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Plan of the talk

o Conservation law with dissipative boundary conditions

e Bardos-LeRoux-Nédélec condition. Alternative formulations
© The Effective Boundary-Condition graph

@ Definition of solution (a first approach)

e Uniqueness, comparison, L' contraction

@ Equivalent definition of solution

e Existence. Justification by convergence of approximations



THE PROBLEM



The problem

Problem considered.

Our problem is:

us + div o(u) = in Q:=(0,T)xQ
(H)< u(0,-) = on Q
Q.QV(U) = ( ) Ve ﬁ(f_x)(u) on ¥ = (O7 T) X 897

@ Q : domain of RN with Lipschitz boundary; T > 0

@ p:ze R (p1(2),92(2), - ,on(2)) € RN is Lipschitz,
normalized by ¢(0) =0

@ Uy € L~(Q)



The problem

Problem considered.

Our problem is:

us + div o(u) = in Q:=(0,T)xQ
(H)yq u(0,:)=up on Q
Q.QV(U) = ( ) IS ﬁ(f_x)(u) on Y := (O7 T) x 0%,

@ Q : domain of RN with Lipschitz boundary; T > 0

@ p:ze R (p1(2),92(2), - ,on(2)) € RN is Lipschitz,
normalized by ¢(0) =0

@ Uy € L~(Q)
@ v : the unit outward normal vector on 992
@ [(1,x)(.) : a “Caratheodory” family

of maximal monotone graphs on R.
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Important particular cases

Dissipative boundary conditions ¢, (u) € f;,x)(u) include:
@ the Dirichlet condition u = uP(t,x)on X :

Biex = {uP(t,x)} x R,
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The problem

Important particular cases

Dissipative boundary conditions ¢, (u) € f;,x)(u) include:
@ the Dirichlet condition u = uP(t,x)on X :

Biex = {uP(t,x)} x R,

(C. Bardos, A.-Y. Le Roux and J.-C. Nédélec ('79);
F. Otto ('96), J. Carrillo ('99))

@ the Neumann (zero-flux) condition ¢(u)-v =00nXx:

Bitx) =R x {0},
(R. Burger, H. Frid and K.H. Karlsen ('07), for ¢(0) = 0 = ¢(1))
@ Mixed Dirichlet-Neumann boundary conditions,
Robin boundary conditions,...
@ obstacle boundary conditions

@ ...and many other boundary conditions (BC),
less practical but still interesting, mathematically.



THE BLN CONDITION
AND ALTERNATIVE FORMULATIONS



BLN condition & Alternatives

The BLN condition...

Let us recall the Bardos-Le Roux-Nédélec result in the case of
homogenous Dirichlet condition (u”? = 0, 8 = {0} x R);

For BV (bounded variation) data ug there exists a unique function
ue L>*nBV((0,T) x Q) such that

eVkeR,VE € CX([0,T) x Q)
/OUk&Jr/Q|U0k|§(O)
4 / sign(u — k)(o(u) — @ (K)) - VE > 0
Q

(use of Kruzhkov entropy pairs away from the boundary)



BLN condition & Alternatives

The BLN condition...

Let us recall the Bardos-Le Roux-Nédélec result in the case of
homogenous Dirichlet condition (u”? = 0, 8 = {0} x R);

For BV (bounded variation) data ug there exists a unique function
ue L>*nBV((0,T) x Q) such that

eVkeR,VE € CX([0,T) x Q)

L= e+ [ w0k
+ [ sign(u - K)(e(w) - ¢(k) - V€ 2 0
Q

(use of Kruzhkov entropy pairs away from the boundary)
e on the boundary: u has a strong trace yu such that

for all k € [min(0,yu), max(0, yu)],

(BLN) sign(yu)(e(yu) - v — (k) -v) >0 a.e.on X.




BLN condition & Alternatives

...the BLN condition and its justification...

Example. Dimension one, Q = [0, 1], the linear case :
we consider ¢(z) := z and the homogeneous Dirichlet datum u? := 0.
In this case, we have the problem u; + ux = 0, u|;—o = Up and
condition (BLN) reads :

@ at the point x =0, yu = 0;

@ at the point x = 1, yu is arbitrary.
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we consider ¢(z) := z and the homogeneous Dirichlet datum u? := 0.

In this case, we have the problem u; + ux = 0, u|;—o = Up and
condition (BLN) reads :

@ at the point x =0, vu = 0;

@ at the point x = 1, yu is arbitrary.

