n = 8 one tangent
n > 8 two tangents
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Symmetric case δ = 1, γ = −1
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Modelling

Two dimensional pedestrian model

• Simulation models for vehicular traffic have a more or less one-dimensional
character as cars move in lanes on streets allowing cross-directional flow
only at distinct crossing points.
• A special property of the Bick-Newell model

ut + (u(1− u − βv))x = 0,

vt + (−v(1− βu − v))x = 0,
(2.1)

is that its phase space contains an elliptic region.
• Pedestrian flow allows a genuine spatial structure: pedestrian movement
can be directed principally to any direction and it is strongly influenced by
human behavior. Therefore, simulation models for pedestrian traffic are
twodimensional, having the form

ut + f (u)x + g(u)y = 0,

where f and g are the fluxes in x and y directions, respectively.
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Modelling

Two-dimensional model

The fluxes f ,g in

ut + f (u)x + g(u)y = 0,

are composed by a total flux h and a direction contribution, which distributes
the total local flow of a species as

f1(u, v ; x , y) = h1(u, v)dx
1 (x , y), g1(u, v ; x , y) = h1(u, v)dy

1 (x , y),

f2(u, v ; x , y) = h2(u, v)dx
2 (x , y), g2(u, v ; x , y) = h2(u, v)dy

2 (x , y).
(2.2)

The directions can be formally put into a direction matrix

D =

(
dx

1 (x , y) dy
1 (x , y)

dx
2 (x , y) dy

2 (x , y)

)
=

(
d1(x)
d2(x)

)
=
(
dx(x) | dy(x)

)
,

where the subscripts (1 or 2) denote the species and the superscripts (x or y )
denote the direction component. E.g., dy

1 (x , y) denotes that fraction of the
flux of species 1 that flows in the y direction.
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Model of Huges

Model of Hughes

The model of Hughes specifies the directions

d1(x) =
(
dx

1 (x , y) dy
1 (x , y)

)
, d2(x) =

(
dx

2 (x , y) dy
2 (x , y)

)
,

employing the potentials φ, ψ associated with phases 1 and 2, respectively, as

dx
1 (x , y) =

φx

‖∇φ‖2
, dy

1 (x , y) =
φy

‖∇φ‖2
,

dx
2 (x , y) =

ψx

‖∇ψ‖2
, dy

2 (x , y) =
ψy

‖∇ψ‖2
,

where the gradient norms are

‖∇φ‖2 =
√
φ2

x + φ2
y , ‖∇ψ‖2 =

√
ψ2

x + ψ2
y
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A finite-volume formulation

Finite volume formulation

Let T 0 ⊂ · · · T ` · · · ⊂ T H be a family of nested admissible rectangular
meshes. Denote the cell averages of u, v on K ` ∈ T ` at time t = tn by

un
K` :=

1
|K `|

∫
K`

u(x , tn) dx , vn
K` :=

1
|K `|

∫
K`

v(x , tn) dx .

The resulting finite-volume scheme approximation defined on the resolution
level `, assumes values un

K` and vn
K` for all K ` ∈ T ` at time t = tn and

determines un+1
K` and vn+1

K` for all K ` ∈ T ` at time t = tn+1 = tn + ∆t by the
marching formula and using a standard finite-volume approach, the system is
discretized as

|K `|
un+1

K` − un
K`

∆t
−

∑
σ∈Eint(K`)

|σ(K `, L`)|
d(K `, L`)

(
F
(
un

K` ,uL` ; x̄(K `, L`); n(K `, L`))·

n(K `, L`) +
b(un

L`) + b(un
K`)

2
(
un

L` − un
K`
))
,

(3.1)

where n(K `, L`) =
(
n1(K `, L`), n2(K `, L`)

)T is the outer normal vector of cell
K ` pointing towards L`. such that

F
(
un

K` ,uL` ; x̄(K `, L`); n(K `, L`)
)
· n(K `, L`)

= f
(
un

K` ,u
n
L` ; x̄(K `, L`); n(K `, L`)

)
· n1(K `, L`)

+ g
(
un

K` ,u
n
L` ; x̄(K `, L`); n(K `, L`)

)
· n2(K `, L`).

