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In this talk, we consider the Cauchy problem for the first-order linear symmetric
hyperbolic system of equations with relaxation:

A0ut +
n∑

j=1

Ajuxj + Lu = 0 (1)

with u|t=0 = u0. Here u = u(t, x) ∈ Rm over t > 0, x ∈ Rn is an unknown
function, u0 = u0(x) ∈ Rm over x ∈ Rn is a given function, and Aj (j =
0, 1, · · · , n) and L are m×m real constant matrices, where integers m ≥ 1, n ≥
1 denote dimensions. Throughout this talk, it is assumed that all Aj (j =
0, 1, · · · , n) are symmetric, A0 is positive definite and L is nonnegative definite
with a nontrivial kernel. Notice that L is not necessarily symmetric. For this
general linear degenerately dissipative system it is interesting to study its decay
structure under additional conditions on the coefficient matrices and further
investigate the corresponding time-decay property of solutions to the Cauchy
problem.

When the degenerate relaxation matrix L is symmetric, Umeda-Kawashima-
Shizuta [5] proved the large-time asymptotic stability of solutions for a class
of equations of hyperbolic-parabolic type with applications to both electro-
magneto-fluid dynamics and magnetohydrodynamics. The key idea in [5] and
the later generalized work [2] that first introduced the so-called Kawashima-
Shizuta condition is to design the compensating matrix to capture the dissi-
pation of systems over the degenerate kernel space of L. The typical feature
of the time-decay property of solutions established in those work is that the
high frequency part decays exponentially while the low frequency part decays
polynomially with the rate of the heat kernel.

Unfortunately, when the degenerate relaxation matrix L is not symmetric,
the theorems derived in [2,5] can not be applied any longer. In fact, this is
the case for some concrete systems, for example, the Timoshenko system [1]
and the Euler-Maxwell system [3,4], where the linearized relaxation matrix L
indeed has a nonzero skew-symmetric part while it was still proved that solutions
decay in time in some different way. Therefore, our purpose of this talk is to
formulate some new structural conditions in order to extend the previous works
to the general system (1) when L is not symmetric, which can include both the
Timoshenko system and the Euler-Maxwell system.
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