Approximation of mean curvature motion with nonlinear Neumann conditions

Yves Achdou

joint work with M. Falcone

Laboratoire J-L Lions, Université Paris Diderot

Padova2012

The boundary value problem

The PDE

$$\frac{\partial u}{\partial t} - \operatorname{trace}\left(\left(I - \frac{Du \otimes Du}{|Du|^2}\right)D^2u\right) = 0, \quad \text{in } \Omega \times (0,T),$$

where Ω is a bounded domain of \mathbb{R}^d with a $W^{3,\infty}$ boundary.

Initial condition

$$u(x,\cdot)=u_0,$$

The boundary value problem

The PDE

$$\frac{\partial u}{\partial t} - \operatorname{trace}\left(\left(I - \frac{Du \otimes Du}{|Du|^2}\right)D^2u\right) = 0, \quad \text{in } \Omega \times (0,T),$$

where Ω is a bounded domain of \mathbb{R}^d with a $W^{3,\infty}$ boundary.

Initial condition

$$u(x,\cdot)=u_0,$$

Boundary condition: the normal vectors to the level sets make a given angle with the outward normal vector

$$\frac{\partial u}{\partial n} = \theta |Du| \quad \text{on } \partial \Omega \times (0,T),$$

where θ is a Lipschitz continuous function with $|\theta(x)| \leq \overline{\theta} < 1$.

Other forms of the PDE

$$\frac{\partial u}{\partial t} - \Delta u + \frac{(D^2 u \ D u, D u)}{|D u|^2} = 0$$

 or

$$\frac{\partial u}{\partial t} - \operatorname{div}\left(\frac{Du}{|Du|}\right)|Du| = 0.$$

Other forms of the PDE

$$\frac{\partial u}{\partial t} - \Delta u + \frac{(D^2 u \ D u, D u)}{|D u|^2} = 0$$

or

$$\frac{\partial u}{\partial t} - \operatorname{div}\left(\frac{Du}{|Du|}\right)|Du| = 0.$$

Goal

- Propose a semi-Lagrangian scheme for the PDE (extension of Carlini-Falcone-Ferretti, JCP 2005 and Interfaces and Free Boundaries, 2011)
- Couple it with a finite difference scheme to deal with the boundary conditions

Hereafter, d = 2.

Some references

MCM via viscosity solution techniques

Evans-Spruck, J. Diff. Geom., 1991 Evans - Soner-Souganidis, Comm. Pure Appl. Math, 1992, Soner-Touzi, J. Eur. Math. Soc, 2002 and Ann. Prob. 2003

The boundary value problem with nonlinear Neumann cond. Barles, J. Diff. eq. 1999 Ishii-Ishii, SIAM J. Math. Anal. 2001

Numerical methods

Osher-Sethian, JCP, 1988 Merriman-Bence-Osher, AMS LN, 1993 Crandall-Lions, Numer. Math., 1996 Barles-Georgelin, SIAM J. Num. Anal., 1995 Catté-Dibos-Koepfler, SIAM J. Num. Anal., 1995

Viscosity solutions

$$\overline{G}(x,\eta,p,X) = \begin{cases} \eta + \overline{F}(p,X) & \text{if } x \in \Omega, \\ \max(\eta + \overline{F}(p,X), p \cdot \mathbf{n} - \theta|p|) & \text{if } x \in \partial\Omega \end{cases}$$

$$\underline{G}(x,\eta,p,X) = \begin{cases} \eta + \underline{F}(p,X) & \text{if } x \in \Omega, \\ \min(\eta + \underline{F}(p,X), p \cdot \mathbf{n} - \theta|p|) & \text{if } x \in \partial\Omega \end{cases}$$

- \underline{G} is used for subsolutions, \overline{G} is used for supersolutions
- Strong comparison principle (Barles 1999)

Semi-Lagrangian schemes for MCM: (CFF 2011)

Representation formula in $\Omega = \mathbb{R}^2$: Soner-Touzi For any regular solution u of the PDE s.t. $Du \neq 0$,

$$u(x,t) = \mathbb{E}\{u_0(y(t;x,t))\},\$$

where

$$\begin{cases} dy(s; x, t) = \sqrt{2} \mathcal{P}\Big(Du(y(s; x, t), t - s)\Big) dW(s), \\ y(0; x, t) = x, \end{cases}$$

$$\mathcal{P}(q) = I - \frac{qq^T}{|q|^2}$$
 i.e. $\mathcal{P}(Du) = \frac{1}{|Du|^2} \begin{pmatrix} u_{x_2}^2 & -u_{x_1}u_{x_2} \\ -u_{x_1}u_{x_2} & u_{x_1}^2 \end{pmatrix}$.

