## Generalizing the Bardos-LeRoux-Nédélec boundary condition for scalar conservation laws

Boris Andreianov Karima Sbihi

Université de Franche-Comté, France

14th HYP conference - Padova, Italy - July 2012

#### Plan of the talk

- Conservation law with dissipative boundary conditions
- Bardos-LeRoux-Nédélec condition. Alternative formulations
- 3 The Effective Boundary-Condition graph
- Definition of solution (a first approach)
- 5 Uniqueness, comparison, L<sup>1</sup> contraction
- 6 Equivalent definition of solution
- Existence. Justification by convergence of approximations

The problem BLN condition & Alternatives Effective BC graph Definition Uniqueness Definition Bis Existence & Convergence of Approximations

# THE PROBLEM

#### Problem considered.

Our problem is:

$$(H) \begin{cases} u_t + \operatorname{div} \varphi(u) = 0 & \text{in } Q := (0, T) \times \Omega \\ u(0, \cdot) = u_0 & \text{on } \Omega \\ \varphi_{\nu}(u) := \varphi(u) \cdot \nu \in \beta_{(t,x)(u)} & \text{on } \Sigma := (0, T) \times \partial\Omega, \end{cases}$$

- $\Omega$  : domain of  $\mathbb{R}^N$  with Lipschitz boundary; T > 0
- φ : z ∈ ℝ ↦ (φ<sub>1</sub>(z), φ<sub>2</sub>(z), · · · , φ<sub>N</sub>(z)) ∈ ℝ<sup>N</sup> is Lipschitz, normalized by φ(0) = 0

•  $u_0 \in L^{\infty}(\Omega)$ 

#### Problem considered.

Our problem is:

$$(H) \begin{cases} u_t + \operatorname{div} \varphi(u) = 0 & \text{in } Q := (0, T) \times \Omega \\ u(0, \cdot) = u_0 & \text{on } \Omega \\ \varphi_{\nu}(u) := \varphi(u) \cdot \nu \in \beta_{(t, x)(u)} & \text{on } \Sigma := (0, T) \times \partial\Omega, \end{cases}$$

- $\Omega$  : domain of  $\mathbb{R}^N$  with Lipschitz boundary; T > 0
- φ : z ∈ ℝ ↦ (φ<sub>1</sub>(z), φ<sub>2</sub>(z), · · · , φ<sub>N</sub>(z)) ∈ ℝ<sup>N</sup> is Lipschitz, normalized by φ(0) = 0
- $u_0 \in L^{\infty}(\Omega)$
- $\nu$  : the unit outward normal vector on  $\partial \Omega$
- β<sub>(t,x)</sub>(.) : a "Caratheodory" family of maximal monotone graphs on R

#### Important particular cases

Dissipative boundary conditions  $\varphi_{\nu}(u) \in \beta_{(t,x)}(u)$  include:

• the Dirichlet condition  $u = u^{D}(t, x)$  on  $\Sigma$ :

$$\beta_{(t,x)} = \{ u^{\mathcal{D}}(t,x) \} \times \mathbb{R},$$

(C. Bardos, A.-Y. Le Roux and J.-C. Nédélec ('79); F. Otto ('96), J. Carrillo ('99))

#### Important particular cases

Dissipative boundary conditions  $\varphi_{\nu}(u) \in \beta_{(t,x)}(u)$  include:

• the Dirichlet condition  $u = u^{D}(t, x)$  on  $\Sigma$ :

$$\beta_{(t,x)} = \{ u^{\mathcal{D}}(t,x) \} \times \mathbb{R},$$

(C. Bardos, A.-Y. Le Roux and J.-C. Nédélec ('79); F. Otto ('96), J. Carrillo ('99))

• the Neumann (zero-flux) condition  $\varphi(u) \cdot \nu = 0$  on  $\Sigma$ :

$$\beta_{(t,x)} = \mathbb{R} \times \{\mathbf{0}\},\$$

(R. Bürger, H. Frid and K.H. Karlsen ('07), for  $\varphi(0) = 0 = \varphi(1)$ )

#### Important particular cases

Dissipative boundary conditions  $\varphi_{\nu}(u) \in \beta_{(t,x)}(u)$  include:

• the Dirichlet condition  $u = u^{D}(t, x)$  on  $\Sigma$ :

$$\beta_{(t,x)} = \{ u^{\mathcal{D}}(t,x) \} \times \mathbb{R},$$

(C. Bardos, A.-Y. Le Roux and J.-C. Nédélec ('79); F. Otto ('96), J. Carrillo ('99))

• the Neumann (zero-flux) condition  $\varphi(u) \cdot \nu = 0$  on  $\Sigma$ :

$$\beta_{(t,x)} = \mathbb{R} \times \{\mathbf{0}\},\$$

(R. Bürger, H. Frid and K.H. Karlsen ('07), for  $\varphi(0) = 0 = \varphi(1)$ )

- Mixed Dirichlet-Neumann boundary conditions, Robin boundary conditions,...
- obstacle boundary conditions
- ...and many other boundary conditions (BC), less practical but still interesting, mathematically.

