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1. Strong singular solutions and physical models. It is well known
that there are “nonclassical” situations where the Cauchy problem for a system
of conservation laws admits J-shocks, which are solutions whose components
contain Dirac delta functions. In contrast to the classical shock wave discontinu-
ities, §-shocks carry mass, momentum and energy and are related with transport
and concentration processes. In numerous papers, -shocks were studied in the
zero-pressure gas dynamics. This system was used to describe the formation of
large-scale structures of the universe, for modeling “dusty” media and double-
fluid mixtures of gas and solid particles. Systems of conservation laws admitting
6-shocks were used for modeling the formation and evolution of traffic jams, in
nonlinear chromatography, in the model of non-classical shallow water flows.

2. 4-Shocks in granular hydrodynamics. Nowadays problems related
with granular gases are very attractive for experimental, numerical, and theo-
retical investigation (see [1], [2] and the references therein). So far there is no
consensus on the description of these type of media. In contrast to ordinary
gases, granular gases are dilute assemblies of hard spheres which lose energy at
collisions. In such gases a local density can significantly increase while a local
pressure can fall drastically. A description of these phenomena is provided by
the Navier-Stockes granular hydrodynamics which is derivable, under certain as-
sumptions, from the basic theory. In [5], [6] (see also [2; p.60-75]), the following
hydrodynamics system of granular gas

(PU)e +V - (pU U +1pT) = 0, (1)
T,4+V-(UT)+ (y=2)TV-U = —ApT?/?,

was studied, where I is the identity matrix, ® is the tensor product of vectors,
p is gas density, U is velocity, T is temperature, p = pT is pressure;  is the
adiabatic index (if n = 2 then v = 2, and if n = 3, then v = 5/3), A is
a constant connected with the energy of collision processes. As was proved
in [5], [7], solutions of system (1) generically lose the initial smoothness within
a finite time. Moreover (see [5], [6]), system (1) can admit a solution which
contains d-function in the density p: p(z,t) = 2m.(¢)0(x) + p«(z,t), and m.(t),
p«(z,t) are smooth.

Here we shall consider some problems connected with §-shocks in system
(1). To deal with d-shocks, we will use the weak asymptotics method developed
in [3], [4] (see also [8]).

Let I' = {(x,t) : S(z,t) = 0} be a hypersurface of codimension 1 in {(z,t) :
x € Rt € [0,00)} € R*1 S € C®(R" x [0,00)), with VS(z,t)|s=0 # 0



for any fixed t. Let I't = {z € R": S(z,t) = 0} be a moving surface in R".
Denote by v = \VSI the unit space normal to the surface I'; pointing from
Q ={z € R": S(x,t) < 0} to Qf = {z € R* : S(x,t) > 0}. The time
component of the normal vector —G = ﬁg—ts‘ is the wvelocity of the wave front Ty

along the space normal v. For system (1) we consider the d-shock type initial
data

(U°(2), p"(@), T°(2), @ € R™; U (x), x € T), @)
where  p%(z) = p%(x) +€"(@)3(To),

and U° € L= (R™";R"), p°, T € L=°(R™;R), e* € C(Ty), Tp = {z : S°(z) = 0}
is the initial position of the d-shock wave front, U?(x) is the initial velocity of
the d-shock, 6(T'y) (= 6(S°)) is the Dirac delta function on T'y.

3. Rankine-Hugoniot conditions. First, basing on [8] we introduce the
integral identities, which give a definition of §-shock wave type solution of the
Cauchy problem (1), (2). This solution is a triple of distributions (U, p,T) and
a hypersurface I', where p(x,t) is represented as a sum

pla,t) = plz,t) + e(z, 1)6(T),

U € L*(R"™ x (0,00);R™), p, T € L*(R™ x (0,00);R), e € C(T'), and §(T)
(=6(9)) is the Dirac delta function concentrated on the surface I'. Next, using
the above integral identities and repeating the proof of [8; Theorem 9.1] almost
word for word, we derive the corresponding Rankine-Hugoniot conditions.

4. Mass, momentum, and energy transport laws. Assume that a mov-
ing d-shock wave front Ty = {z : S(z,t) = 0} permanently separates R? into
two parts QF = {z € R" : £5(x, t) > 0}. Let (U, p,T) be compactly supported
with rebpect to 2. Denote by M (¢ fQ vat p(x t)dx, m(t) = [y, e(z,t)dly,

and P(t fQ ot P(@, U (x, ) dx p(t fF x, t)Us(x t) dl'y, masses and

momenta of the region Q; U Q" and the moving é-shock wave front I';, respec-
tively, where e is a density of the wave front I'y, Us = vG = _IVZP is the
d-shock wave velocity. Let Wi, (¢ fQ s p(z, )|U(z, )22 dx, wrin(t) =
Jr, e(@,t)|Us(z ,1)[2/2dTy, be the kmetlc energies of the region 2;” UQ;" and the
moving wave front I'y, respectively.

Using technique of the papers [9], [8], we prove the theorem with gives the
mass, momentum and energy balance relations between the area outside of the
moving 0-shock wave front and this front, i.e., we derive connections between
quantities M (t) and m(t), P(t) and p(t), Wiin(t) and wyn (t).

5. Propagation of a d-shock wave. Let S° be a given smooth function.
Denote by QF = {z € R" : +5°(z) > 0} the domains on the one side and on
the other side of the hypersurface I'y = {z € R" : S°(x) = 0}. In order to study
the propagation of a singular front I'; starting from the initial position I'g, we
need to solve the Cauchy problem for system (1) with the following initial data

(U p°, 1%, U3), where U® = U + [U°]H(~T)),

£ = o+ [p]H(=To) + (2)3(Ty),  (3)
TO _ TV()Jr+[770]]{(71‘\0)7



where U% (z) = U () + [U%(x)], p°"(z) = p*"(2) + [0°(2)], T°(2) =
T+ (x) + [T°(x)]; €%, p°F, TOF are given functions, U* are given vectors;
H(-Ty) (= H(-S)) is the Heaviside function. Since in the direction v the
characteristic equation of system (1) has repeated eigenvalues A\ = U - v, we
assume that for the initial data (2) the geometric entropy condition holds:

U (z) - 0p, < UY(x) - O, < U’ (z) - 1p,, where 10 = ‘ggzgggl is the

unit normal of [y, U((s) is the initial velocity of the d-shock.
Using the weak asymptotics method we describe the propagation of §-shock
wave, i.e., we construct a solution of the Cauchy problem (1), (3).
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