Solutions are limits of vanishing viscosity approximation:
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But the sequence (u°). develops a boundary layer as € | 0: in a layer
of thickness Eswg) near the boundary point x = 1, u® undergoes a

change of order O(1) and passes from the prescribed value zero to
some value u¢. The sequence uf does converge to a value yu
satisfying condition (BLN).



BLN condition & Alternatives

...the BLN condition and its justification...

Example. Dimension one, Q = [0, 1], the linear case :
we consider ¢(z) := z and the homogeneous Dirichlet datum u? := 0.
In this case, we have the problem u; + ux = 0, u|;—o = Up and
condition (BLN) reads :

@ at the point x =0, yu = 0;

@ at the point x = 1, yu is arbitrary.
Solutions are limits of vanishing viscosity approximation:

u=Ilim.jo U, Uf+4 u;=cUs,, U|p = Uy and u|y—o =0 = U°|x_1.

But the sequence (u°). develops a boundary layer as € | 0: in a layer
of thickness Eswg) near the boundary point x = 1, u® undergoes a
change of order O(1) and passes from the prescribed value zero to
some value u¢. The sequence uf does converge to a value yu
satisfying condition (BLN).

Thus, the “formal BC” u|x = 0 is transformed into an “effective BC”
expressed by the Bardos-LeRoux-Nédélec condition.
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Alteratives to the BLN approach...

Essential feature of the Bardos-LeRoux-Nédélec framework:
existence of strong traces of u on the boundary ¥.

This is achieved by ensuring that u belongs to the space BV. This is
natural for the Dirichlet BC but BV is not a natural space e.g. for the
zero-flux BC. Yet the BV framework can be bypassed in many ways.
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Alteratives to the BLN approach...

Essential feature of the Bardos-LeRoux-Nédélec framework:
existence of strong traces of u on the boundary ¥.

This is achieved by ensuring that u belongs to the space BV. This is
natural for the Dirichlet BC but BV is not a natural space e.g. for the
zero-flux BC. Yet the BV framework can be bypassed in many ways.

@ (F. Otto (96)) notion of a boundary entropy-entropy flux pair and
use of weak traces (they always exist) to give L> theory.
In the present work, we will not pursue this line.

@ (J. Carrillo ('99)) (for general degenerate parabolic eqns) for the
homogeneous Dirichlet BC only, a subtle choice of up-to-the
boundary entropy inequalities with standard entropy-flux pairs.
Indeed, “semi-Kruzhkov” (or Serre) entropies (u — k)* are used,
test functions do not vanish on the boundary but

o while dealing with (u — k)*, one takes
keKi:={keR, k>0}={keR|p,(k) <supB(k)};
o while dealing with (u — k)™, one takes
keK_:={keR, k<0}={keR|p,(k)>infa(k)} .
= our (second) definition is similar; sets K4 are crucial.



BLN condition & Alternatives

...Alternatives to BLN approach, boundary traces...

@ (A. Vasseur ('01), E.Yu. Panov ('07)) revival of the original BLN
strong-trace formulation: the strong trace of a merely L
entropy solution u does exist !!! (a bit less than this, but still
sufficient for our needs...)



BLN condition & Alternatives

...Alternatives to BLN approach, boundary traces...

@ (A. Vasseur ('01), E.Yu. Panov ('07)) revival of the original BLN
strong-trace formulation: the strong trace of a merely L
entropy solution u does exist !!! (a bit less than this, but still
sufficient for our needs...)

This subtle “regularity” result for entropy solutions comes along
with compactifying effects of the non-linearity ¢
(P.L. Lions, B. Perthame, and E. Tadmor ('94), E.Yu. Panov ('94)).



EFFECTIVE BC GRAPH



Effective BC graph

The BLN condition and its extrapolation.

Our goal is to generalize condition (BLN) by replacing g = {0} x R
with a general maximal monotone graph.

Let us first reformulate the boundary condition as :
(H, WV(E)) € g(tﬁx) (e, (u)e /}(Lx)(u) ),

where E(LX) is the following maximal monotone subgraph of ¢, (.):
(Dubois,LeFloch ):

Biony = {(27%(2))

Sign(Z)((pl,(Z) - L)01/([()) >0 }
for all k € [min(0, z), max(0, 2)]



Effective BC graph

The BLN condition and its extrapolation.

Our goal is to generalize condition (BLN) by replacing g = {0} x R
with a general maximal monotone graph.