# THE BLN CONDITION AND ALTERNATIVE FORMULATIONS

#### The BLN condition...

Let us recall the Bardos-Le Roux-Nédélec result in the case of homogenous Dirichlet condition ( $u^D \equiv 0, \beta = \{0\} \times \mathbb{R}$ );

For *BV* (bounded variation) data  $u_0$  there exists a unique function  $u \in L^{\infty} \cap \text{BV}((0, T) \times \Omega)$  such that

•  $\forall \mathbf{k} \in \mathbb{R}, \forall \xi \in C^{\infty}_{c}([0, T) \times \Omega)$ 

$$\int_{Q} |u - k| \xi_{t} + \int_{\Omega} |u_{0} - k| \xi(0)$$
$$+ \int_{Q} \operatorname{sign}(u - k)(\varphi(u) - \varphi(k)) \cdot \nabla \xi \ge 0$$

(use of Kruzhkov entropy pairs away from the boundary)

#### The BLN condition...

Let us recall the Bardos-Le Roux-Nédélec result in the case of homogenous Dirichlet condition ( $u^D \equiv 0, \beta = \{0\} \times \mathbb{R}$ );

For *BV* (bounded variation) data  $u_0$  there exists a unique function  $u \in L^{\infty} \cap \text{BV}((0, T) \times \Omega)$  such that

•  $\forall \mathbf{k} \in \mathbb{R}, \forall \xi \in C^{\infty}_{c}([0, T) \times \Omega)$ 

$$\int_{Q} |u - k| \xi_{t} + \int_{\Omega} |u_{0} - k| \xi(0)$$
$$+ \int_{Q} \operatorname{sign}(u - k)(\varphi(u) - \varphi(k)) \cdot \nabla \xi \ge 0$$

(use of Kruzhkov entropy pairs away from the boundary) • on the boundary: u has a strong trace  $\gamma u$  such that

 $(BLN) \quad \begin{cases} \text{for all } k \in [\min(0, \gamma u), \max(0, \gamma u)], \\ \text{sign}(\gamma u)(\varphi(\gamma u) \cdot \nu - \varphi(k) \cdot \nu) \ge 0 \text{ a.e. on } \Sigma. \end{cases}$ 

Example. Dimension one,  $\Omega = [0, 1]$ , the linear case :

we consider  $\varphi(z) := z$  and the homogeneous Dirichlet datum  $u^D := 0$ .

In this case, we have the problem  $u_t + u_x = 0$ ,  $u|_{t=0} = u_0$  and condition (*BLN*) reads :

- at the point x = 0,  $\gamma u = 0$ ;
- at the point x = 1,  $\gamma u$  is arbitrary.

Example. Dimension one,  $\Omega = [0, 1]$ , the linear case :

we consider  $\varphi(z) := z$  and the homogeneous Dirichlet datum  $u^D := 0$ .

In this case, we have the problem  $u_t + u_x = 0$ ,  $u|_{t=0} = u_0$  and condition (*BLN*) reads :

- at the point x = 0,  $\gamma u = 0$ ;
- at the point x = 1,  $\gamma u$  is arbitrary.

Solutions are limits of vanishing viscosity approximation:

$$u = \lim_{\varepsilon \downarrow 0} u^{\varepsilon}, \ u^{\varepsilon}_t + u^{\varepsilon}_x = \varepsilon u^{\varepsilon}_{xx}, \ u^{\varepsilon}|_{t=0} = u_0 \text{ and } u^{\varepsilon}|_{x=0} = 0 = u^{\varepsilon}|_{x=1}.$$

Example. Dimension one,  $\Omega = [0, 1]$ , the linear case :

we consider  $\varphi(z) := z$  and the homogeneous Dirichlet datum  $u^D := 0$ .

In this case, we have the problem  $u_t + u_x = 0$ ,  $u|_{t=0} = u_0$  and condition (*BLN*) reads :

- at the point x = 0,  $\gamma u = 0$ ;
- at the point x = 1,  $\gamma u$  is arbitrary.

Solutions are limits of vanishing viscosity approximation:

$$u = \lim_{\varepsilon \downarrow 0} u^{\varepsilon}, \ u^{\varepsilon}_t + u^{\varepsilon}_x = \varepsilon u^{\varepsilon}_{xx}, \ u^{\varepsilon}|_{t=0} = u_0 \text{ and } u^{\varepsilon}|_{x=0} = 0 = u^{\varepsilon}|_{x=1}.$$

But the sequence  $(u^{\varepsilon})_{\varepsilon}$  develops a boundary layer as  $\varepsilon \downarrow 0$ : in a layer of thickness  $\overline{\overline{o}}_{\varepsilon\downarrow 0}(1)$  near the boundary point x = 1,  $u^{\varepsilon}$  undergoes a change of order  $\overline{\overline{O}}(1)$  and passes from the prescribed value zero to some value  $\widetilde{u}^{\varepsilon}$ . The sequence  $\widetilde{u}^{\varepsilon}$  does converge to a value  $\gamma u$  satisfying condition (*BLN*).

Example. Dimension one,  $\Omega = [0, 1]$ , the linear case :

we consider  $\varphi(z) := z$  and the homogeneous Dirichlet datum  $u^D := 0$ .

In this case, we have the problem  $u_t + u_x = 0$ ,  $u|_{t=0} = u_0$  and condition (*BLN*) reads :

- at the point x = 0,  $\gamma u = 0$ ;
- at the point x = 1,  $\gamma u$  is arbitrary.

Solutions are limits of vanishing viscosity approximation:

 $u = \lim_{\varepsilon \downarrow 0} u^{\varepsilon}, \ u^{\varepsilon}_t + u^{\varepsilon}_x = \varepsilon u^{\varepsilon}_{xx}, \ u^{\varepsilon}|_{t=0} = u_0 \text{ and } u^{\varepsilon}|_{x=0} = 0 = u^{\varepsilon}|_{x=1}.$ 

But the sequence  $(u^{\varepsilon})_{\varepsilon}$  develops a boundary layer as  $\varepsilon \downarrow 0$ : in a layer of thickness  $\overline{\overline{o}}_{\varepsilon\downarrow 0}(1)$  near the boundary point x = 1,  $u^{\varepsilon}$  undergoes a change of order  $\overline{\overline{O}}(1)$  and passes from the prescribed value zero to some value  $\widetilde{u}^{\varepsilon}$ . The sequence  $\widetilde{u}^{\varepsilon}$  does converge to a value  $\gamma u$  satisfying condition (*BLN*).

