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int getRandomNumber()

return 4,/ chosen by fair dice roll.
// quaranteed to be random.
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Fusion power

Plasma : lon and electrons soup.
Magnetic confinement.
Heating.

Goal: Perform the fusion reaction
as a reliable source of energy.

Key figures:
Fusion power ~ 500MW

> 10

Power consumption —

Plasma duration > 300 s



(Aixl Marseille

Limiter configuration

HYP 2012

Thomas
AUPHAN,
LATP, June
28, 2012

Introduction

Model Al

Toroidal Field Coil
Penalty current  TOKAMAK
methods Resultant field @
First Approach
Optimal

penalization

Two faces { ’%’ 3

TORE SUPRA, Cadarache
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From ccd camera (visible)
(Source: CEA)

@ Magnetic confinement not perfect = Control the
interactions (limiter, divertor).

o ANR ESPOIR: Numerical simulation of the edge plasma
using penalization methods.
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Why penalty methods ?

o Non-body-fitted Cartesian-mesh.

@ Possible use of efficient solver : pseudo-spectral,
multiscale grids....

A few references for applications :

@ Incompressible flows [ANGOT, Math. Meth. Appl. Sci. , 1999]
@ Compressible flows [Liu, VasiLyEv, JCP, 2007]

@ Pseudo spectral methods for edge plasma [ISOARDI et al., JCP, 2010]
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The 1D hyperbolic system (along a magnetic field

(Aix Marseille .
line)
HYP 2012 N = plasma density
Thomas (t,x) e R*x] - L, L] [ plrasma momentum
R > M = £ = "velocity"
e 9N + 0= 5 N
r2
atr G ax (N = N> =0 s L=
Model ~107°m //N/
Boundary conditions: =% | ‘f‘
il MESLES -1 &1 \%\:\M\A:
- and M(,,L)=1—1n !
Initial: N(0,.) and T(0,.) =

@ Strictly hyperbolic 1D.

e Eigenvalues: M —1 and M + 1.

@ One incoming wave : one boundary condition admissible
on each boundary.

6
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(wxmassie A first approach [ISOARDI et al., JCP, 2010]

r
HYP 2012 6tN+6XF+§N:(1—X)S 0<exl M:N
Ihcmas r2 X
S or+-00 (g n) + X - M —o
28, 2012 €

Numerical test :
e=10"3,6x~1-10"3 t~ 8.8-103 (stop :

0 in the plasma IM?| > 10)
XGRS i -
First Approach n the ||m|ter

Optimal
penalization

Two problems:
@ 2 fields penalized.
@ Sense of o
L=200 (F+HN) 7 e S

M versus x

= DIRAC measure next to the interface.

~
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An optimal penalty method

Penalization of a single field such that M — M.
0N + 0, = Sy
e x [
Fr+oc(—+N Sl—-=-N| =
Ot +8<N+ >+5<M0 > Sr

Initial conditions: N(0,.) and (0, .)known

@ My is a constant such that 0 < My =1—1n < 1.

@ Also obtained by a method inspired from [FORNET and
Gutks, DCDS, 2009].

@ Does not generates boundary layers.
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0 X
d = . : d
OV + > Aj(v)9v =f(v) in]— To, T[xR] (1)
Pv,,—o=0 omg] S T < IRl 1
At @ A, :matrices, symmetric, C*, independant from (t, x)

penalization

outside a compact set.
@ P = orthogonal projection matrix.

@ Maximal strictly dissipative and non characteristic
boundary conditions.
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Convergence analysis theorem ||

Penalized system :

d
eve + Y Aj(ve)dhve + %Pve = f(v.) in] - To, T[xRY (2)
Jj=1
Theorem (To > 0)

Consider, vﬁ’jTo’O[ € H* N Lip solution of (1) on ] — Top,0[.
There exists T > 0 and g9 > 0 such that both the penalized
(Ve €]0,e0[) and the BVP (1) has a smooth solution (resp. v.
on] — To, T[xRY and vO* on ] — Ty, T[xRY) such that :

VseN, [ve— V07+||HS(]7TO,T[><R1) = O(e)

10
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(wxvassie - Convergence analysis theorem: Sketch of proof |
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Formal asymptotic expansion of a continuous solution :
Vi) U0 s B o U (B )
Substituting the expansion and classifying :
| ; 1 ’ _
S e Inside the physical domain : 72 &" (9:U™" +...) =S
penareation @ In the obstacle :
—1 8 o =
SEPUST + 3320 (UnT 4+ o PUTHLT) =

Computations of the terms U™*: by induction.
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Convergence analysis theorem: Sketch of proof Il

o v (t,x) = Z,,K:O e"U™E(t, x) + ewc(t, x).
e Equation for w,.
o Approximation of w, by an iterative scheme (w).