Semi-Lagrangian schemes for MCM: (CFF 2011)

Representation formula in $\Omega = \mathbb{R}^2$: Soner-Touzi For any regular solution u of the PDE s.t. $Du \neq 0$,

$$u(x,t) = \mathbb{E}\{u_0(y(t;x,t))\},\$$

where

$$\begin{cases} dy(s;x,t) = \sqrt{2} \mathcal{P}\Big(Du(y(s;x,t),t-s)\Big) dW(s), \\ y(0;x,t) = x, \end{cases}$$

$$\mathcal{P}(q) = I - \frac{qq^T}{|q|^2}$$
 i.e. $\mathcal{P}(Du) = \frac{1}{|Du|^2} \begin{pmatrix} u_{x_2}^2 & -u_{x_1}u_{x_2} \\ -u_{x_1}u_{x_2} & u_{x_1}^2 \end{pmatrix}$.

The representation formula implies that $u(x,t+\Delta t) = \mathbb{E}\{u(y(\Delta t;x,t+\Delta t),t)\}.$

A one dimensional Brownian

The projector $\mathcal{P}(q)$ is of the form

$$\mathcal{P}(q) = \sigma(q)\sigma^T(q), \text{ with } \sigma(q) = \frac{1}{|q|} \begin{pmatrix} -q_2 \\ q_1 \end{pmatrix}$$

For the real valued Brownian \widehat{W} def. by $d\widehat{W}(s) \equiv \sigma^T dW(s)$, $dy(s; x, t) = \sqrt{2} \sigma \left(Du(y(s; x, t), t - s) \right) d\widehat{W}(s).$

A one dimensional Brownian

The projector $\mathcal{P}(q)$ is of the form

$$\mathcal{P}(q) = \sigma(q)\sigma^T(q), \text{ with } \sigma(q) = \frac{1}{|q|} \begin{pmatrix} -q_2 \\ q_1 \end{pmatrix}$$

For the real valued Brownian \widehat{W} def. by $d\widehat{W}(s) \equiv \sigma^T dW(s)$, $dy(s; x, t) = \sqrt{2} \sigma \left(Du(y(s; x, t), t - s) \right) d\widehat{W}(s).$

Remarks

- $\sigma(Du)$ is tangent to the level sets of u.
- If d > 2, σ is a $d \times (d-1)$ -matrix and \widehat{W} is a (d-1)-dimensional Brownian motion.

Semi-discrete scheme when $Du \neq 0$ (1/2)

Euler scheme for the stochastic process: $y_k \approx y(t_k; x, t)$ with $y_{k+1} = y_k + \sqrt{2} \sigma \left(Du(y(k\Delta t; x, t), t - k\Delta t) \right) \Delta \widehat{W}_k,$

where $\Delta \widehat{W}_k \approx$ Gaussian variable with mean value 0 and variance Δt .

Semi-discrete scheme when $Du \neq 0$ (1/2)

Euler scheme for the stochastic process: $y_k \approx y(t_k; x, t)$ with $y_{k+1} = y_k + \sqrt{2} \sigma \left(Du(y(k\Delta t; x, t), t - k\Delta t) \right) \Delta \widehat{W}_k$, where $\Delta \widehat{W}_k \approx$ Gaussian variable with mean value 0 and variance Δt .

For first order accuracy, it is enough that

$$\mathbb{P}\{\Delta \widehat{W}_k = \pm \sqrt{\Delta t}\} = \frac{1}{2}.$$

For $t = t_n = n\Delta t$ and k = 0:

$$\mathbb{P}\left\{y_1 = x \pm \sqrt{2\Delta t} \ \sigma(Du(x, t_n), t_n)\right\} = \frac{1}{2}.$$

Semi-discrete scheme when $Du \neq 0$ (2/2)

Y. Achdou HYP2012 Padova

Fully-discrete scheme for MCM when $Du \neq 0$

Consider a mesh \mathcal{T}_h of Ω and call ξ a node of \mathcal{T}_h .