Thus, the "formal BC"  $u|_{\Sigma} = 0$  is transformed into an "effective BC" expressed by the Bardos-LeRoux-Nédélec condition.

#### Alteratives to the BLN approach...

Essential feature of the Bardos-LeRoux-Nédélec framework: existence of strong traces of u on the boundary  $\Sigma$ .

This is achieved by ensuring that u belongs to the space BV. This is natural for the Dirichlet BC but BV is not a natural space e.g. for the zero-flux BC. Yet the BV framework can be bypassed in many ways.

#### Alteratives to the BLN approach...

Essential feature of the Bardos-LeRoux-Nédélec framework: existence of strong traces of u on the boundary  $\Sigma$ .

This is achieved by ensuring that u belongs to the space BV. This is natural for the Dirichlet BC but BV is not a natural space e.g. for the zero-flux BC. Yet the BV framework can be bypassed in many ways.

 (F. Otto ('96)) notion of a boundary entropy-entropy flux pair and use of weak traces (they always exist) to give L<sup>∞</sup> theory. In the present work, we will not pursue this line.

#### Alteratives to the BLN approach...

Essential feature of the Bardos-LeRoux-Nédélec framework: existence of strong traces of u on the boundary  $\Sigma$ .

This is achieved by ensuring that u belongs to the space BV. This is natural for the Dirichlet BC but BV is not a natural space e.g. for the zero-flux BC. Yet the BV framework can be bypassed in many ways.

- (F. Otto ('96)) notion of a boundary entropy-entropy flux pair and use of weak traces (they always exist) to give L<sup>∞</sup> theory. In the present work, we will not pursue this line.
- (J. Carrillo ('99)) (for general degenerate parabolic eqns) for the homogeneous Dirichlet BC only, a subtle choice of up-to-the boundary entropy inequalities with standard entropy-flux pairs. Indeed, "semi-Kruzhkov" (or Serre) entropies  $(u k)^{\pm}$  are used, test functions do not vanish on the boundary but
  - while dealing with  $(u k)^+$ , one takes  $k \in \mathcal{K}_+ := \{k \in \mathbb{R}, k \ge 0\} \equiv \{k \in \mathbb{R} \mid \varphi_{\nu}(k) \le \sup \beta(k)\};$
  - while dealing with  $(u k)^-$ , one takes  $k \in \mathcal{K}_- := \{k \in \mathbb{R}, k \le 0\} \equiv \{k \in \mathbb{R} \mid \varphi_\nu(k) \ge \inf \beta(k)\}.$
  - $\Rightarrow$  our (second) definition is similar; sets  $\mathcal{K}_{\pm}$  are crucial.

...Alternatives to BLN approach, boundary traces...

• (A. Vasseur ('01), E.Yu. Panov ('07)) revival of the original BLN strong-trace formulation: the strong trace of a merely  $L^{\infty}$ entropy solution *u* does exist !!! (a bit less than this, but still sufficient for our needs...)

#### ...Alternatives to BLN approach, boundary traces...

• (A. Vasseur ('01), E.Yu. Panov ('07)) revival of the original BLN strong-trace formulation: the strong trace of a merely  $L^{\infty}$  entropy solution *u* does exist !!! (a bit less than this, but still sufficient for our needs...)

This subtle "regularity" result for entropy solutions comes along with compactifying effects of the non-linearity  $\varphi$  (P.L. Lions, B. Perthame, and E. Tadmor ('94), E.Yu. Panov ('94)).

The problem BLN condition & Alternatives Effective BC graph Definition Uniqueness Definition Bis Existence & Convergence of Approximations

## EFFECTIVE BC GRAPH

#### The BLN condition and its extrapolation.

Our goal is to generalize condition (*BLN*) by replacing  $\beta = \{0\} \times \mathbb{R}$  with a general maximal monotone graph.

Let us first reformulate the boundary condition as :

$$(\widetilde{u}, \varphi_{\nu}(\widetilde{u})) \in \widetilde{\beta}_{(t,x)}$$
 (i.e.,  $\varphi_{\nu}(u) \in \widetilde{\beta}_{(t,x)}(u)$ ),

where  $\tilde{\beta}_{(t,x)}$  is the following maximal monotone subgraph of  $\varphi_{\nu}(.)$ : (Dubois,LeFloch):

$$\widetilde{\beta}_{(t,x)} := \left\{ (z, \varphi_{\nu}(z)) \middle| \begin{array}{l} \operatorname{sign}(z)(\varphi_{\nu}(z) - \varphi_{\nu}(k)) \ge 0 \\ \text{for all } k \in [\min(0, z), \max(0, z)] \end{array} \right\}$$

#### The BLN condition and its extrapolation.

Our goal is to generalize condition (*BLN*) by replacing  $\beta = \{0\} \times \mathbb{R}$  with a general maximal monotone graph.

Let us first reformulate the boundary condition as :

$$(\widetilde{u}, \varphi_{\nu}(\widetilde{u})) \in \widetilde{\beta}_{(t,x)}$$
 (i.e.,  $\varphi_{\nu}(u) \in \widetilde{\beta}_{(t,x)}(u)$ ),

where  $\tilde{\beta}_{(t,x)}$  is the following maximal monotone subgraph of  $\varphi_{\nu}(.)$ : (Dubois,LeFloch):

$$\widetilde{\beta}_{(t,x)} := \left\{ (z, \varphi_{\nu}(z)) \middle| \begin{array}{l} \operatorname{sign}(z)(\varphi_{\nu}(z) - \varphi_{\nu}(k)) \ge 0 \\ \text{for all } k \in [\min(0, z), \max(0, z)] \end{array} \right\}$$

Intuition + heuristics + particular cases (in particular, our previous works A., Sbihi '07,'08)  $\Rightarrow$  we associate to a general graph  $\beta_{(t,x)}$  the "projected graph"  $\tilde{\beta}_{(t,x)}$  characterized as (wait for pictures)

 $\widetilde{\beta}_{(t,x)}$  is the "closest" to  $\beta_{(t,x)}$  maximal monotone subgraph of the graph of the function  $\varphi_{\nu(x)} = \varphi \cdot \nu(x)$  that contains the points of crossing of  $\beta_{(t,x)}(\cdot)$  with  $\varphi_{\nu}(\cdot)$ .



