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The boundary value problem

The PDE
Du® D
% — trace ((I— %) D2U> =0, inQx(0,T),

where € is a bounded domain of R? with a W3 boundary.

Initial condition

u(zx, ) = uy,
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The boundary value problem

The PDE
Du® D
% — trace ((I— %) D2U> =0, inQx(0,T),

where € is a bounded domain of R? with a W3 boundary.

Initial condition

u(zx, ) = uy,

Boundary condition: the normal vectors to the level sets make a

given angle with the outward normal vector
ou

e 0| Du| on 092 x (0,7)

where 6 is a Lipschitz continuous function with |f(z)| < 0 < 1.

)
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Other forms of the PDE

ou (D*u Du, Du)
OU _ Ay 4 U U, D)
ot Sttt T Dup
or 5 b
u u
Ui Dul =
v 1V(|D |>| ul =0.
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Other forms of the PDE

ou (D*u Du, Du)
E_AU—FW_O
o 0 Du
i
b Dul =
e G L
Goal

o Propose a semi-Lagrangian scheme for the PDE
(extension of Carlini-Falcone-Ferretti, JCP 2005 and
Interfaces and Free Boundaries, 2011)

o Couple it with a finite difference scheme to deal with the
boundary conditions

Hereafter, d = 2.
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Viscosity solutions

©

F(p, X) = —trace ((Id - %)X) is defined for p # 0

o F and F are the LSC and USC envelopes of F
o
- _ [ n+F(p,X) ifz e,
G(J"7777p7 X) - { max(77+ F(p’X)7p .n — 0‘p|) if z € 00
_ [ n+E(p,X) ifz €Y,
Q(377777P7X) - { mln(n—f-F(P, X)7p n— 9‘p|) if z € 92
)

G is used for subsolutions, G is used for supersolutions

©

Strong comparison principle (Barles 1999)
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Semi-Lagrangian schemes for MCM: (CFF 2011)

Representation formula in Q = R?: Soner-Touzi
For any regular solution u of the PDE s.t. Du # 0,

u(z,t) = Efuo(y(t; 2, 1))},

where
dy(s;z,t) = V2 P(Du(y(s; T — s)) dW (s),
y(0;z,1) = =,
T 2
Q. L u —Ug, Uy
Plg=1—--—F ie PDu)= —=—- 2 3o
=g 0= ( are,
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Semi-Lagrangian schemes for MCM: (CFF 2011)

Representation formula in Q = R?: Soner-Touzi
For any regular solution u of the PDE s.t. Du # 0,

u(z,t) = Efuo(y(t; 2, 1))},

where
dy(s;z,t) = V2 P(Du(y(s; T — s)) dW (s),
y(0;z,t) = =,
T 2
—J — & i — L Uz Uz, Uz,
PO=I-i e PO0=p (L5, TE ).

The representation formula implies that
u(z, t + At) = E{u(y(At; x,t + At), 1) }.
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A one dimensional Brownian
The projector P(q) is of the form
_ T . _ 1 —q2
P(q) = o(q)o” (q), with o(q)

_m q1

For the real valued Brownian W def. by dW(s) =ol'dW (s),
dy(s;z,t) = V2 a(Du(y(s;x,t),t - s)) dW(s).
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A one dimensional Brownian

The projector P(q) is of the form

. 1 —
Plg) = o(q)o"(q), with o(q) = — ( 42 >
|Q| q1
For the real valued Brownian W def. by dW( s) = JTdW( s),

dy(s;z,t) = V2 a(Du(y(s;x,t),t - s)) d/W(s).

Remarks
o o(Du) is tangent to the level sets of u.

o Ifd>2 0isadx (d—1)-matrix and Wis a
(d — 1)-dimensional Brownian motion.
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Semi-discrete scheme when Du # 0 (1/2)

Euler scheme for the stochastic process: yx =~ y(tx; z,t) with
v = g + V2 o (Duly(kAL z,1),t — kAY) ) AW,

where AW}, =~ Gaussian variable with mean value 0 and
variance At.
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Semi-discrete scheme when Du # 0 (1/2)

Euler scheme for the stochastic process: yx =~ y(tx; z,t) with
Yhe1 =Y + V2 0<Du(y(kAt; z,t),t — kAt)) AW,

where AW}, ~ Gaussian variable with mean value 0 and
variance At.

