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N-S equations with nonlocal viscosity

ρt + div (ρu) = 0, x ∈ Rn, t ≥ 0, (1)

ut + u · ∇u +∇p =

∫
Rn

a(x,y)(u(y)− u(x))ρ(y)dy,

I Initial Conditions:
ρ(x,0) = ρ0(x) ≥ 0, u(x,0) = u0(x).

I Pressure: p = p(ρ) = ργ.
γ > 0: isentropic, γ = 0: pressure-less.

Motivation: self-organized dynamics

I Self-organized dynamics: modeling the motion of
self-propelled particles

A school of fish A flock of birds

I N-particle flocking models:

ẋi = vi, v̇i =
N∑

j=1

a(xj,xi)(vj − vi).

I Macroscopic flocking: a hydrodynamics approach
yields system (1).
I Diameter of supp(ρ) is uniformly bounded all time.
I Maximum variation of u vanishes in time.
Fast flock if it decays exponentially.

I Cucker-Smale model (Symmetric kernel):

a(x,y) = φ(x− y),

I Motsch-Tadmor model (Asymmetric kernel):

a(x,y) =
φ(x− y)∫

Rn φ(x− y)ρ(y)dy
.

Symmetric interaction kernel

For macroscopic Cucker-Smale model, there are
three different regimes of interest depending on the
choice of the kernel φ.

1. Local system.
I Hyperbolic scaling

(x, t)→
(

x
ε
,
t
ε

)
, φ→ φε :=

1
εn
φ
(x
ε

)
, ε→ 0.

I Compressible Navier-Stokes equations with
degenerate viscosity coefficient.

ρt + div (ρu) = 0,
(ρu)t + div (ρu⊗ u) +∇P = div

(
ρ2∇u

)
.

I All known results are attempting to “avoid” vacuum.

2. Fractional dissipation.
I Kernel φ has a singularity at the origin.
I A typical prototype:

φ(x) = |x|−n−2α.

I Widely discussed for ρ ≡ 1 in 1D (fractional
dissipation).

ut + u · ∇u = −(−∆)αu.
I Few discussions on full compressible system.

3. Nonlocal means.
I Kernel φ is bounded and continuous at the origin.
I A typical prototype:

φ(x) = (1 + |x|)−α.
I Slow decay rate at infinity: α ∈ (0,1) – Strong

non-locality.

Assumptions and main system

Assumptions
I Pressure-less. Flocking property is preserved.
I Bounded density. ρ0 is compactly supported.
I Nonlocal means. The interaction kernel φ is radial,

decreasing and differentiable in r , satisfying

I (H1) Bounded at origin. φ(0) = ‖φ‖L∞ = 1.

I (H2) Slow decay at infinity.
∫ ∞

φ(r )dr =∞.

Main System

ρt + div (ρu) = 0, x ∈ Rn, t ≥ 0, (2)

ut + u · ∇u =

∫
Rn
φ(x− y)(u(y)− u(x))ρ(y)dy,

I IC: ρ0 compact supported, u0 uniformly bounded.

Main theorem:
Existence of smooth solution

I Critical threshold phenomenon for system (2):
I There exists an upper threshold σ+, depending on
the initial profile, above which yields global
smooth solution.

I There exists a lower threshold σ−, depending on
the initial profile, below which yields finite time
break down of smooth solution.

I Initial quantities of the velocity field which play a
significant role in determining critical thresholds:

I Max variation: V0 := sup
x,y∈supp(ρ0)

|u0(x)− u0(y)|.

I Min divergence: d0 := inf
x∈supp(ρ0)

div u0(x).

Theorem 1 [1D Critical Thresholds]. Consider
system (2) in 1D with smooth initial data
ρ0 ∈ Hs

+(R) and u0 ∈ Hs+1(supp(ρ0)), where s > 1,
satisfying all assumptions. Then,
I There exists a function σ+ such that, if d0 > σ+(V0),

then there exists a global smooth solution
ρ ∈ C(R+,Hs

+(R)) and u ∈ C(R+,Hs+1(supp(ρ))).
I There exists a function σ− such that, if d0 < σ−(V0),

then the smooth solution (ρ,u) will break down in
finite time.
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I Illustration of the thresholds
I Expressed in terms of (V0,d0).
I Larger area of thresholds with fast flock.
I A gap between the two thresholds due to L∞

estimates, which is not sharp.

I 2D critical thresholds
One more initial quantity of the velocity field needs
to be bounded to guarantee existence of upper
threshold

B0 := sup
x∈supp(ρ0)

max {2|∂x1u02|,2|∂x2u01|, |∂x1u01 − ∂x2u02|} .

Theorem 2 [2D smooth solutions]. Smooth
solution exists in 2D if initially

d0 > σ+(V0), B0 < ζ(V0).

Key aspects of the proof

Smoothness via boundedness of ∇u.

Lemma. Consider system (2) in 1D or 2D with
initial data ρ0 ∈ Hs(Rn) and u0 ∈ Hs+1(Rn), where
s > 1. Then the following statements are
equivalent.
I There exists a unique solution

(ρ,u) ∈ C([0,T ]; Hs)× C([0,T ]; Hs+1),
I ‖∇u(·, t)‖L∞ is bounded for all t ∈ [0,T ].

Dynamics of div u along particle path.

Let d = div u. Applying ∇x operator on (2), we get

d ′ = −d2−(φ?ρ)d+

∫
Rn
∇xφ(x−y)·(u(y)−u(x))ρ(y)dy+b.

where ′ = ∂t + u · ∇x and b = tr((∇u)2)− (div u)2.
In 1D, b = 0.
With bounded coefficients, this is a Reccatti-type
system of d . It yields a critical threshold
phenomenon.

Controlling other terms of ∇u.

In 2D, in addition to d , it is also needed to control
other terms of ∇u, i.e. B. The following lemma
shows that B is bounded if d is not too negative.

Lemma. Suppose B(0) is bounded and d(t) ≥ −δ0

for t ∈ [0,T ], where δ0 is positive and determined
by initial conditions. Then B(t) has the same bound
for t ∈ [0,T ].

Coupling with propagation of d yields similar
critical threshold phenomenon.

Dynamics inside the vacuum.

Taking advantage of the slow decay of φ, we can
extend u0 to the whole space such that the solution
u inside the vacuum remains smooth all time.

The criterions of the extension read (e.g. in 1D)
I Boundedness: For all x ∈ Rn,

min
y∈supp(ρ0)

u0(y) ≤ u0(x) ≤ max
y∈supp(ρ0)

u0(y),

I Uniform limit : lim|x|→∞ u0(x) = c∞.
I Avoid fast decay :

∂xu0(x) ≥ −m
2
φ(L(x ,0) + D), for x 6∈ supp(ρ0),

where L(x ,0) = dist(x , supp(ρ0)) and D > 0.

Extension and limitation

I This technique can be also used to Mostch-Tadmor
model, with slightly different threshold functions.

I The boundedness and Lipschitz property of φ is
needed to control div u. When passing to the
hyperbolic limit, ‖φ‖Lip blows up. Therefore, the
argument is not true for local system.
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