#### Properties of the "effective BC graph" $\hat{\beta}$

The graph  $\tilde{\beta}$  can be characterized in several ways:

- using upper and lower increasing envelopes of  $\varphi_{
  u}(\cdot)$
- using the sets  $\mathcal{K}_+ := \left\{ k \in \mathbb{R} \, \big| \, \varphi_{\nu}(k) \leq \sup \beta(k) \right\}$

and  $\mathcal{K}_{-} := \{ k \in \mathbb{R} \mid \varphi_{\nu}(k) \geq \inf \beta(k) \}$  with semi-Kruzhkov fluxes:

 $z \in Dom \widetilde{\beta} \iff \forall k \in \mathcal{K}_{\pm} \ q^{\pm}(z,k) \geq 0.$ 

#### Properties of the "effective BC graph" $\widetilde{\beta}$

The graph  $\tilde{\beta}$  can be characterized in several ways:

– using upper and lower increasing envelopes of  $\varphi_{\nu}(\cdot)$ 

- using the sets  $\mathcal{K}_+ := \left\{ k \in \mathbb{R} \, \big| \, \varphi_{\nu}(k) \leq \sup \beta(k) \right\}$ 

and  $\mathcal{K}_{-} := \{ k \in \mathbb{R} \mid \varphi_{\nu}(k) \geq \inf \beta(k) \}$  with semi-Kruzhkov fluxes:

 $z \in Dom \widetilde{\beta} \iff \forall k \in \mathcal{K}_{\pm} \ q^{\pm}(z,k) \geq 0.$ 

Some important properties of  $\tilde{\beta}$ :

•  $\widetilde{\beta}$  has a unique maximal monotone (on  $\mathbb{R}$ ) extension; denote it  $\widetilde{\mathcal{B}}$ ;  $\widetilde{\beta}$  is the common part of  $\widetilde{\mathcal{B}}$  and the graph of  $\varphi_{\nu}$ 

#### Properties of the "effective BC graph" $\widetilde{\beta}$

The graph  $\tilde{\beta}$  can be characterized in several ways:

– using upper and lower increasing envelopes of  $\varphi_{\nu}(\cdot)$ 

- using the sets  $\mathcal{K}_+ := \left\{ k \in \mathbb{R} \, \big| \, \varphi_
u(k) \leq \sup eta(k) 
ight\}$ 

and  $\mathcal{K}_{-} := \{ k \in \mathbb{R} \mid \varphi_{\nu}(k) \geq \inf \beta(k) \}$  with semi-Kruzhkov fluxes:

 $z \in Dom \widetilde{\beta} \iff \forall k \in \mathcal{K}_{\pm} \ q^{\pm}(z,k) \geq 0.$ 

Some important properties of  $\tilde{\beta}$ :

- $\widetilde{\beta}$  has a unique maximal monotone (on  $\mathbb{R}$ ) extension; denote it  $\widetilde{\mathcal{B}}$ ;  $\widetilde{\beta}$  is the common part of  $\widetilde{\mathcal{B}}$  and the graph of  $\varphi_{\nu}$
- Operation  $\sim : \beta \mapsto \widetilde{\mathcal{B}}$  is a projection

#### Properties of the "effective BC graph" $\hat{\beta}$

The graph  $\tilde{\beta}$  can be characterized in several ways:

– using upper and lower increasing envelopes of  $\varphi_{\nu}(\cdot)$ 

- using the sets  $\mathcal{K}_+ := \left\{ k \in \mathbb{R} \, \big| \, \varphi_{\nu}(k) \leq \sup \beta(k) \right\}$
- and  $\mathcal{K}_{-} := \{k \in \mathbb{R} \mid \varphi_{\nu}(k) \geq \inf \beta(k)\}$  with semi-Kruzhkov fluxes:

 $z \in Dom \widetilde{eta} \iff \forall k \in \mathcal{K}_{\pm} \ q^{\pm}(z,k) \geq 0.$ 

### Some important properties of $\tilde{\beta}$ :

- $\widetilde{\beta}$  has a unique maximal monotone (on  $\mathbb{R}$ ) extension; denote it  $\widetilde{\mathcal{B}}$ ;  $\widetilde{\beta}$  is the common part of  $\widetilde{\mathcal{B}}$  and the graph of  $\varphi_{\nu}$
- Operation  $\sim : \beta \mapsto \widetilde{\mathcal{B}}$  is a projection
- One can introduce the distance "dist  $(\widetilde{\mathcal{B}}_1, \widetilde{\mathcal{B}}_2)$ " by taking  $\|\widetilde{\mathcal{B}}_1 \widetilde{\mathcal{B}}_2\|_{\infty}$ . And one can introduce the order relation " $\widetilde{\mathcal{B}}_1 \succeq \widetilde{\mathcal{B}}_2$ " by requiring  $\widetilde{\mathcal{B}}_1 \ge \widetilde{\mathcal{B}}_2$  pointwise
- One can define distance and order on graphs  $\beta$
- Then, operation "~" is continuous + order-preserving

The problem BLN condition & Alternatives Effective BC graph Definition Uniqueness Definition Bis Existence & Convergence of Approximations