For first order accuracy, it is enough that
— — 1
For t =¢, = nAt and k = 0:

P {yl =2+ V2At U(Du(aj,tn),tn)} = %
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Semi-discrete scheme when Du # 0 (2/2)
This leads to the semi-discrete scheme for wu:

u(x,tpe1) = %(u (Z,f(aj), tn) +u (Z,;(aj), tn)),

where

z + V2At o(Du(z, ty,)),

=
—
8
~
1

Z}(z) =z + V2At o(Du(x,t,))

Z7(x) = & — V3BT o(Du(a.t,))

contour of u(-,t,) passing by x
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Fully-discrete scheme for MCM when Du # 0
Consider a mesh 7p, of 2 and call £ a node of 7j,.
The values u(&,t,) are approximated by u}(§) with
n-l—l _ \/_ 1 n \/_ n
U ) = STluf] (6 + VEE"(©) + o Talu] (€~ VEE"(©))
where 7, is an interpolation operator,

" (€) = V2 o(Dyup(€)),

and Dy, is a discrete version of D.
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Fully-discrete scheme for MCM when Du # 0

Consider a mesh 7p, of 2 and call £ a node of 7j,.

The values u(&,t,) are approximated by u}(§) with

W) = sTuluf] (6 + VAR (©)) + 5Taluf] (&~ VAL (©))

where 7, is an interpolation operator,
0" (€) = V2 o(Dnuj (€)),

and Dy, is a discrete version of D.

Questions
o Which scheme in the regions where |Djuj| is small?

o Which scheme near the boundary?
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A subdivision of {2 depending on a small parameter ¢§

thickness: 6: 1> d>h

quasiuniform
unstructured mesh: A

§+00"(§)
3

w1
§—d0m(E)

|:| boundary nodes: finite difference scheme

i strongly internal nodes: semi-lagrangian scheme

the triangles have acute angles in this region

o In the layers wy, one can define a system of orthogonal
coordinates by projecting the points orthogonally onto 2.

o Similarly, one can lift the outward unit vector n into wy.
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The scheme in the layer wy

The nonlinear Neumann condition is not only imposed at the
nodes on 0f2, but also at all the boundary nodes in wy.

We use the lifting of n and a monotone scheme:

B (&, uf ' [ g, [[w"]]) = 0, forall i s.t. & € oy

where

[[u]] ={uj,1 < j < Np, & is strongly internal}.

For example, a first order Godunov like scheme can be used.

Y. Achdou HYP2012 Padova



The scheme in the layer wy

The nonlinear Neumann condition is not only imposed at the
nodes on J€2, but also at all the boundary nodes in wy.

We use the lifting of n and a monotone scheme:
B (&, uf ' [ g, [[w"]]) = 0, forall i s.t. & € oy

where

[ule = {u;,1 < j < Ny, j#1i, & € e},
[[u]] ={uj,1 < j < Np, & is strongly internal}.

For example, a first order Godunov like scheme can be used.

Given the values at the strongly internal nodes, this is a system
of nonlinear equations which can be solved by combining
Gauss-Seidel sweeps with different orderings.
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The scheme at the strongly internal nodes (1/2)
Ingredients

o Tj: Lagrange interpolation operator associated with P!
finite elements
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The scheme at the strongly internal nodes (1/2)

Ingredients

o Tj: Lagrange interpolation operator associated with P!
finite elements

o Dy, : discrete gradient reconstructed at the mesh nodes.
For example,
-
Dwle) = Y AL D@l

T€Ths |w§i|

Set DI = [Dpu™|(&;).
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The scheme at the strongly internal nodes (1/2)

Ingredients

o Tj: Lagrange interpolation operator associated with P!
finite elements

o Dy, : discrete gradient reconstructed at the mesh nodes.
For example,

-
Dul€) = 3 D@hlolo)
TETth &i
Set D = [Dpu™](&;).
o Two internal regions: given two positive numbers C' and s,
the two sets of indices J{* and J3' are defined as follows:

Jit={i: & is strongly internal and |Dj'| > Ch®},
Ty = {i: & is strongly internal and |D'| < Ch*}.
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The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold C'h®
o Ifi e Ji,
At

ut =+ S (D)6 + 607) + Tufu”) (6 — 607) — 20
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The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold C'h®

o Ifv e J,
At
uH =+ S (Tl (€ + 007) + Talu")(&: — b0F) — 2u)
Q IfZ S j2n,
?H - zzl ZAZJU
where i

> o = o(D})
o A is the matrix arising from the P! finite element

discretization of —A, when the functions are expanded in
the nodal basis.
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The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold C'h®

o Ifv e J,
n+l _ n At n n n
u + 5 (Talu")(& + 807) + Talu") (& — b07) — 27 )
Q IfZ S j2n,
?H - zzl ZAZJU
where i

> o = o(D})
o A is the matrix arising from the P! finite element

discretization of —A, when the functions are expanded in
the nodal basis.