@ Energy estimates:

Lemma

Weighted norm : ||w||2.) = |[e = w||
Assumptions : |w||lsc < R and ||0jw¥||o < R
GeA{0,....,d—1})

1 C(R)

VA > Ao(R), VA |lwktt Pwh o, < —=2
o(R), VA ﬁ” flon < iy Igll2,A

l2.x +

o (w*) bounded sequence (for some norms).

@ Existence of w, = limy_ oo wX.




(wx v Numerical test (2nd order FV scheme)

Manufactured solution :

HYP 2012
—x2
N(t,x)|= expili———
I{hr‘jg‘;j 0.16(t + 1)
LATP, June X —x2
28, 2012 I(t,x) = sin (—) expl [l
(&2 0.8 0.16(t + 1)
Thick blue : N(1,), Black : Gamma(1,x), Red : M(1,x), epsilon=1e~1
N(—x)=N(x) N
I (—x)==I(x) f
09+ e
0.8 -
First Approach 0rd
Optimal ] N
penalization 064 ST—
0.5+
o] 04 05 X o4
0.3
0.2:
Computations up to 0]
t:]. 0,7“““‘\“‘\w\w\w\‘
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
) —10-5 "
Mesh Step- ox =10 Continuous lines : Approximate solution (¢ = 0.1)

Dashed lines : exact solution.
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+ :in the plasma, x : in the limiter, o: x-derivative in the plasma, *:x-derivative in the limiter (Delta_x= 1e-05)
0
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L1-error for N and dN/dx

ot T T T T T T T

10 J T 3 " 3 T Y

10 10 10 10 10 10 10 10
epsilon

LY error for N and 9, N as a function of ¢.

Optimal convergence rate for N and OxN: O(¢)
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L2-error for N and dN/dx

Non

+ :in the plasma, x : in the limiter, o: x-derivative in the plasma, *:x-derivative in the limiter (Delta_x= 1e-05)
0 _

10 B e e L L A e e e L e MELALmEASL e e ]

10 10 10 10 10 10 10 10
epsilon

L? error for N and 9, N as a function of ¢.

optimal rate for 9N in L? norm : Artefact ?

20



(wxmereile Two interfaces and transport of N

HYP 2012

Thomas
AUPHAN,
LATP, June
28, 2012

First Approach

Optimal
penalization

Two faces

M,=1-n M,=—1+n
-
N <« N
FOa—
0.5 50.1.1 01 0.5

Concentration of N\ at the center !
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Prevent information from crossing the limiter

My=1-n M,=—1+n
N N
0.5 oFl I} oF 05 x
N N A 0 e
o )ro(er (7)) +3( 50w ) -
a(x) is
@ Smooth.

@ = 1 inside the plasma area and in a neighbourhood of the
interface.

@ = 0 in the central area of the limiter.

16
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05 ok o 05 x

Idea from Greenberg-Le Roux (o = unknown):

N N N 0 Sn

a4l ARl B o, (| TS {& R 1 S
{5 0

« « « 0 0

Scheme VFRoe ncv + 2" order extensions

Periodic boundary conditions at x = £0.5.
Step : dx = 10=>.
Computations up to t = 1.



(wxvereite - Numerical tests for the two faces limiter

Thick blue : N(1,x), Black : Gamma(1,x), Red : M(1,x), epsilon=1e-1

HYP 2012
Thomas 15 i
AUPHAN, i
LATP, June B
28, 2012 1.0 J
0.5+
First Approach 0.0
Optimal 4
penalization
Two faces bl
-0.51
-1.0q
-15 T T T T T T T T T T T T T T
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Continuous lines : Approximate solution (¢ = 0.1). 18/20
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@ Penalization of a single field.
o Well-defined terms.
o @ No boundary layer and optimal convergence rate.
rst Approach
penaeation @ Penalization of the two sides limiter.
o faces @ More equations to model : the energy, the current.
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The End

Thant you for
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