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1. Introduction

There have been many results on the zero dissipation limit
of the compressible fluid with basic wave patterns without
vacuum. For the system of the hyperbolic conservation laws
with artificial viscosity

ut + f (u)x = εuxx,

Goodman-Xin [3] first verified the viscous limit for piecewise
smooth solutions separated by non-interacting shock waves
using a matched asymptotic expansion method. Later Yu
[9] proved it for the corresponding hyperbolic conservation
laws with both shock and initial layers. In 2005, important
progress made by Bianchini-Bressan[1] justifies the vanish-
ing viscosity limit in BV space even though the problem is
still unsolved for the physical system such as the compress-
ible Navier-Stokes(denoted by CNS) equations.
For the CNS equations (1), Hoff-Liu [4] first proved the van-
ishing viscosity limit for piecewise constant shock even with
initial layer. Later Xin [8] obtained the zero dissipation limit
for rarefaction waves without vacuum for both rarefaction
wave data and well-prepared smooth data.
More recently, Chen-Perepelitsa [2] proved the vanishing
viscosity to the compressible Euler equations for the CNS
equations (1) by compensated compactness method for the
case that the far field of the initial values of Euler system (2)
has no vacuums.
Now we turn back to the case of the basic wave patterns
with vacuum states. As pointed out by Liu-Smoller [6],
among the two nonlinear waves, i.e., shock and rarefac-
tion waves, to the one-dimensional compressible isentropic
Euler equations (2), only the rarefaction wave can be con-
nected to vacuum.
In this presentation, we investigate this fundamental prob-
lem and want to obtain the decay rate with respect to
the viscosity ε. Remark that Perepelitsa [7] consider the
time-asymptotic stability of solutions of 1-d CNS equations
(1) toward rarefaction waves connected to vacuum in La-
grangian coordinate and Jiu-Wang-Xin [5] study the large
time asymptotic behavior toward rarefaction waves for solu-
tions to the 1-dimensional CNS equations (1) with density-
dependent viscosity for general initial data whose far fields
are connected by a rarefaction wave to the corresponding
Euler equations with one end state being vacuum.
We investigate the zero dissipation limit of the one-
dimensional compressible isentropic Navier-Stokes equa-
tions {

ρt + (ρu)x = 0, x ∈ R, t > 0,

(ρu)t +
(
ρu2 + p(ρ)

)
x = ε uxx,

(1)

where ρ(t, x) ≥ 0, u(t, x) and p represent the density, the
velocity and the pressure of the gas, respectively and ε > 0
is the viscosity coefficient. Here we assume that the viscos-
ity coefficient ε is a positive constant and the pressure p is
given by the γ−law:

p(ρ) =
ργ

γ

with γ > 1 being the gas constant.
Formally, as ε tends to zero, the limit system of the CNS
equations (1) is the following inviscid Euler equations{

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = 0.
(2)

For definiteness, 2-rarefaction wave will be considered. If
we investigate the compressible Euler system (2) with the
Riemann initial data{

ρ(0, x) = 0, x < 0,
(ρ, u)(0, x) = (ρ+, u+), x > 0,

(3)

where the left side is the vacuum state and ρ+ > 0, u+ are
prescribed constants on the right state, then the Riemann
problem (2), (3) admits a 2−rarefaction wave connected to
the vacuum on the left side.

2. Methods

1. Lifting the vacuum region
The main novelty and difficulty of the presentation is how
to control the degeneracies caused by the vacuum in the
rarefaction wave.

2-rarefaction wave with vacuum

To overcome this difficulty, we first cut off the 2-rarefaction
wave with vacuum along the rarefaction wave curve. More
precisely, for any µ > 0 to be determined, the cut-off rarefac-
tion wave will connect the state (ρ, u) = (µ, uµ) and (ρ+, u+)
where uµ can be obtained uniquely by the definition of the
2-rarefaction wave curve.

2-rarefaction wave with lifted vacuum region

2. Construction of smooth rarefaction wave
Then an approximate rarefaction wave to this cut-off rar-
efaction wave will be constructed through the Burgers equa-
tion.{

wt + wwx = 0,

w(0, x) = wδ(x) = w(
x

δ
) =

w+ + w−
2

+
w+ − w−

2
tanh

x

δ
,
(4)

where δ > 0 is a small parameter to be determined. In fact,
we choose δ = εa in (13) with a given by (17) in the fol-
lowing. Note that the solution wrδ(t, x) of the problem (4) is
given by

wrδ(t, x) = wδ(x0(t, x)), x = x0(t, x) + wδ(x0(t, x))t. (5)