## DEFINITION (PART I)

#### A first definition of entropy solution.

#### Definition

A function  $u \in L^{\infty}(Q)$  is called entropy solution for Problem (*H*) if •  $\forall k \in \mathbb{R}, \forall \xi \in C_c^{\infty}(Q), \xi \ge 0$ , the entropy inequalities inside  $\Omega$  hold :

$$\int_{Q} (u-k)^{\pm} \xi_t + \int_{Q} \operatorname{sign}^{\pm} (u-k) (\varphi(u) - \varphi(k)) \cdot \nabla \xi \ge 0$$

• The initial condition is satisfied in the strong trace sense

#### A first definition of entropy solution.

#### Definition

A function  $u \in L^{\infty}(Q)$  is called entropy solution for Problem (*H*) if •  $\forall k \in \mathbb{R}, \forall \xi \in C_c^{\infty}(Q), \xi \ge 0$ , the entropy inequalities inside  $\Omega$  hold :

$$\int_{Q} (u-k)^{\pm} \xi_t + \int_{Q} \operatorname{sign}^{\pm} (u-k) (\varphi(u) - \varphi(k)) \cdot \nabla \xi \ge 0$$

• The initial condition is satisfied in the strong trace sense

• The functions  $u, \varphi_{\nu}(u)$  admit  $L^1$  strong traces<sup>*a*</sup> on  $\Sigma$ , denoted  $\gamma u, \gamma \varphi_{\nu}(u)$  such that

$$(\gamma u, \gamma \varphi_{\nu}(u))(t, x) \in \widetilde{\beta}_{(t,x)}$$
 a.e.  $(t, x) \in \Sigma$ .

Here the graph  $\tilde{\beta}$  is the projection of  $\beta$  as defined above.

<sup>a</sup>This is ok under additional non-degeneracy assumption on  $\varphi$ . The general case is treated using strong trace of "singular mapping"  $V_{\varphi_{ij}}(u)$  (it always exists )

The problem BLN condition & Alternatives Effective BC graph Definition Uniqueness Definition Bis Existence & Convergence of Approximations

# Existence ?? Oups..! UNIQUENESS AND COMPARISON: OK!

#### Existence..? Uniqueness, comparison, *L*<sup>1</sup> contraction.

Key drawback of this definition: stability by approximation seems very unlikely (convergence of  $u_{\varepsilon}$  to u in  $(0, T) \times \Omega$  does not imply anything about convergence of  $\gamma u_{\varepsilon}$ ...).  $\Rightarrow$  pb. for existence and justification<sup>1</sup>. But: it's fully ok for uniqueness!

<sup>&</sup>lt;sup>1</sup>solved in previous works A., Sbihi : very special cases of approximation.

#### Existence..? Uniqueness, comparison, *L*<sup>1</sup> contraction.

Key drawback of this definition: stability by approximation seems very unlikely (convergence of  $u_{\varepsilon}$  to u in  $(0, T) \times \Omega$  does not imply anything about convergence of  $\gamma u_{\varepsilon}$ ...).  $\Rightarrow$  pb. for existence and justification<sup>1</sup>. But: it's fully ok for uniqueness!

#### Theorem

If  $u, \hat{u}$  are entropy solutions for (H) with data  $u_0, \hat{u}_0$  respectively, then for all  $t \in (0, T)$   $\int_{\Omega} (u - \hat{u})^+ (t) \le \int_{\Omega} (u_0 - \hat{u}_0)^+$ . (L<sup>1</sup>C)

Remark. Thus we have uniqueness, comparison principle and  $L^1$  continuous dependence on the data  $u_0$  of the entropy solution.

<sup>&</sup>lt;sup>1</sup>solved in previous works A., Sbihi : very special cases of approximation.

#### Existence..? Uniqueness, comparison, L<sup>1</sup> contraction.

Key drawback of this definition: stability by approximation seems very unlikely (convergence of  $u_{\varepsilon}$  to u in  $(0, T) \times \Omega$  does not imply anything about convergence of  $\gamma u_{\varepsilon}$ ...).  $\Rightarrow$  pb. for existence and justification<sup>1</sup>. But: it's fully ok for uniqueness!

#### Theorem

If  $u, \hat{u}$  are entropy solutions for (H) with data  $u_0, \hat{u}_0$  respectively, then for all  $t \in (0, T)$   $\int_{\Omega} (u - \hat{u})^+ (t) \le \int_{\Omega} (u_0 - \hat{u}_0)^+$ . (L<sup>1</sup>C)

Remark. Thus we have uniqueness, comparison principle and  $L^1$  continuous dependence on the data  $u_0$  of the entropy solution.

We can prove a similar inequality for entropy solutions associated with two different "formal BC graphs"  $\beta$ ,  $\hat{\beta}$  (recall remarks on the distance and the order relation on such graphs). Then ( $L^1C$ ) still holds if  $\beta \succeq \hat{\beta}$ . In general, a distance term can be added to the right-hand side.

Thus we also have a stability result with respect to  $\beta$ !

<sup>1</sup> solved in previous works A., Sbihi : very special cases of approximation.

#### ...Uniqueness, comparison, $L^1$ contraction.

For the proof, by the Kruzhkov's doubling of variables argument applied "inside  $\Omega$ " one deduces the "local Kato inequality"

$$\int_{\Omega} (u-\hat{u})^+(t)\xi \leq \int_{\Omega} (u_0-\hat{u}_0)^+\xi(0,\cdot) + \int_0^t \int_{\Omega} q^+(u,\hat{u}) \cdot \nabla\xi$$
for all  $\xi \in \mathcal{D}([0,t] \times \Omega).$ 

#### ...Uniqueness, comparison, $L^1$ contraction.

For the proof, by the Kruzhkov's doubling of variables argument applied "inside  $\Omega$ " one deduces the "local Kato inequality"

$$\int_{\Omega} (u-\hat{u})^+(t)\xi \leq \int_{\Omega} (u_0-\hat{u}_0)^+\xi(0,\cdot) + \int_0^t \int_{\Omega} q^+(u,\hat{u}) \cdot \nabla\xi$$
for all  $\xi \in \mathcal{D}([0,t] \times \Omega).$ 