Let us first reformulate the boundary condition as :

(U, 00 (0) € By (1€, 0u(U) € Bre(u) ),
where E(LX) is the following maximal monotone subgraph of ¢, (.):
(Dubois,LeFloch ):

i = { (202D | o) o o |

for all k € [min(0, z), max(0, 2)]

Intuition + heuristics + particular cases (in particular, our previous
works A., Sbihi '07,08 ) = we associate to a general graph j3; ) the

“projected graph” B(,,X) characterized as (wait for pictures)

B(t,x) is the “closest” to 3t ) maximal monotone subgraph
of the graph of the function ¢, () = -v(x)
that contains the points of crossing of 3 () with ¢, (-).
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Effective BC graph

Properties of the “effective BC graph” §

The graph 3 can be characterized in several ways:

— using upper and lower increasing envelopes of ¢, ()
—using the sets K, := {k € R| ¢, (k) < supS(k)}
and K_ := {k € R| ¢, (k) > inf 3(k)} with semi-Kruzhkov fluxes:

zeDomB < VkeKi qF(z.k)>0.
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Effective BC graph

Properties of the “effective BC graph” §

The graph 3 can be characterized in several ways:

— using upper and lower increasing envelopes of ¢, ()
—using the sets K, := {k € R| ¢, (k) < supS(k)}
and K_ := {k € R| ¢, (k) > inf 3(k)} with semi-Kruzhkov fluxes:

zeDomp < VkeKi qt(zk)>0.

Some important properties of B

° E has a unique maximal monotone (on R) extension; denote it B;
5 is the common part of B and the graph of ¢,

@ Operation™ : 3+~ B is a projection

@ One can introduce the distance “dist (5’] . Bo )" by taking
1B1 — Bzl And one can introduce the order relation “By = B,’
by requiring By > B, pointwise

@ One can define distance and order on graphs 3

@ Then, operation “ ™~ ” is continuous + order-preserving



DEFINITION (PART I)



Definition

A first definition of entropy solution.

A function u € L>(Q) is called entropy solution for Problem (H) if
e Vk e R, V¢ € C°(Q), £ > 0, the entropy inequalities inside Q hold :

/ (U K):6 + / sign (u — K)(p(u) — w(K)) - VE > 0
Q Q

e The initial condition is satisfied in the strong trace sense




Definition

A first definition of entropy solution.

Definition
A function u € L>(Q) is called entropy solution for Problem (H) if
e Vk e R, V¢ € C°(Q), £ > 0, the entropy inequalities inside Q hold :

/ (U K):6 + / sign (u — K)(p(u) — w(K)) - VE > 0
Q Q

e The initial condition is satisfied in the strong trace sense

e The functions u, o, (u) admit L' strong traces? on ¥, denoted
~yUu, v, (U) such that

(vu, v, (U) ) (£, x) € By ae. (t,x) € L.

Here the graph 3 is the projection of 3 as defined above.

4This is ok under additional non-degeneracy assumption on ¢. The general case is
treated using strong trace of “singular mapping” V., (u) (it always exists )




Existence ?? Oups..!
UNIQUENESS AND COMPARISON: OK!



Uniqueness

Existence..? Uniqueness, comparison, L' contraction.

Key drawback of this definition: stability by approximation seems very
unlikely (convergence of u. to uin (0, T) x Q does not imply anything
about convergence of yu....). = pb. for existence and justification®.
But: it’s fully ok for uniqueness!

Tsolved in previous works A., Sbihi : very special cases of approximation.
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Remark. Thus we have uniqueness, comparison principle and L'
continuous dependence on the data vy of the entropy solution.
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Uniqueness

Existence..? Uniqueness, comparison, L' contraction.

Key drawback of this definition: stability by approximation seems very
unlikely (convergence of u. to uin (0, T) x Q does not imply anything
about convergence of yu....). = pb. for existence and justification®.
But: it’s fully ok for uniqueness!

If u, U are entropy solutions for (H) with data uy, Uy respectively, then
forallte (0,T) /(U—lfl)+(l‘)§/(uoffjo)+. (L'c)
JQ JQ

Remark. Thus we have uniqueness, comparison principle and L'
continuous dependence on the data vy of the entropy solution.

We can prove a similar inequality for entropy solutions associated with
two different “formal BC graphs” 8,5 (recall remarks on the distance
and the order relation on such graphs). Then (L'C) still holds if 5 = /.
In general, a distance term can be added to the right-hand side.

Thus we also have a stability result with respect to 5!
Tsolved in previous works A., Sbihi : very special cases of approximation.