With the compact notation

F =
(
f ,g
)

=

(
f1 g1

f2 g2

)
,
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A finite-volume formulation

Numerical flux

As numerical flux, we choose the local Lax-Friedrichs flux, which is defined as

f
(
un

K` ,u
n
L` ; x̄

)
=

f
(
un

K` ; x̄
)

+ f
(
un

L` ; x̄
)

2
− ax(K `, L`)

2
(un

K` − un
L`),

g
(
un

K` ,u
n
L` ; x̄

)
=

g
(
un

K` ; x̄
)

+ g
(
un

L` ; x̄
)

2
− ay(K `, L`)

2
(un

K` − un
L`),

where we used the abbrevation x̄ = x̄(K `, L`). The coefficients ax, ay are
determined as the maximum spectral radius on the cell interface

ax(K `, L`) = max
(
%(f ′(un

K`)), %(f ′(un
L`))
)
,

ay(K `, L`) = max
(
%(g′(un

K`)), %(g′(un
L`))
)
,

or upper estimates of that radius; here, the flux Jacobians f ′(uK`), g′(uK`)
are evaluated for the solution value uK` and %(f ′(uK`)), %(g′(uK`)) are the
corresponding spectral radii. The point x̄(K `, L`) is the position of the
interface between the cells K ` and L`.
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Multiresolution setting

Multiresolution setting

Kℓ

xKℓ

ℓ = H

Lℓ

ℓ = H − 1

Sℓ+1

T ℓ+1

Figure : Sketch of a graded tree structure. Here K ` is a parent node on level
` = H − 1, its children nodes (including S`+1) belong to L(Λ); L` is a virtual node and
T `+1 is a virtual leaf.
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Numerical examples (B., Ruiz-Baier, Schwandt, Tory (2011))

In the numerical examples, the convection coefficients are normalized to
a1 = a2 = 1. The diffusion matrix is assumed to be constant taking the form

b(u) =

(
ε δ
δ ε

)
(4.1)

with self-diffusion rate ε and cross-diffusion rate δ. The cross-diffusion rate δ
is assumed to vanish in all examples, except the last one. If not otherwise
specified, in the numerical examples we set the velocity function to
V (u, v) = 1− u − v , the domain to Ω = [−1, 1]2, and on the boundary we
impose absorbing boundary conditions.
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Example 1: Flow towards exit targets

Example 1

Figure : Example 1. Species’ densities u (top) and v (bottom) at times t = 2.0,
t = 4.0, and t = 18.0.
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Example 2: Battle of Agincourt

The initial data are set to (0, 0) all over the domain Ω = [−1, 1]× [−1, 1]. The
two populations enter the domain through doors of width w , which for the test
case is specified to be w = 0.1. The two inlets are positioned at
{−1} × [−1,−1 + w ] and {−1} × [1− w , 1]. The entrance flow is specified
by Neumann boundary conditions as

f1(u; x) = fSW for x ∈ {−1} × [−1,−1 + w ],

f2(u; x) = fNW for x ∈ {−1} × [1− w , 1],

with fNW = fSW = 0.5. The exit fluxes are defined at the outlets
{1} × [1− w , 1] and {1} × [−1,−1 + w ] as

f1(u; x) = up, f2(u; x) = 0 for x ∈ {1} × [−1,−1 + w ],

f2(u; x) = vq, f1(u; x) = 0, for x ∈ {1} × [1− w , 1],

with p = q = 1. Moreover a1 = a2 = 1, ε = 0.01, δ = 0.
The crowd dynamics are oriented towards exit targets which are located in
the centers of the respective exit doors and are located at
(x1, y1) = (1, 1− w/2), (x2, y2) = (1,−1 + w/2). The directions towards the
targets (exit points) (x1, y1), (x2, y2) for species 1 and 2, respectively, are
given by

d i (x) =
d̃ i (x)

‖d̃ i (x)‖2
, d̃ i (x) =

(
x − xi y − yi

)
, i = 1, 2.
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Example 2: Battle of Agincourt

Example 2

Species’ densities u (left), v (right), and corresponding phase diagram where
the elliptic region is depicted, for times t = 0.1 (top), t = 0.5 (center) and
t = 1.5 (bottom).
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Example 2: Battle of Agincourt

Example 2

Example 2 gives an account of the Battle of Agincourt, 1415, a relatively well
documented medieval war. The flow is assumed to be in opposite directions

d1(x) =
(
1 0

)
, d2(x) =

(
−1 0

)
.

For this countercurrent flow, the governing equations are specified as

ut +
(
u(1− u − v)

)
x = ε∆u, vt −

(
v(1− u − v)

)
x = ε∆v .