Take for  $\xi \in \mathcal{D}(\mathbb{R} \times \mathbb{R}^N)$  truncation-near-the-boundary functions  $\xi_h$ . We "pay" for this truncation with a new term which is "dissipative". Indeed,

(\*) as 
$$h \downarrow 0$$
,  $\int_0^t \int_\Omega q^+(u,\hat{u}) \cdot \nabla \xi_h \longrightarrow -\int_0^t \int_{\partial\Omega} \gamma_w q^+(u,\hat{u})$   
 $= -\int_0^t \int_{\partial\Omega} q^+(\gamma u,\gamma \hat{u}) \leq^{???} 0$ ,

#### ...Uniqueness, comparison, $L^1$ contraction.

For the proof, by the Kruzhkov's doubling of variables argument applied "inside  $\Omega$ " one deduces the "local Kato inequality"

$$\int_{\Omega} (u-\hat{u})^+(t)\xi \leq \int_{\Omega} (u_0-\hat{u}_0)^+\xi(0,\cdot) + \int_0^t \int_{\Omega} q^+(u,\hat{u}) \cdot \nabla\xi$$
for all  $\xi \in \mathcal{D}([0,t] \times \Omega).$ 

Take for  $\xi \in \mathcal{D}(\mathbb{R} \times \mathbb{R}^N)$  truncation-near-the-boundary functions  $\xi_h$ . We "pay" for this truncation with a new term which is "dissipative". Indeed,

(\*) as 
$$h \downarrow 0$$
,  $\int_0^t \int_\Omega q^+(u,\hat{u}) \cdot \nabla \xi_h \longrightarrow -\int_0^t \int_{\partial\Omega} \gamma_w q^+(u,\hat{u})$   
 $= -\int_0^t \int_{\partial\Omega} q^+(\gamma u,\gamma \hat{u}) \leq^{???} 0$ ,

By the trace condition of the Definition, both  $\gamma u$  and  $\gamma \hat{u}$  belong to the domain of a monotone subgraph of  $\varphi_{\nu}$ .

Then the the right-hand side of (\*) is non-positive. This yields the global Kato inequality; at the limit,  $\xi \equiv 1$  and we conclude.

### EQUIVALENT DEFINITION

### (STABLE UNDER POINTWISE CONVERGENCE)

#### Equivalent definition of solution

#### **Proposition (Entropy solution)**

Let  $u \in L^{\infty}$ . The assertions (i),(ii) are equivalent :

- (i) ("def. with traces") u is an entropy solution in the above sense
- (ii) ("def. a-la Carrillo" + technicalities ) The function u verifies:

$$\forall k \in \mathbb{R} \quad \forall \xi \in \mathcal{D}([0,T) \times \Omega)^+$$

$$\int_0^T \int_\Omega \left( -(u-k)^{\pm} \xi_t - q^{\pm}(u,k) \cdot \nabla \xi \right) - \int_\Omega (u_0-k)^{\pm} \xi(0,\cdot)$$

$$\leq \int \int_\Sigma C_k \wedge \left( \beta_{(t,x)}(k) - \varphi_{\nu(x)}(k) \right)^{\mp} \xi(t,x).$$

Here,  $C_k$  is a constant that depends on  $||u||_{\infty}$  and on k.

#### Equivalent definition of solution

#### **Proposition (Entropy solution)**

Let  $u \in L^{\infty}$ . The assertions (i),(ii) are equivalent :

(i) ("def. with traces") u is an entropy solution in the above sense

(ii) ("def. a-la Carrillo" + technicalities ) The function u verifies:

$$\forall k \in \mathbb{R} \quad \forall \xi \in \mathcal{D}([0, T) \times \Omega)^+$$

$$\int_0^T \int_\Omega \left( -(u-k)^{\pm} \xi_t - q^{\pm}(u, k) \cdot \nabla \xi \right) - \int_\Omega (u_0 - k)^{\pm} \xi(0, \cdot)$$

$$\leq \int \int_\Sigma C_k \wedge \left( \beta_{(t,x)}(k) - \varphi_{\nu(x)}(k) \right)^{\mp} \xi(t, x).$$

*Here,*  $C_k$  *is a constant that depends on*  $||u||_{\infty}$  *and on* k *.* 

And if the sets  $\Sigma^{\pm}(k) := \{(t, x) \in \Sigma \mid k \in \mathcal{K}_{\pm}(t, x)\}$  are "regular enough" then (i),(ii) are also equivalent to

(ii') ("def. a-la Carrillo") The function u verifies

$$\forall k \in \mathbb{R} \ \forall \xi \in \mathcal{D}([0,T) \times \overline{\Omega})^+ \ \text{such that } \xi|_{\Sigma \setminus \Sigma^{\pm}(k)} = 0 \\ \int_0^T \int_{\Omega} (-(u-k)^{\pm} \xi_t - q^{\pm}(u,k) \cdot \nabla \xi) - \int_{\Omega} (u_0-k)^{\pm} \xi(0,\cdot) \leq 0.$$

## EXISTENCE OF ENTROPY SOLUTIONS. JUSTIFICATION OF THE SOLUTION NOTION BY CONVERGENCE OF APPROXIMATIONS.

#### Technique and assumptions to ensure compactness + convergence

All our existence results follow the same scheme:

 approximate (*H*) by some "simpler" problems (*H*<sub>ε</sub>), solved at previous step (⇒ we will use "multi-layer" approximations<sup>2</sup>)

<sup>2</sup>A convincing justification of the solution notion: vanishing viscosity limit ? Unfortunately, this does not work, e.g., for the zero-flux condition; the typical difficulty here is the loss of uniform  $L^{\infty}$  estimate.

