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The ITER tokamak

Plasma : Ion and electrons soup.

Magnetic confinement.

Heating.

Goal: Perform the fusion reaction
as a reliable source of energy.

Key figures:

Fusion power ≈ 500MW

Fusion power

Power consumption
≥ 10

Plasma duration ≥ 300 s
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Limiter configuration

TORE SUPRA, Cadarache (source: CEA) 3 / 20
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Wall-plasma interaction

TORE SUPRA, Cadarache
From ccd camera (visible)

(Source: CEA)

Magnetic confinement not perfect ⇒ Control the
interactions (limiter, divertor).

ANR ESPOIR: Numerical simulation of the edge plasma
using penalization methods.
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Why penalty methods ?

Non-body-fitted Cartesian-mesh.
Possible use of efficient solver : pseudo-spectral,
multiscale grids....

A few references for applications :
Incompressible flows [Angot, Math. Meth. Appl. Sci. , 1999]
Compressible flows [Liu, Vasilyev, JCP, 2007]
Pseudo spectral methods for edge plasma [Isoardi et al., JCP, 2010]

W�h�y �d�o �s�i�m�p�l�e �w�h�e�n� �o�n�e �c�a�n� �d�o �c�o�m�p�l�i�c�a�t�e�d� ?
Shadocks, from I. Ramière’s thesis. 5 / 20
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The 1D hyperbolic system (along a magnetic field
line)

(t, x) ∈ R+×]− L, L[

∂tN + ∂xΓ = S

∂tΓ + ∂x

(
Γ2

N
+ N

)
= 0

Boundary conditions:

M(.,−L) = −1 + η

and M(., L) = 1− η
Initial: N(0, .) and Γ(0, .)

N = plasma density
Γ = plasma momentum
M = Γ

N = ”velocity”

0 x

lim
ite

r

∣


N
∣=∣M∣1lim

ite
r

∣


N
∣=∣M∣1

L-L

≈10−5m

≈10m

Strictly hyperbolic 1D.

Eigenvalues : M − 1 and M + 1.

One incoming wave : one boundary condition admissible
on each boundary.
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A first approach [Isoardi et al., JCP, 2010]

∂tN + ∂xΓ +
χ

ε
N = (1− χ)S 0 < ε� 1 M =

Γ

N

∂tΓ + (1− χ)∂x

(
Γ2

N
+ N

)
+
χ

ε
(Γ−M0N) = 0

χ(x) =

{
0 in the plasma
1 in the limiter

Two problems:

2 fields penalized.

Sense of
(1− χ)∂x

(
Γ2

N + N
)

?

Numerical test :
ε = 10−3, δx ≈ 1 · 10−3, t ≈ 8.8 · 10−3 (stop :

|Mn
i | > 10)

0

2

4

6

8

10

12

14

0.390 0.395 0.400 0.405 0.410

M versus x

x

M

M versus x

⇒ Dirac measure next to the interface.
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An optimal penalty method

Penalization of a single field such that M → M0.

∂tN + ∂xΓ = SN

∂tΓ + ∂x

(
Γ2

N
+ N

)
+
χ

ε

(
Γ

M0
− N

)
= SΓ

Initial conditions: N(0, .) and Γ(0, .)known

M0 is a constant such that 0 < M0 = 1− η < 1.

Also obtained by a method inspired from [Fornet and
Guès, DCDS, 2009].

Does not generates boundary layers.
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Convergence analysis theorem I

xd

               -  (χ(x)=1) +   (χ(x)=0)

0{
∂tv +

∑d
j=1 Aj(v)∂jv = f(v) in ]− T0,T [×Rd

+

Pv|xd=0 = 0 on ]− T0,T [×Rd−1 (1)

Aj :matrices, symmetric, C∞, independant from (t, x)
outside a compact set.

P = orthogonal projection matrix.

Maximal strictly dissipative and non characteristic
boundary conditions.
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Convergence analysis theorem II

Penalized system :

∂tvε +
d∑

j=1

Aj(vε)∂jvε +
χ

ε
Pvε = f(vε) in ]− T0,T [×Rd (2)

Theorem (T0 > 0)

Consider, v0,+
|]−T0,0[ ∈ H∞ ∩ Lip solution of (1) on ]− T0, 0[.

