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The boundary value problem

The PDE

∂u

∂t
− trace

((
I − Du ⊗ Du

|Du|2
)

D2u

)
= 0, in Ω × (0, T ),

where Ω is a bounded domain of R
d with a W 3,∞ boundary.

Initial condition

u(x, ·) = u0,
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The boundary value problem

The PDE

∂u

∂t
− trace

((
I − Du ⊗ Du

|Du|2
)

D2u

)
= 0, in Ω × (0, T ),

where Ω is a bounded domain of R
d with a W 3,∞ boundary.

Initial condition

u(x, ·) = u0,

Boundary condition: the normal vectors to the level sets make a
given angle with the outward normal vector

∂u

∂n
= θ|Du| on ∂Ω × (0, T ),

where θ is a Lipschitz continuous function with |θ(x)| ≤ θ < 1.
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Other forms of the PDE

∂u

∂t
− ∆u +

(D2u Du,Du)

|Du|2 = 0

or
∂u

∂t
− div

(
Du

|Du|

)
|Du| = 0.

Y. Achdou HYP2012 Padova



Other forms of the PDE

∂u

∂t
− ∆u +

(D2u Du,Du)

|Du|2 = 0

or
∂u

∂t
− div

(
Du

|Du|

)
|Du| = 0.

Goal

Propose a semi-Lagrangian scheme for the PDE
(extension of Carlini-Falcone-Ferretti, JCP 2005 and
Interfaces and Free Boundaries, 2011)

Couple it with a finite difference scheme to deal with the
boundary conditions

Hereafter, d = 2.
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Viscosity solutions

F (p,X) = −trace
(
(Id − p⊗p

|p|2 )X
)

is defined for p 6= 0

F and F are the LSC and USC envelopes of F

G(x, η, p,X) =

{
η + F (p,X) if x ∈ Ω,

max(η + F (p,X), p · n− θ|p|) if x ∈ ∂Ω

G(x, η, p,X) =

{
η + F (p,X) if x ∈ Ω,
min(η + F (p,X), p · n− θ|p|) if x ∈ ∂Ω

G is used for subsolutions, G is used for supersolutions

Strong comparison principle (Barles 1999)
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Semi-Lagrangian schemes for MCM: (CFF 2011)

Representation formula in Ω = R
2: Soner-Touzi

For any regular solution u of the PDE s.t. Du 6= 0,

u(x, t) = E{u0(y(t; x, t))},

where




dy(s; x, t) =
√

2 P
(
Du(y(s; x, t), t − s)

)
dW (s),

y(0; x, t) = x,

P(q) = I − qqT

|q|2 i.e. P(Du) =
1

|Du|2
(

u2
x2

−ux1
ux2

−ux1
ux2

u2
x1

)
.
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Semi-Lagrangian schemes for MCM: (CFF 2011)

Representation formula in Ω = R
2: Soner-Touzi

For any regular solution u of the PDE s.t. Du 6= 0,

u(x, t) = E{u0(y(t; x, t))},

where




dy(s; x, t) =
√

2 P
(
Du(y(s; x, t), t − s)

)
dW (s),

y(0; x, t) = x,

P(q) = I − qqT

|q|2 i.e. P(Du) =
1

|Du|2
(

u2
x2

−ux1
ux2

−ux1
ux2

u2
x1

)
.

The representation formula implies that

u(x, t + ∆t) = E{u(y(∆t; x, t + ∆t), t)}.
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A one dimensional Brownian

The projector P(q) is of the form

P(q) = σ(q)σT (q), with σ(q) =
1

|q|

(
−q2

q1

)

For the real valued Brownian Ŵ def. by dŴ (s) ≡ σT dW (s),

dy(s;x, t) =
√

2 σ
(
Du(y(s;x, t), t − s)

)
dŴ (s).
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A one dimensional Brownian

The projector P(q) is of the form

P(q) = σ(q)σT (q), with σ(q) =
1

|q|

(
−q2

q1

)

For the real valued Brownian Ŵ def. by dŴ (s) ≡ σT dW (s),

dy(s;x, t) =
√

2 σ
(
Du(y(s;x, t), t − s)

)
dŴ (s).