The values $u(\xi, t_n)$ are approximated by $u_h^n(\xi)$ with

$$u_h^{n+1}(\xi) = \frac{1}{2} \mathcal{I}_h[u_h^n] \left(\xi + \sqrt{\Delta t} \sigma^n(\xi)\right) + \frac{1}{2} \mathcal{I}_h[u_h^n] \left(\xi - \sqrt{\Delta t} \sigma^n(\xi)\right),$$

where \mathcal{I}_h is an interpolation operator,
$$\sigma^n(\xi) = \sqrt{2} \ \sigma(D_h u_h^n(\xi)),$$

and D_h is a discrete version of D.

Fully-discrete scheme for MCM when $Du \neq 0$

Consider a mesh \mathcal{T}_h of Ω and call ξ a node of \mathcal{T}_h .

The values $u(\xi, t_n)$ are approximated by $u_h^n(\xi)$ with

$$\begin{split} u_h^{n+1}(\xi) &= \frac{1}{2} \mathcal{I}_h[u_h^n] \left(\xi + \sqrt{\Delta t} \sigma^n(\xi) \right) + \frac{1}{2} \mathcal{I}_h[u_h^n] \left(\xi - \sqrt{\Delta t} \sigma^n(\xi) \right), \\ \text{where } \mathcal{I}_h \text{ is an interpolation operator,} \\ \sigma^n(\xi) &= \sqrt{2} \ \sigma(D_h u_h^n(\xi)), \end{split}$$

and D_h is a discrete version of D.

Questions

- Which scheme in the regions where $|D_h u_h^n|$ is small?
- Which scheme near the boundary?

A subdivision of Ω depending on a small parameter δ

- In the layers ω_k , one can define a system of orthogonal coordinates by projecting the points orthogonally onto $\partial\Omega$.
- Similarly, one can lift the outward unit vector **n** into ω_k .

The scheme in the layer $\overline{\omega_{\ell}}$

The nonlinear Neumann condition is not only imposed at the nodes on $\partial\Omega$, but also at all the boundary nodes in $\overline{\omega_{\ell}}$.

We use the lifting of \mathbf{n} and a monotone scheme:

$$\mathcal{B}^{\ell}(\xi_i, u_i^{n+1}, [u^{n+1}]_{\ell}, [[u^n]]) = 0, \text{ for all } i \text{ s.t. } \xi_i \in \overline{\omega_{\ell}}$$

where

$$[u]_{\ell} = \{u_j, 1 \le j \le N_h, \ j \ne i, \ \xi_j \in \overline{\omega_{\ell}}\},$$

$$[[u]] = \{u_j, 1 \le j \le N_h, \ \xi_j \text{ is strongly internal}\}.$$

For example, a first order Godunov like scheme can be used.

The scheme in the layer $\overline{\omega_{\ell}}$

The nonlinear Neumann condition is not only imposed at the nodes on $\partial\Omega$, but also at all the boundary nodes in $\overline{\omega_{\ell}}$.

We use the lifting of \mathbf{n} and a monotone scheme:

$$\mathcal{B}^{\ell}(\xi_i, u_i^{n+1}, [u^{n+1}]_{\ell}, [[u^n]]) = 0, \text{ for all } i \text{ s.t. } \xi_i \in \overline{\omega_{\ell}}$$

where

$$[u]_{\ell} = \{u_j, 1 \le j \le N_h, \ j \ne i, \ \xi_j \in \overline{\omega_{\ell}}\},$$

$$[[u]] = \{u_j, 1 \le j \le N_h, \ \xi_j \text{ is strongly internal}\}.$$

For example, a first order Godunov like scheme can be used.

Given the values at the strongly internal nodes, this is a system of nonlinear equations which can be solved by combining Gauss-Seidel sweeps with different orderings.

The scheme at the strongly internal nodes (1/2)

Ingredients

• \mathcal{I}_h : Lagrange interpolation operator associated with \mathcal{P}^1 finite elements

The scheme at the strongly internal nodes (1/2)

Ingredients

- \mathcal{I}_h : Lagrange interpolation operator associated with \mathcal{P}^1 finite elements
- D_h : discrete gradient reconstructed at the mesh nodes. For example,

$$[D_h v](\xi_i) = \sum_{\tau \in \mathcal{T}_{h,i}} \frac{|\tau|}{|\omega_{\xi_i}|} D(\mathcal{I}_h[v]|_{\tau}).$$

Set $D_i^n = [D_h u^n](\xi_i)$.