Remark The scheme in J3' is a discrete version of
%—’f —€e(z)Aw =0, with € ~ h2/At.
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Analysis of the scheme

Invariance w.r.t. addition of constants

We write the scheme in the form u"*! = SA(u™).
We have

SA(u™ + k) = SAH(u) + k.

Monotonicity

The scheme is not monotone
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Consistency (the scheme is written G2(i,n, u™*, u™) = 0)

Definition
For a smooth function ®, for any sequence (A, Aty,, 0,,) tending to 0
with hy,, = o(dp,), for & ., — z, and for ¢,,, — ¢,

G(z, a—f(x,t), D®(x,t), D?®(z,t)) < liminf G2 (i, 1y, B0 L B

B 1o m— oo

< lim sup gAt(im, N, P Prm)

m—00

< G(x, %—f(m, t), D®(x,t), D*®(x,t))

with ®" = (®(&;,nAt))j=1,... N),-

Proposition

Assume that Dy, is a first order approzimation of D. Assume
that h? /At = o(1), h/6 = o(1) and h'=5/5 = o(1). Then the
scheme s consistent.
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Monotonicity

Hereafter, (hy,, Aty,, 0y,) and (&,,,tn,,) are generic sequences
s.t.

(hm, Aty 0) — 0 and (&, tn,,) — (&, 1).

Relaxed monotonicity (CFF 2011)

The scheme S is said to be monotone in the generalized sense
if for any smooth function ¢ and grid functions v™:
o If v™ < ¢™m !, then
SAm (™ fim) < SA (G i) + 0(Ata),
o If ¢"m~1 < v™, then
§Am (7 Gim) < SA (0™ i) + 0(Dtm)
where S2% is a (possibly different) scheme consistent in the
sense defined above.
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A regularized scheme with a vanishing viscosity

The regularized scheme
olIfie jln? then §(unvl) = S(U”J) W= Z Amu”

where W is a suitable positive constant

o If i € JJ', then S(u";i) = —(Ay) L 2, Ajju?
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A regularized scheme with a vanishing viscosity
The regularized scheme

o If i € J7, then S(u™;i) = S(u™; i) — WMTH ZAiju”

where W is a suitable positive constant
o If i € JJ', then S(u";i) = —(Ay) L 2, Ajju?
Theorem

Assume that Dy, is a first order approzimation of D. Take
0<s<1, h=208, At=pgsH0+)  with v(1 —s) > 1,

then for 8 small enough and suitable W, the reqularized scheme
18 monotone in the generalized sense and consistent.
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A regularized scheme with a vanishing viscosity

The regularized scheme

o If i € J, then S(um;i) = S(u™i) — W&ﬁil ZAZju?,
where W is a suitable positive constant
o If i € JJ', then S(u";i) = —(Ay) L 2, Ajju?
Theorem
Assume that Dy, is a first order approzimation of D. Take

0<s<1, h=208, At=pgsH0+)  with v(1 —s) > 1,

then for 8 small enough and suitable W, the reqularized scheme
18 monotone in the generalized sense and consistent.
Corollary (CFF 2011)

The reqularized scheme is convergent.
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An example proposed by G. Barles

Q={r<lz| <R},  wuo(x)=0o(z*).
V6O € (—1,1), the viscosity solution is
u(z,t) = $(min(|z[* + 2¢, R?)).

The PDE holds up to the boundary |z| = r, and the boundary
condition is lost there. Near |z| = R, u(-,t) is constant.

h = 0.01: contour lines at ¢t = 0.4,0.8,1.2,1.6. The boundary zones

are also displayed.
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Results (no artificial viscosity)

Table: || Error|o for s =0.5, h =1/N, At = h/10, 6 = V2At

N 20 100 200 400
Error 0.116 | 0.082 | 0.055 | 0.041
Rel. Error | 4.53% | 3.2% | 2.14% | 1.6%
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Another example: s = 0.5, 6 = 0.1, A ~ 0.01, At = 0.001

@ = —0.5 : contour lines at t = 0,0.08,0.16,0.24,0.32,0.8,1.2,2
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