The boundary conditions are absorbing. Introducing the zig-zag curve

z(y) = 4A
(∣∣∣∣Fy − bFyc − 1

2

∣∣∣∣− 1
4

)
,

where b·c gives the next lower integer, the domain Ω = Ωu ∪ Ωv is splitted as

Ωu = {−1 ≤ x ≤ z(y), 0 ≤ y ≤ 2}, Ωv = {z(y) < x ≤ 1, 0 ≤ y ≤ 2},

The initial conditions are constant in each subdomain, with small
perturbations.
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Example 3: Countercurrent flow in a long channel

Example 3

Figure : Example 3. Species’ densities u, v at times t = 2, t = 4, t = 8.
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Example 3: Countercurrent flow in a long channel

Example 3

In Example 3, the domain is specified to be a long channel having the domain
Ω = [−5, 5]× [−1, 1]. The parameters are set to a1 = a2 = 1,
ε = 2.5× 10−3, δ = 0. Initially, the domain is assumed to be empty with
u(x , t = 0) = v(x , t = 0) = 0 for all x ∈ Ω. Both populations move in
opposite directions

d1(x) =
(
1 0

)
, d2(x) =

(
−1 0

)
,

such that they are expected to meet somewhere in the middle. The two
populations access the domain at two opposite edges; at the left and right
edges of the domain, an inflow is imposed:

f (u, x)− ε∂x u =
(
fW(t) 0)

)T at x ∈ {−5} × [−1, 1],

f (u, x)− ε∂x u =
(
0 fE(t)

)T at x ∈ {5} × [−1, 1].

The boundaries of the longer edges are assigned with zero flux, i.e.,

g(u; x)− ε∂y u = 0, x ∈ [−5, 5]× {−1, 1}.
The populations finally leave the domain with a constant rate at the
respective target side

f (u, x)− ε∂x u = −u at x ∈ {−5, 5} × [−1, 1].
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Example 4: Countercurrent flow

Example 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

v

Figure : Example 4. Species’ densities u, v (top), void fraction 1− u − v (bottom-left),
and corresponding phase diagram where the elliptic region is depicted (bottom-right).
The simulated time is t = 2.
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Example 4: Countercurrent flow

Example 4

In Example 4, countercurrent flow is modelled, where two groups of
pedestrians move in the opposite directions d1(x) = (0, 1) and
d2(x) = (0,−1). Inside the domain Ω = [−1, 1]2, the initial data are set to be
randomly perturbed around a state u0 = (0.4, 0.35)T which is located inside
the elliptic region. More specifically, initial conditions are set to

u(x , t = 0) = u0 + ηu(x), v(x , t = 0) = v0 + ηv (x), for x ∈ Ω = [−1, 1]2,
(4.2)

where ηu, ηv are uniformly distributed random noise with variations of 10%
and 1.5% for u and v , respectively. The boundary conditions are set to be
absorbing. Here the diffusion matrix has the values ε = 1.5× 10−3, whereas
δ = 0. For the multiresolution setting, L = 10 resolution levels are used with a
reference tolerance of εref = 1.25× 10−2.
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Example 5: Perpendicular flow with different velocity functions

Example 5
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Figure : Example 5. Species’ densities u, v , and phase diagrams at the final time
t = 2.5 for different velocities V (u, v). Top: V (u, v) = 1− u − v , middle:
V (u, v) = 1− u − v − uv , and bottom: V (u, v) = (1− u)(1− v)(1− u − v).
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Example 5: Perpendicular flow with different velocity functions

Example 5

In Example 5, a crossing with perpendicular flow directions
d1(x) = (1, 0), d2(x) = (0, 1) is considered in the domain Ω = [−1, 1]2.
Self-diffusion and cross-diffusion are set to ε = 1× 10−3, δ = 0, respectively.
As in Example 4, there are absorbing boundary conditions and
homogeneous initial data (4.2) with u0 = (0.4, 0.35)T are taken inside the
elliptic region. Moreover, we consider different velocity functions which are
intended to describe real and hypothesized forces during interactions
between pedestrians. The velocity function V (u, v) = 1− u − v assumes a
slow-down that is proportional to u + v . This choice falls in the more general
class of velocity functions that have the desirable property that V (u, v) is
convex and satisfies

V (0, 0) = 1, V (1, 0) = 0, V (0, 1) = 0. (4.3)
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Example 6: Effect of diffusion and cross-diffusion
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Example 6
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Densities for species u at time t = 2.0. Here, ε = 0.01, and, from top-left,
δ ∈ {0, 0.01, 1, 2.5, 5, 10}
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Example 6: Effect of diffusion and cross-diffusion

Example 7

Behavior of the numerical solution depending on the diffusion and
cross-diffusion parameters ε and δ.

ε δ Unstable Stable patterns Steep patterns

0 0, 0.01, 1, 2.5, 5, 10 •
0.001 0, 1 •
0.001 1.5, 2.5 •
0.001 5, 10 •
0.01 0, 0.01, 0.1 •
0.01 1, 2.5, 5, 10 •
0.1 0, 0.01, 0.1 •
0.1 1, 2.5, 5, 10 •
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