There exists T > 0 and ε0 > 0 such that both the penalized
(∀ε ∈]0, ε0[) and the BVP (1) has a smooth solution (resp. vε
on ]− T0,T [×Rd and v0,+ on ]− T0,T [×Rd

+) such that :

∀s ∈ N, ‖vε − v0,+‖Hs(]−T0,T [×Rd
+) = O(ε)

10 / 20
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Convergence analysis theorem: Sketch of proof I

Formal asymptotic expansion of a continuous solution :
vε(t, x) ∼ U±ε (t, x) =

∑+∞
n=0 ε

nUn,±(t, x)
Substituting the expansion and classifying :

Inside the physical domain :
∑∞

n=0 ε
n (∂tUn,+ + . . . ) = S

In the obstacle :
ε−1

M0
PU0,− +

∑∞
n=0 ε

n
(
∂tUn,− + · · ·+ 1

M0
PUn+1,−

)
= S

Computations of the terms Un,±: by induction.
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Convergence analysis theorem: Sketch of proof II

vε(t, x) =
∑K

n=0 ε
nUn,±(t, x) + εwε(t, x).

Equation for wε.

Approximation of wε by an iterative scheme (wk).

Energy estimates:

Lemma

Weighted norm : ‖w‖2,λ = ‖e−λtw‖2

Assumptions : ‖wk‖∞ < R and ‖∂jwk‖∞ < R
(j ∈ {0, . . . , d − 1})

∀λ > λ0(R),
√
λ‖wk+1‖2,λ +

1√
ε
‖Pwk,−‖2,λ ≤

C (R)√
λ
‖g‖2,λ

(wk) bounded sequence (for some norms).

Existence of wε = limk→∞wk .
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Numerical test (2nd order FV scheme)

Manufactured solution :

N(t, x) = exp

(
−x2

0.16(t + 1)

)

Γ(t, x) = sin

(
πx

0.8

)
exp

(
−x2

0.16(t + 1)

)

0.40 0.5 x

lim
ite
r

N −x =N  x 
 −x =− x 

Computations up to
t = 1.

Mesh step: δx = 10−5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Thick blue : N(1,x), Black : Gamma(1,x), Red : M(1,x), epsilon=1e−1

x

Continuous lines : Approximate solution (ε = 0.1)

Dashed lines : exact solution. 13 / 20
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Numerical tests
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+  : in the plasm a, x : in the lim iter, o: x-derivat ive in the plasm a, * :x-derivat ive in the lim iter (Delta_x= 1e-05)
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x

L1 error for N and ∂xN as a function of ε.

Optimal convergence rate for N and ∂xN: O(ε)
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Numerical tests

10

10

10

10

10

10

10

10

10

10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

10 10 10 10 10 10 10 10
-7 -6 -5 -4 -3 -2 -1 0

+  : in the plasm a, x : in the lim iter, o: x-derivat ive in the plasm a, * :x-derivat ive in the lim iter (Delta_x= 1e-05)
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 d
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x

L2 error for N and ∂xN as a function of ε.

Non optimal rate for ∂xN in L2 norm : Artefact ?
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Two interfaces and transport of N

-0.1-0.5 0.1 x0.5

N N

M 0=1− M 0=−1

Concentration of N at the center !
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Prevent information from crossing the limiter

-0.1-0.5 0.1 x0.5

N N

M 0=1− M 0=−1

∂t

(
N
Γ

)
+ ∂x

(
αf

(
N
Γ

))
+
χ

ε

(
0

Γ
M0
− N

)
= S

α(x) is :

Smooth.

= 1 inside the plasma area and in a neighbourhood of the
interface.

= 0 in the central area of the limiter.
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Implementation

-0.1-0.5 0.1 x0.5

Idea from Greenberg-Le Roux (α = unknown):

∂t

 N
Γ
α

+∇F

 N
Γ
α

 ∂x

 N
Γ
α

+
χ

ε

 0
Γ
M0
− N

0

 =

 SN
SΓ

0


Scheme VFRoe ncv + 2nd order extensions

Periodic boundary conditions at x = ±0.5.
Step : δx = 10−5.

Computations up to t = 1.
17 / 20
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Numerical tests for the two faces limiter

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Thick blue : N(1,x), Black : Gamma(1,x), Red : M(1,x), epsilon=1e−1

x

Continuous lines : Approximate solution (ε = 0.1). 18 / 20
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Conclusions and perspectives

Penalization of a single field.

Well-defined terms.

No boundary layer and optimal convergence rate.

Penalization of the two sides limiter.

More equations to model : the energy, the current.
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T�h�e E�n�d�

T�h�a�n�k� �y�o�u� �f�o�r� �y�o�u�r� �a�t�t�e�n�t�i�o�n� !
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