Remarks

σ(Du) is tangent to the level sets of u.

If d > 2, σ is a d × (d − 1)-matrix and Ŵ is a
(d − 1)-dimensional Brownian motion.
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Semi-discrete scheme when Du 6= 0 (1/2)

Euler scheme for the stochastic process: yk ≈ y(tk;x, t) with

yk+1 = yk +
√

2 σ
(
Du(y(k∆t;x, t), t − k∆t)

)
∆Ŵk,

where ∆Ŵk ≈ Gaussian variable with mean value 0 and
variance ∆t.
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Semi-discrete scheme when Du 6= 0 (1/2)

Euler scheme for the stochastic process: yk ≈ y(tk;x, t) with

yk+1 = yk +
√

2 σ
(
Du(y(k∆t;x, t), t − k∆t)

)
∆Ŵk,

where ∆Ŵk ≈ Gaussian variable with mean value 0 and
variance ∆t.

For first order accuracy, it is enough that

P{∆Ŵk = ±
√

∆t} =
1

2
.

For t = tn = n∆t and k = 0:

P

{
y1 = x ±

√
2∆t σ(Du(x, tn), tn)

}
=

1

2
.
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Semi-discrete scheme when Du 6= 0 (2/2)

This leads to the semi-discrete scheme for u:

u(x, tn+1) =
1

2

(
u

(
Z+

n (x), tn
)

+ u
(
Z−

n (x), tn
))

,

where

Z±
n (x) ≡ x ±

√
2∆t σ(Du(x, tn)),

Du(x, tn)

x

contour of u(·, tn) passing by x

Z+
n (x) = x +

√
2∆t σ(Du(x, tn))

Z−
n (x) = x −

√
2∆t σ(Du(x, tn))
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Fully-discrete scheme for MCM when Du 6= 0

Consider a mesh Th of Ω and call ξ a node of Th.

The values u(ξ, tn) are approximated by un
h(ξ) with

un+1
h (ξ) =

1

2
Ih[un

h]
(
ξ +

√
∆tσn(ξ)

)
+

1

2
Ih[un

h]
(
ξ −

√
∆tσn(ξ)

)
,

where Ih is an interpolation operator,

σn(ξ) =
√

2 σ(Dhun
h(ξ)),

and Dh is a discrete version of D.
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Fully-discrete scheme for MCM when Du 6= 0

Consider a mesh Th of Ω and call ξ a node of Th.

The values u(ξ, tn) are approximated by un
h(ξ) with

un+1
h (ξ) =

1

2
Ih[un

h]
(
ξ +

√
∆tσn(ξ)

)
+

1

2
Ih[un

h]
(
ξ −

√
∆tσn(ξ)

)
,

where Ih is an interpolation operator,

σn(ξ) =
√

2 σ(Dhun
h(ξ)),

and Dh is a discrete version of D.

Questions

Which scheme in the regions where |Dhun
h| is small?

Which scheme near the boundary?

Y. Achdou HYP2012 Padova



A subdivision of Ω depending on a small parameter δ

quasiuniform

the triangles have acute angles in this region

thickness: δ : 1 � δ � h

ξ + δσn(ξ)

ξ − δσn(ξ)

ξ

strongly internal nodes: semi-lagrangian scheme

boundary nodes: finite difference scheme

ω1

ω2

unstructured mesh: h
Ω

n

n

In the layers ωk, one can define a system of orthogonal
coordinates by projecting the points orthogonally onto ∂Ω.

Similarly, one can lift the outward unit vector n into ωk.
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The scheme in the layer ω`

The nonlinear Neumann condition is not only imposed at the
nodes on ∂Ω, but also at all the boundary nodes in ω`.

We use the lifting of n and a monotone scheme:

B`(ξi, u
n+1
i , [un+1]`, [[u

n]]) = 0, for all i s.t. ξi ∈ ω`

where

[u]` = {uj , 1 ≤ j ≤ Nh, j 6= i, ξj ∈ ω`},
[[u]] = {uj , 1 ≤ j ≤ Nh, ξj is strongly internal}.