3. Energy estimation
Finally, the desired solution sequences to the compressible
Navier-Stokes equations (1) could be established around
the approximate rarefaction wave.
We introduce the perturbation

(φ, ψ)(y, τ ) = (ρ, u)(x, t)− (ρ̄, ū)(x, t), (6)

where y, τ are the scaled variables as

y =
x

ε
, τ =

t

ε
, (7)

and (ρ, u) is assumed to be the solution to the problem (1).
Substituting (6) and (7) into (1) and using the definition for
(ρ̄, ū), we obtain

φτ + ρψy + uφy = −f, (8)
ρψτ + ρuψy + p′(ρ)φy − ψyy = −g, (9)

(φ, ψ)(y, 0) = 0, (10)

where  f = ūyφ + ρ̄yψ,

g = −ūyy + ρψūy + ρ̄y

[
p′(ρ)− ρ

ρ̄
p′(ρ̄)

]
.

(11)

The uniform estimates to the perturbation of the solution se-
quences around the approximate rarefaction wave can be
obtained by the following two observations. One is the fact
that the viscosity ε can control the degeneracies caused
by the vacuum in rarefaction waves by choosing suitably
µ = µ(ε). In fact, we choose µ = εa| ln ε| with a defined
in (17) in the present paper. The other observation is that
we can carry out the energy estimates under the a priori
assumption that the perturbation is suitably small in H1(R)
norm with some decay rate with respect to ε as ε tends to
zero. The analysis is always carried out under the a priori
assumptions

sup
τ∈[0,τ1(ε)]

‖φ(·, τ )‖L∞ ≤ εa, sup
τ∈[0,τ1(ε)]

‖ψy‖ ≤ 1, (12)

with a given by (17).
Note that this a priori assumption is natural but is first used
in studying zero dissipation limit to our knowledge. Take

µ = εa| ln ε|, δ = εa, (13)

in the sequel. Then it follows that µ ≥ 2εa if ε � 1. Under
the a priori assumption (12), we can get

ρ̄

2
≤ ρ ≤ 3ρ̄

2
. (14)

With these two observations, we can close the a priori as-
sumption and obtain the desired results.

sup
τ∈[0,τ1(ε)]

∫
R

(
ρ̄ψ2 + ρ̄γ−2φ2 + φ2

y + ψ2
y

)
(τ, y)dy

+

∫ τ1(ε)

0

∫
R

[
ψ2
y + ρ̄γ−2ūyφ

2 + ρ̄ūyψ
2 + ρ̄γ−3φ2

y +
ψ2
yy

ρ̄

]
dydτ

≤ Cε(1/2−a)| ln ε|−1/2.
(15)

3. Results

Combining all ideas and analysis together, we can get the
following results:
Theorem 1 Let (ρr2,mr2)(x/t) be the 2-rarefaction wave
with one-side vacuum state. Then there exists a small
positive constant ε0 such that for any ε ∈ (0, ε0), we can
construct a global smooth solution (ρε,mε = ρεuε)(x, t)
with the smooth rarefaction wave initial values to the
compressible Navier-Stokes equation (1) satisfying
(1)

(ρε − ρr2,mε −mr2), (ρε,mε)x ∈ C0((0,+∞);L2(R)),

mε
xx ∈ L2(0,+∞;L2(R)).

2) As viscosity ε → 0, (ρε,mε)(x, t) converges to
(ρr2,mr2)(x/t) pointwisely except the original point (0, 0).
Furthermore, for any given positive constant h, there
exists a constant Ch > 0, independent of ε, such that

sup
t≥h
‖ρε(·, t)− ρr2( ·

t
)‖L∞ ≤ Chε

a| ln ε|,

sup
t≥h
‖mε(·, t)−mr2(

·
t
)‖L∞ ≤

{
Chε

b| ln ε|−
1
2, if 1 < γ < 3,

Chε
1

γ+4| ln ε|, if γ ≥ 3,
(16)

with the positive constants a, b given by

a =


1

6
if 1 < γ ≤ 2,

1

γ + 4
, if γ > 2.

(17)

and

b =


1

8
if 1 < γ ≤ 2,

γ + 1

4(γ + 4)
, if 2 < γ < 3.

(18)

4. Conclusions

Given a rarefaction wave with one-side vacuum state to
the compressible Euler equations, we can construct a
sequence of solutions to one-dimensional compressible
isentropic Navier-Stokes equations which converge to the
above rarefaction wave with vacuum as the viscosity tends
to zero. Moreover, the uniform convergence rate is ob-
tained.
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