Uniqueness

...Uniqueness, comparison, L' contraction.

For the proof, by the Kruzhkov’s doubling of variables argument
applied “inside 2" one deduces the “local Kato inequality”

/Q (u—)* (1)¢ < /Q (to— o) "£(0, ) + /0 / q" (U, ) - Ve
forall £ € D([0, t] x Q).
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For the proof, by the Kruzhkov’s doubling of variables argument
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We “pay” for this truncation with a new term which is “dissipative”.
Indeed,

) ashlO, //q u, ) th—> //ywq u, )

— qt(yu,l) <70,
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Uniqueness

...Uniqueness, comparison, L' contraction.

For the proof, by the Kruzhkov’s doubling of variables argument
applied “inside 2" one deduces the “local Kato inequality”

-t
[ -0 e < [ @-toye©)+ [ [ a(wi)-ve
Q Q 0JQ
forall ¢ € D([0, {] x Q).
Take for ¢ € D(R x RN) truncation-near-the-boundary functions &.

We “pay” for this truncation with a new term which is “dissipative”.
Indeed,

) ashlO, //q u, ) th—> //ywq u, )

— qt(yu,l) <70,
0J0Q

By the trace condition of the Definition, both v and v belong to the
domain of a monotone subgraph of ¢,.

Then the the right-hand side of (x) is non-positive. This yields the
global Kato inequality; at the limit, ¢ = 1 and we conclude.



Definition Bis

EQUIVALENT DEFINITION

(STABLE UNDER POINTWISE CONVERGENCE)



Definition Bis

Equivalent definition of solution

Proposition (Entropy solution)

Letu € L*=. The assertions (i),(ii) are equivalent :
(i) (“def. with traces”) u is an entropy solution in the above sense
(ii) (“def. a-la Carrillo” + technicalities ) The function u verifies:
Vk € R VE € D([0,T) x Q)"

;
/o /Q(*(u — k) & — q*(u, k) - VE) — /Q(Uo ~ k)*¢(0,)
< //): Ck/\(B(tx)(k) - @u(x)(k))I é(tv X)'

Here, Ci is a constant that depends on ||u||-~ and on k .




Definition Bis

Equivalent definition of solution

Proposition (Entropy solution)

Letu € L*=. The assertions (i),(ii) are equivalent :
(i) (“def. with traces”) u is an entropy solution in the above sense
(ii) (“def. a-la Carrillo” + technicalities ) The function u verifies:
Vk € R VE € D([0,T) x Q)"
.
/ /(f(u C KR — gE(u k) - VE) — /(uo — K)*e(0, )
0 JQ Q
< // Ck A (Bt (k) — @u(x)(k))]F &(t, x).
>

Here, Ci is a constant that depends on ||u||-~ and on k .

And if the sets X~ (k) := {(t,x) € X | k € K+(t,x)} are “regular enough”
then (i), (ii) are also equivalent to
(ii’) (“def. a-la Carrillo”) The function u verifies

VkeR V£ e D([0,T) x Q)" such that {|s\s+ ) =0

T
/ / (—(u—k)"& — g (u, k) - VE) — / (uo — k)“€(0,+) < 0.
0 Q Q




Existence & Convergence of Approximations

EXISTENCE OF ENTROPY SOLUTIONS.
JUSTIFICATION OF THE SOLUTION NOTION

BY CONVERGENCE OF APPROXIMATIONS.



Existence & Convergence of Approximations

Technique and assumptions to ensure compactness + convergence

All our existence results follow the same scheme:

@ approximate (H) by some “simpler” problems (H.), solved at
previous step (= we will use “multi-layer” approximations? )

2A convincing justification of the solution notion: vanishing viscosity limit ?
Unfortunately, this does not work, e.g., for the zero-flux condition;
the typical difficulty here is the loss of uniform L estimate.
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Existence & Convergence of Approximations

Technique and assumptions to ensure compactness + convergence

All our existence results follow the same scheme:

@ approximate (H) by some “simpler” problems (H.), solved at
previous step (= we will use “multi-layer” approximations? )

@ ensure uniform L> estimates :
under assumptions on existence of constant sub/super solutions

@ consequently, get compactness of approximate solutions u.
under non-degeneracy assumption on ¢(.)

@ write up-to-the-boundary entropy inequalities for (H.)
@ finally, pass to the limit in the boundary term of this inequality
In the last steps, the second entropy formulation (ii) is instrumental.