The scheme at the strongly internal nodes (1/2)

Ingredients

- \mathcal{I}_h : Lagrange interpolation operator associated with \mathcal{P}^1 finite elements
- D_h : discrete gradient reconstructed at the mesh nodes. For example,

$$[D_h v](\xi_i) = \sum_{\tau \in \mathcal{T}_{h,i}} \frac{|\tau|}{|\omega_{\xi_i}|} D(\mathcal{I}_h[v]|_{\tau}).$$

Set $D_i^n = [D_h u^n](\xi_i)$.

• Two internal regions: given two positive numbers C and s, the two sets of indices \mathcal{J}_1^n and \mathcal{J}_2^n are defined as follows:

 $\mathcal{J}_1^n = \{i : \xi_i \text{ is strongly internal and } |D_i^n| \ge Ch^s\}, \\ \mathcal{J}_2^n = \{i : \xi_i \text{ is strongly internal and } |D_i^n| < Ch^s\}.$

The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold Ch^s

• If
$$i \in \mathcal{J}_1^n$$
,
 $u_i^{n+1} = u_i^n + \frac{\Delta t}{\delta^2} \Big(\mathcal{I}_h[u^n](\xi_i + \delta \sigma_i^n) + \mathcal{I}_h[u^n](\xi_i - \delta \sigma_i^n) - 2u_i^n \Big)$

The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold Ch^s

• If
$$i \in \mathcal{J}_1^n$$
,
 $u_i^{n+1} = u_i^n + \frac{\Delta t}{\delta^2} \Big(\mathcal{I}_h[u^n](\xi_i + \delta \sigma_i^n) + \mathcal{I}_h[u^n](\xi_i - \delta \sigma_i^n) - 2u_i^n \Big)$
• If $i \in \mathcal{J}_2^n$,
 $u_i^{n+1} = -A_{ii}^{-1} \sum A_{ij} u_j^n$

 $j \neq i$

•
$$\sigma_i^n = \sigma(D_i^n)$$

• A is the matrix arising from the \mathcal{P}^1 finite element discretization of $-\Delta$, when the functions are expanded in the nodal basis.

The scheme at the strongly internal nodes (2/2)

The modified semi-Lagrangian scheme with threshold Ch^s

• If
$$i \in \mathcal{J}_1^n$$
,
 $u_i^{n+1} = u_i^n + \frac{\Delta t}{\delta^2} \Big(\mathcal{I}_h[u^n](\xi_i + \delta \sigma_i^n) + \mathcal{I}_h[u^n](\xi_i - \delta \sigma_i^n) - 2u_i^n \Big)$
• If $i \in \mathcal{J}_2^n$,
 $u_i^{n+1} = -A_{ii}^{-1} \sum A_{ij} u_j^n$

 $i \neq i$

where

- $\sigma_i^n = \sigma(D_i^n)$
- A is the matrix arising from the \mathcal{P}^1 finite element discretization of $-\Delta$, when the functions are expanded in the nodal basis.

Remark The scheme in \mathcal{J}_2^n is a discrete version of

Y. Achdou

$$\frac{\partial w}{\partial t} - \epsilon(x)\Delta w = 0, \quad \text{with} \quad \epsilon \sim h^2/\Delta t$$

Invariance w.r.t. addition of constants

We write the scheme in the form $u^{n+1} = S^{\Delta t}(u^n)$. We have

$$\mathcal{S}^{\Delta t}(u^n+k) = \mathcal{S}^{\Delta t}(u^n) + k.$$

Monotonicity

The scheme is not monotone

Consistency (the scheme is written $\mathcal{G}^{\Delta t}(i, n, u^{n+1}, u^n) = 0$)

Definition

For a smooth function Φ , for any sequence $(h_m, \Delta t_m, \delta_m)$ tending to 0 with $h_m = o(\delta_m)$, for $\xi_{i,m} \to x$, and for $t_{n_m} \to t$,

$$\underline{G}(x, \frac{\partial \Phi}{\partial t}(x, t), D\Phi(x, t), D^{2}\Phi(x, t)) \leq \liminf_{m \to \infty} \mathcal{G}^{\Delta t}(i_{m}, n_{m}, \Phi^{n_{m}+1}, \Phi^{n_{m}}) \\ \leq \limsup_{m \to \infty} \mathcal{G}^{\Delta t}(i_{m}, n_{m}, \Phi^{n_{m}+1}, \Phi^{n_{m}}) \\ \leq \overline{G}(x, \frac{\partial \Phi}{\partial t}(x, t), D\Phi(x, t), D^{2}\Phi(x, t))$$
with $\Phi^{n} = (\Phi(\xi_{i}, n\Delta t))_{i=1,...,N_{h}}$.