For example, a first order Godunov like scheme can be used.
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The scheme in the layer ω`

The nonlinear Neumann condition is not only imposed at the
nodes on ∂Ω, but also at all the boundary nodes in ω`.

We use the lifting of n and a monotone scheme:

B`(ξi, u
n+1
i , [un+1]`, [[u

n]]) = 0, for all i s.t. ξi ∈ ω`

where

[u]` = {uj , 1 ≤ j ≤ Nh, j 6= i, ξj ∈ ω`},
[[u]] = {uj , 1 ≤ j ≤ Nh, ξj is strongly internal}.

For example, a first order Godunov like scheme can be used.

Given the values at the strongly internal nodes, this is a system
of nonlinear equations which can be solved by combining
Gauss-Seidel sweeps with different orderings.
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The scheme at the strongly internal nodes (1/2)

Ingredients

Ih: Lagrange interpolation operator associated with P 1

finite elements
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The scheme at the strongly internal nodes (1/2)

Ingredients

Ih: Lagrange interpolation operator associated with P 1

finite elements

Dh : discrete gradient reconstructed at the mesh nodes.
For example,

[Dhv](ξi) =
∑

τ∈Th,i

|τ |
|ωξi

|D(Ih[v]|τ ).

Set Dn
i = [Dhun](ξi).
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The scheme at the strongly internal nodes (1/2)

Ingredients

Ih: Lagrange interpolation operator associated with P 1

finite elements

Dh : discrete gradient reconstructed at the mesh nodes.
For example,

[Dhv](ξi) =
∑

τ∈Th,i

|τ |
|ωξi

|D(Ih[v]|τ ).

Set Dn
i = [Dhun](ξi).

Two internal regions: given two positive numbers C and s,
the two sets of indices J n

1 and J n
2 are defined as follows:

J n
1 = {i : ξi is strongly internal and |Dn

i | ≥ Chs},
J n

2 = {i : ξi is strongly internal and |Dn
i | < Chs}.
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The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold Chs

If i ∈ J n
1 ,

un+1
i = un

i +
∆t

δ2

(
Ih[un](ξi + δσn

i ) + Ih[un](ξi − δσn
i )− 2un

i

)

Y. Achdou HYP2012 Padova



The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold Chs

If i ∈ J n
1 ,

un+1
i = un

i +
∆t

δ2

(
Ih[un](ξi + δσn

i ) + Ih[un](ξi − δσn
i )− 2un

i

)

If i ∈ J n
2 ,

un+1
i = −A−1

ii

∑

j 6=i

Aiju
n
j

where

σn
i = σ(Dn

i )

A is the matrix arising from the P1 finite element
discretization of −∆, when the functions are expanded in
the nodal basis.
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The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold Chs

If i ∈ J n
1 ,

un+1
i = un

i +
∆t

δ2

(
Ih[un](ξi + δσn

i ) + Ih[un](ξi − δσn
i )− 2un

i

)

If i ∈ J n
2 ,

un+1
i = −A−1

ii

∑

j 6=i

Aiju
n
j

where

σn
i = σ(Dn

i )

A is the matrix arising from the P1 finite element
discretization of −∆, when the functions are expanded in
the nodal basis.

Remark The scheme in J n
2 is a discrete version of

∂w
∂t

− ε(x)∆w = 0, with ε ∼ h2/∆t.
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Analysis of the scheme

Invariance w.r.t. addition of constants

We write the scheme in the form un+1 = S∆t(un).
We have

S∆t(un + k) = S∆t(un) + k.

Monotonicity

The scheme is not monotone
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Consistency (the scheme is written G∆t(i, n, un+1, un) = 0)

Definition

For a smooth function Φ, for any sequence (hm, ∆tm, δm) tending to 0
with hm = o(δm), for ξi,m → x, and for tnm

→ t,

G(x,
∂Φ

∂t
(x, t), DΦ(x, t), D2Φ(x, t)) ≤ lim inf

m→∞

G∆t(im, nm, Φnm+1, Φnm)

≤ lim sup
m→∞

G∆t(im, nm, Φnm+1, Φnm)

≤ G(x,
∂Φ

∂t
(x, t), DΦ(x, t), D2Φ(x, t))

with Φn = (Φ(ξj , n∆t))j=1,...,Nh
.