2A convincing justification of the solution notion: vanishing viscosity limit ?
Unfortunately, this does not work, e.g., for the zero-flux condition;
the typical difficulty here is the loss of uniform L estimate.



Existence & Convergence of Approximations

The key calculation + existence (dishonest proof)

Look at “parabolic up-to-the-boundary entropy inequality”
T
| [ -wra-arw - 79 - [ w-keo.)
0 JQ Q
;
< —/ sign T (u® — k) (b°(t, x) —;,,(X)(k))g—e/ / sign® (u*—k) Vus- V¢
X 0 JQ

with some b°(t, x) € B x)(u°) (the flux value at the boundary) .



Existence & Convergence of Approximations

The key calculation + existence (dishonest proof)

Look at “parabolic up-to-the-boundary entropy inequality”
T
| [ -wra-arw - 79 - [ w-keo.)
0 JQ Q
;
< —/ sign T (uf — k) (b°(t, x) — ;,,(X)(k))g—s/ / sign® (u*—k) Vus- V¢
X 0 JQ
with some b°(t, x) € B x)(u°) (the flux value at the boundary) .
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multi-valued inequality

— sign T(U"—K)(b°(t, X) = pu(n (K)) < (Bt (K)—2u0 (K))

fulfilled pointwise on X.
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fulfilled pointwise on ¥. But: the quantity in the right-hand side can be
infinite, which makes problematic the localization arguments! Still...



Existence & Convergence of Approximations

The key calculation + existence (dishonest proof)

Look at “parabolic up-to-the-boundary entropy inequality”
T
| [ -wra-arw - 79 - [ w-keo.)
0 JQ Q
;
< —/ sign T (u® — k) (b°(t, x) —;,,(X)(k))g—e/ / sign® (u*—k) Vus- V¢
X 0 JQ

with some b°(t, x) € B x)(u°) (the flux value at the boundary) .

In the right-hand side, by the monotonicity of 3 ») we have the
multi-valued inequality

— sign T(U"—K)(b°(t, X) = pu(n (K)) < (Bt (K)—2u0 (K))

fulfilled pointwise on ¥. But: the quantity in the right-hand side can be
infinite, which makes problematic the localization arguments! Still...

= first convergence result: OK for §; xy = B = subgraph of ¢,

= existence (“dishonest proof”) for almost general graph j; )
under ad hoc assumptions that ensure L> bound on sols.



Existence & Convergence of Approximations

Stability results + “honest” existence proof

Goal: prove “honestly” existence of solutions : that is, explain appearance of
Bt,x) by passing to the limit from problems set up with graph S x).

@ Assume existence of sequences of constant sub- and supersolutions:

At super-sol., lim A} = +oco and Ay, sub-sol., lim A, = —cc
m—oo m— oo



Existence & Convergence of Approximations
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values at levels + MaX,— 4 lo| (“bounded-flux”). = graphs Tmf(: x

@ For a truncated graph Tmf:,x), vanishing viscosity approx. converge
towards the entropy solution, with 7m5; ,, appearing naturally
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Goal: prove “honestly” existence of solutions : that is, explain appearance of
Bt,x) by passing to the limit from problems set up with graph S x).

@ Assume existence of sequences of constant sub- and supersolutions:
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@ For a truncated graph Tmf:,x), vanishing viscosity approx. converge
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Stability results + “honest” existence proof

Goal: prove “honestly” existence of solutions : that is, explain appearance of
Bt,x) by passing to the limit from problems set up with graph S x).

@ Assume existence of sequences of constant sub- and supersolutions:

Am super-sol., lin Am = 400 and Am sub-sol., lim Am = —0
’ )
m— oo m—oo

@ Truncate the domain of 3, x) at levels AL (“obstacles”) then truncate the
values at levels + MaX,— 4 lo| (“bounded-flux”). = graphs Tmf(: x

@ For a truncated graph Tmf:,x), vanishing viscosity approx. converge
towards the entropy solution, with m(,,x) appearing naturally

@ Pass to the limit (easy) from solutions uy, with ﬁ?(t,x) to a solution u;
and one has L = ~
M TmBe.) = Bty

is continuous wrt natural perturbations of 5(; x)! )

w~n

(our projection
@ For a finer argument, monotone convergence can be used

@ Alternative to truncations: (a more classical technique in the world of
maximal monotone things): use (adapt) Yosida approximations of /3 x).
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References + Thanks

Previous papers available at
Imb.univ-fcomte.fr/Boris-Andreianov
Preprint available on hal.archives-ouvertes.fr

Thank you — Grazie !l
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