#### Technique and assumptions to ensure compactness + convergence

All our existence results follow the same scheme:

- approximate (H) by some "simpler" problems (H<sub>ε</sub>), solved at previous step (⇒ we will use "multi-layer" approximations<sup>2</sup>)
- ensure uniform  $L^{\infty}$  estimates :

under assumptions on existence of constant sub/super solutions

 consequently, get compactness of approximate solutions u<sub>ε</sub> under non-degeneracy assumption on φ(.)

<sup>2</sup>A convincing justification of the solution notion: vanishing viscosity limit ? Unfortunately, this does not work, e.g., for the zero-flux condition; the typical difficulty here is the loss of uniform  $L^{\infty}$  estimate.

#### Technique and assumptions to ensure compactness + convergence

All our existence results follow the same scheme:

- approximate (H) by some "simpler" problems (H<sub>ε</sub>), solved at previous step (⇒ we will use "multi-layer" approximations<sup>2</sup>)
- ensure uniform  $L^{\infty}$  estimates :

under assumptions on existence of constant sub/super solutions

- consequently, get compactness of approximate solutions u<sub>ε</sub> under non-degeneracy assumption on φ(.)
- write up-to-the-boundary entropy inequalities for  $(H_{\varepsilon})$

finally, pass to the limit in the boundary term of this inequality

In the last steps, the second entropy formulation (ii) is instrumental.

<sup>&</sup>lt;sup>2</sup>A convincing justification of the solution notion: vanishing viscosity limit ? Unfortunately, this does not work, e.g., for the zero-flux condition; the typical difficulty here is the loss of uniform  $L^{\infty}$  estimate.

Look at "parabolic up-to-the-boundary entropy inequality"

$$\int_{0}^{T} \int_{\Omega} \left( -(u^{\varepsilon} - k)^{+} \xi_{t} - q^{+}(u^{\varepsilon}, k) \cdot \nabla \xi \right) - \int_{\Omega} (u_{0} - k)^{+} \xi(0, \cdot)$$
  
$$\leq -\int_{\Sigma} \operatorname{sign}^{+} (u^{\varepsilon} - k) \left( b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k) \right) \xi - \varepsilon \int_{0}^{T} \int_{\Omega} sign^{+} (u^{\varepsilon} - k) \nabla u^{\varepsilon} \cdot \nabla \xi$$

with some  $b^{arepsilon}(t,x)\ineta_{(t,x)}(u^{arepsilon})$  (the flux value at the boundary) .

Look at "parabolic up-to-the-boundary entropy inequality"

$$\int_{0}^{T} \int_{\Omega} \left( -(u^{\varepsilon} - k)^{+} \xi_{t} - q^{+}(u^{\varepsilon}, k) \cdot \nabla \xi \right) - \int_{\Omega} (u_{0} - k)^{+} \xi(0, \cdot)$$
  
$$\leq -\int_{\Sigma} \operatorname{sign}^{+} (u^{\varepsilon} - k) \left( b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k) \right) \xi - \varepsilon \int_{0}^{T} \int_{\Omega} sign^{+} (u^{\varepsilon} - k) \nabla u^{\varepsilon} \cdot \nabla \xi$$

with some  $b^{\varepsilon}(t,x) \in \beta_{(t,x)}(u^{\varepsilon})$  (the flux value at the boundary). In the right-hand side, by the monotonicity of  $\beta_{(t,x)}$  we have the multi-valued inequality

 $- \operatorname{sign}^+(u^{\varepsilon} - k)(b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k)) \leq (\beta_{(t,x)}(k) - \varphi_{\nu(x)}(k))^{-1}$ 

fulfilled pointwise on  $\Sigma$ .

Look at "parabolic up-to-the-boundary entropy inequality"

$$\int_{0}^{T} \int_{\Omega} \left( -(u^{\varepsilon} - k)^{+} \xi_{t} - q^{+}(u^{\varepsilon}, k) \cdot \nabla \xi \right) - \int_{\Omega} (u_{0} - k)^{+} \xi(0, \cdot)$$
  
$$\leq -\int_{\Sigma} \operatorname{sign}^{+} (u^{\varepsilon} - k) \left( b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k) \right) \xi - \varepsilon \int_{0}^{T} \int_{\Omega} sign^{+} (u^{\varepsilon} - k) \nabla u^{\varepsilon} \cdot \nabla \xi$$

with some  $b^{\varepsilon}(t,x) \in \beta_{(t,x)}(u^{\varepsilon})$  (the flux value at the boundary). In the right-hand side, by the monotonicity of  $\beta_{(t,x)}$  we have the multi-valued inequality

 $- \operatorname{sign}^+(u^{\varepsilon} - k)(b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k)) \leq (\beta_{(t,x)}(k) - \varphi_{\nu(x)}(k))^{-1}$ 

fulfilled pointwise on  $\Sigma$ . But: the quantity in the right-hand side can be infinite, which makes problematic the localization arguments! Still...

Look at "parabolic up-to-the-boundary entropy inequality"

$$\int_{0}^{T} \int_{\Omega} \left( -(u^{\varepsilon} - k)^{+} \xi_{t} - q^{+}(u^{\varepsilon}, k) \cdot \nabla \xi \right) - \int_{\Omega} (u_{0} - k)^{+} \xi(0, \cdot)$$
  
$$\leq -\int_{\Sigma} \operatorname{sign}^{+} (u^{\varepsilon} - k) \left( b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k) \right) \xi - \varepsilon \int_{0}^{T} \int_{\Omega} sign^{+} (u^{\varepsilon} - k) \nabla u^{\varepsilon} \cdot \nabla \xi$$

with some  $b^{\varepsilon}(t,x) \in \beta_{(t,x)}(u^{\varepsilon})$  (the flux value at the boundary). In the right-hand side, by the monotonicity of  $\beta_{(t,x)}$  we have the multi-valued inequality

 $- \operatorname{sign}^+(u^{\varepsilon} - k)(b^{\varepsilon}(t, x) - \varphi_{\nu(x)}(k)) \leq (\beta_{(t,x)}(k) - \varphi_{\nu(x)}(k))^-$ 

fulfilled pointwise on  $\Sigma$ . But: the quantity in the right-hand side can be infinite, which makes problematic the localization arguments! Still...