Proposition

Assume that D_h is a first order approximation of D. Assume that $h^2/\Delta t = o(1)$, $h/\delta = o(1)$ and $h^{1-s}/\delta = o(1)$. Then the scheme is consistent.

Monotonicity

Hereafter, $(h_m, \Delta t_m, \delta_m)$ and (ξ_{j_m}, t_{n_m}) are generic sequences s.t.

$$(h_m, \Delta t_m, \delta_m) \to 0$$
 and $(\xi_{j_m}, t_{n_m}) \to (\xi, t).$

Relaxed monotonicity (CFF 2011)

The scheme $S^{\Delta t}$ is said to be monotone in the generalized sense if for any smooth function ϕ and grid functions v^m :

• If
$$v^m \leq \phi^{n_m-1}$$
, then
 $S^{\Delta t_m}(v^m; j_m) \leq \widetilde{S}^{\Delta t_m}(\phi^{n_m-1}; j_m) + o(\Delta t_m)$,
• If $\phi^{n_m-1} \leq v^m$, then
 $\widetilde{S}^{\Delta t_m}(\phi^{n_m-1}; j_m) \leq S^{\Delta t_m}(v^m; j_m) + o(\Delta t_m)$
where $\widetilde{S}^{\Delta t}$ is a (possibly different) scheme consistent in the

sense defined above.

A regularized scheme with a vanishing viscosity

The regularized scheme

A regularized scheme with a vanishing viscosity

The regularized scheme

• If
$$i \in \mathcal{J}_1^n$$
, then $\widehat{\mathcal{S}}(u^n; i) = \mathcal{S}(u^n; i) - W \frac{\Delta t}{\delta h^{s+1}} \sum_{j=1}^{N_h} A_{ij} u_j^n$,

where W is a suitable positive constant

• If
$$i \in \mathcal{J}_2^n$$
, then $\widehat{\mathcal{S}}(u^n; i) = -(A_{ii})^{-1} \sum_{j \neq i} A_{ij} u_j^n$

Theorem

Assume that D_h is a first order approximation of D. Take

$$0 < s < 1, \quad h = \delta^{\gamma}, \quad \Delta t = \beta \delta^{1 + \gamma(1 + s)}, \quad with \ \gamma(1 - s) > 1,$$

then for β small enough and suitable W, the regularized scheme is monotone in the generalized sense and consistent.

A regularized scheme with a vanishing viscosity

The regularized scheme

• If
$$i \in \mathcal{J}_1^n$$
, then $\widehat{\mathcal{S}}(u^n; i) = \mathcal{S}(u^n; i) - W \frac{\Delta t}{\delta h^{s+1}} \sum_{j=1}^{N_h} A_{ij} u_j^n$,
where W is a suitable positive constant

where W is a suitable positive constant

• If
$$i \in \mathcal{J}_2^n$$
, then $\widehat{\mathcal{S}}(u^n; i) = -(A_{ii})^{-1} \sum_{j \neq i} A_{ij} u_j^n$

Theorem

Assume that D_h is a first order approximation of D. Take

$$0 < s < 1, \quad h = \delta^{\gamma}, \quad \Delta t = \beta \delta^{1 + \gamma(1 + s)}, \quad with \ \gamma(1 - s) > 1,$$

then for β small enough and suitable W, the regularized scheme is monotone in the generalized sense and consistent.

Corollary (CFF 2011)

The regularized scheme is convergent.

An example proposed by G. Barles

$$\Omega = \{ r < |x| < R \}, \qquad u_0(x) = \phi(|x|^2).$$

 $\forall \theta \in (-1, 1)$, the viscosity solution is

$$u(x,t) = \phi(\min(|x|^2 + 2t, R^2)).$$

The PDE holds up to the boundary |x| = r, and the boundary condition is lost there. Near |x| = R, $u(\cdot, t)$ is constant.

Results (no artificial viscosity)

Table: $\| \operatorname{Error} \|_{\infty}$ for $s = 0.5, h = 1/N, \Delta t = h/10, \delta = \sqrt{2\Delta t}$

N	50	100	200	400
Error	0.116	0.082	0.055	0.041
Rel. Error	4.53%	3.2%	2.14%	1.6%

Another example: $s = 0.5, \delta = 0.1, h \sim 0.01, \Delta t = 0.001$

 $\theta = -0.5$: contour lines at t = 0, 0.08, 0.16, 0.24, 0.32, 0.8, 1.2, 2