Proposition

Assume that Dh is a first order approximation of D. Assume

that h2/∆t = o(1), h/δ = o(1) and h1−s/δ = o(1). Then the

scheme is consistent.
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Monotonicity

Hereafter, (hm,∆tm, δm) and (ξjm , tnm) are generic sequences
s.t.

(hm,∆tm, δm) → 0 and (ξjm , tnm) → (ξ, t).

Relaxed monotonicity (CFF 2011)

The scheme S∆t is said to be monotone in the generalized sense
if for any smooth function φ and grid functions vm:

If vm ≤ φnm−1, then

S∆tm(vm; jm) ≤ S̃∆tm(φnm−1; jm) + o(∆tm),

If φnm−1 ≤ vm, then

S̃∆tm(φnm−1; jm) ≤ S∆tm(vm; jm) + o(∆tm)

where S̃∆t is a (possibly different) scheme consistent in the
sense defined above.
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A regularized scheme with a vanishing viscosity

The regularized scheme

If i ∈ J n
1 , then Ŝ(un; i) = S(un; i) − W

∆t

δhs+1

Nh∑

j=1

Aiju
n
j ,

where W is a suitable positive constant

If i ∈ J n
2 , then Ŝ(un; i) = −(Aii)

−1
∑

j 6=i Aiju
n
j

Y. Achdou HYP2012 Padova



A regularized scheme with a vanishing viscosity

The regularized scheme

If i ∈ J n
1 , then Ŝ(un; i) = S(un; i) − W

∆t

δhs+1

Nh∑

j=1

Aiju
n
j ,

where W is a suitable positive constant

If i ∈ J n
2 , then Ŝ(un; i) = −(Aii)

−1
∑

j 6=i Aiju
n
j

Theorem

Assume that Dh is a first order approximation of D. Take

0 < s < 1, h = δγ , ∆t = βδ1+γ(1+s), with γ(1 − s) > 1,

then for β small enough and suitable W , the regularized scheme

is monotone in the generalized sense and consistent.
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A regularized scheme with a vanishing viscosity

The regularized scheme

If i ∈ J n
1 , then Ŝ(un; i) = S(un; i) − W

∆t

δhs+1

Nh∑

j=1

Aiju
n
j ,

where W is a suitable positive constant

If i ∈ J n
2 , then Ŝ(un; i) = −(Aii)

−1
∑

j 6=i Aiju
n
j

Theorem

Assume that Dh is a first order approximation of D. Take

0 < s < 1, h = δγ , ∆t = βδ1+γ(1+s), with γ(1 − s) > 1,

then for β small enough and suitable W , the regularized scheme

is monotone in the generalized sense and consistent.

Corollary (CFF 2011)

The regularized scheme is convergent.
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An example proposed by G. Barles

Ω = {r < |x| < R}, u0(x) = φ(|x|2).
∀θ ∈ (−1, 1), the viscosity solution is

u(x, t) = φ(min(|x|2 + 2t, R2)).

The PDE holds up to the boundary |x| = r, and the boundary
condition is lost there. Near |x| = R, u(·, t) is constant.

h = 0.01: contour lines at t = 0.4, 0.8, 1.2, 1.6. The boundary zones

are also displayed.
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Results (no artificial viscosity)

Table: ‖ Error‖∞ for s = 0.5, h = 1/N , ∆t = h/10, δ =
√

2∆t

N 50 100 200 400

Error 0.116 0.082 0.055 0.041

Rel. Error 4.53% 3.2% 2.14% 1.6%

Y. Achdou HYP2012 Padova



Another example: s = 0.5, δ = 0.1, h ∼ 0.01, ∆t = 0.001

θ = −0.5 : contour lines at t = 0, 0.08, 0.16, 0.24, 0.32, 0.8, 1.2, 2
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