⇒ first convergence result: OK for  $\underline{\beta}_{(t,x)} = \widetilde{\mathcal{B}} =$  subgraph of  $\varphi_{\nu}$ ⇒ existence ("dishonest proof") for almost general graph  $\beta_{(t,x)}$ under ad hoc assumptions that ensure  $L^{\infty}$  bound on sols.

Goal: prove "honestly" existence of solutions : that is, explain appearance of  $\tilde{\beta}_{(t,x)}$  by passing to the limit from problems set up with graph  $\beta_{(t,x)}$ .

• Assume existence of sequences of constant sub- and supersolutions:

$$A_m^+$$
 super-sol.,  $\lim_{m \to \infty} A_m^+ = +\infty$  and  $A_m^-$  sub-sol.,  $\lim_{m \to \infty} A_m^- = -\infty$ 

Goal: prove "honestly" existence of solutions : that is, explain appearance of  $\tilde{\beta}_{(t,x)}$  by passing to the limit from problems set up with graph  $\beta_{(t,x)}$ .

• Assume existence of sequences of constant sub- and supersolutions:

$$A_m^+$$
 super-sol.,  $\lim_{m \to \infty} A_m^+ = +\infty$  and  $A_m^-$  sub-sol.,  $\lim_{m \to \infty} A_m^- = -\infty$ 

- Truncate the domain of β<sub>(t,x)</sub> at levels A<sup>±</sup><sub>m</sub> ("obstacles") then truncate the values at levels ± max<sub>[A<sup>−</sup><sub>m</sub>,A<sup>+</sup><sub>m</sub>]</sub> |φ| ("bounded-flux"). ⇒ graphs T<sub>m</sub>β<sub>(t,x)</sub>
- For a truncated graph  $\mathcal{T}_m\beta_{(t,x)}$ , vanishing viscosity approx. converge towards the entropy solution, with  $\widetilde{\mathcal{T}_m\beta}_{(t,x)}$  appearing naturally

Goal: prove "honestly" existence of solutions : that is, explain appearance of  $\tilde{\beta}_{(t,x)}$  by passing to the limit from problems set up with graph  $\beta_{(t,x)}$ .

• Assume existence of sequences of constant sub- and supersolutions:

$$A_m^+$$
 super-sol.,  $\lim_{m \to \infty} A_m^+ = +\infty$  and  $A_m^-$  sub-sol.,  $\lim_{m \to \infty} A_m^- = -\infty$ 

- Truncate the domain of β<sub>(t,x)</sub> at levels A<sup>±</sup><sub>m</sub> ("obstacles") then truncate the values at levels ± max<sub>[A<sup>−</sup><sub>m</sub>,A<sup>+</sup><sub>m</sub>]</sub> |φ| ("bounded-flux"). ⇒ graphs T<sub>m</sub>β<sub>(t,x)</sub>
- For a truncated graph  $\mathcal{T}_m\beta_{(t,x)}$ , vanishing viscosity approx. converge towards the entropy solution, with  $\widetilde{\mathcal{T}_m\beta}_{(t,x)}$  appearing naturally
- Pass to the limit (easy) from solutions  $u_m$  with  $\widetilde{\mathcal{T}_m\beta}_{(t,x)}$  to a solution u; and one has  $\lim_{t \to \infty} \widetilde{\mathcal{T}_m\beta}_{(t,x)} = \widetilde{\beta}_{(t,x)}$

(our projection "~" is continuous wrt natural perturbations of  $\beta_{(t,x)}!$ )

Goal: prove "honestly" existence of solutions : that is, explain appearance of  $\tilde{\beta}_{(t,x)}$  by passing to the limit from problems set up with graph  $\beta_{(t,x)}$ .

• Assume existence of sequences of constant sub- and supersolutions:

$$A_m^+$$
 super-sol.,  $\lim_{m \to \infty} A_m^+ = +\infty$  and  $A_m^-$  sub-sol.,  $\lim_{m \to \infty} A_m^- = -\infty$ 

- Truncate the domain of β<sub>(t,x)</sub> at levels A<sup>±</sup><sub>m</sub> ("obstacles") then truncate the values at levels ± max<sub>[A<sup>−</sup><sub>m</sub>,A<sup>+</sup><sub>m</sub>]</sub> |φ| ("bounded-flux"). ⇒ graphs T<sub>m</sub>β<sub>(t,x)</sub>
- For a truncated graph  $\mathcal{T}_m\beta_{(t,x)}$ , vanishing viscosity approx. converge towards the entropy solution, with  $\widetilde{\mathcal{T}_m\beta}_{(t,x)}$  appearing naturally
- Pass to the limit (easy) from solutions  $u_m$  with  $\widetilde{\mathcal{T}_m\beta}_{(t,x)}$  to a solution u; and one has  $\lim_{t \to \infty} \widetilde{\mathcal{T}_m\beta}_{(t,x)} = \widetilde{\beta}_{(t,x)}$

(our projection " ~ " is continuous wrt natural perturbations of  $\beta_{(t,x)}!$ )

- For a finer argument, monotone convergence can be used
- Alternative to truncations: (a more classical technique in the world of maximal monotone things): use (adapt) Yosida approximations of β<sub>(t,x)</sub>.

**References + Thanks** 

### Previous papers available at Imb.univ-fcomte.fr/Boris-Andreianov Preprint available on hal.archives-ouvertes.fr

## Thank you — Grazie !!!