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We present a range of numerical tests comparing the dynami-
cal cores of the operationally used numerical weather prediction
(NWP) model COSMO and the university code DUNE, focusing
on their efficiency and accuracy for solving benchmark test cases
for NWP. The dynamical core of COSMO is based on a finite dif-
ference method whereas the DUNE core is based on a Discontinu-
ous Galerkin method. Both dynamical cores are briefly introduced
stating possible advantages and pitfalls of the different approaches.
T heir efficiency and effectiveness is investigated, based on three nu-
merical test cases, which require solving the compressible viscous
and non-viscous Euler equations. The test cases include the den-
sity current (Straka et al., 1993), the inertia gravity (Skamarock
and Klemp, 1994), and the linear hydrostatic mountain waves of
(Bonaventura, 2000).

The DUNE core

The DUNE dynamical core solves
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f= f(x) orography function,

7 kinematic viscosity constant,
pand p = pé_'y(pRG)7 density and pressure,

6 and g potential temperature,

g gravity constant,

~ and R adiabatic and gas constant.

Given a tessalation 7T, of 2 with Uxcr, K = €2, the numerical solution
U, = (ph,phuh,phwh,phﬁh) IS sought in th = {IP S LQ(Q,R4) : ”(MK c
[PL(K)]*, K € T,}. We use the CDG2 method for spatial discretiza-
tion (see [Brdar et al. 12(1)]), and strong stability Runge-Kutta
(SSPRK) up to order 3 for time integration. The CDG2 method
IS given as
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with V3= (VT4+V)/2, [Vl = (nte@VT4+n-®V ™), F Rusanov
flux, and

AV, = 4 XAV re(lVID)x,»  on Ko, [KT| < KT,
e 0, elsewhere.

The lifting operator r. is given as [_r.([V]):7=— [[V]: {r}.

Well-ballancing is achieved by solving

U+ V - (Foert(U") = Apert(U)VU') = Spert(U’)

assuming that the reference solution U satisfies first PDEs with
pn = 0, and
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Foert(U') = FU +U)-FO),
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Software

All simulations described here have been performed using the soft-
ware packages DUNE and DUNE-FEM.

The free software package DUNE (Distributed and Unified Numer-
ics Environment) is a modular toolbox for solving partial differen-
tial equations. It is being developed by work groups in Heidelberg,
Berlin, Freiburg, and Minster (Germany), and Warwick (UK).

http://www.dune-project.org/
http://dune.mathematik.uni-freiburg.de/

DUNE-FEM is a DUNE module which defines interfaces for im-
plementing discretization methods like Finite Element methods,
Finite Volume methods, and Discontinuous Galerkin methods. In
particular, DUNE-FEM features a number of parallel, locally adap-
tive schemes of higher order. The module is being developed in
Freiburg and Munster.

The pictures and plots have been produced with ParaView and
gnuplot (http://www.paraview.org/, http://www.gnuplot.info/).
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The COSMQO core

The COSMO dynamical core solves
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where the diffusion fluxes T,, T,, and Js are corresponding to the
diffusion fluxes in the DUNE equations.

Table 1. Brief overview of the two cores.
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Spatial scheme FD
FD-CD (2"9 order for fast) DG (6™ order)
FD-UP (5t order for slow)

Temporal scheme semi-implicit RK (2" order) explicit RK (3" order)

In cooperation with

e

Density current

We observe the evolution of a cold bubble in a neutrally stratified
atmosphere (see [Straka et al. 93]) The bubble is introduced by
perturbing the potential temperature smoothly from O K at the
border of the bubble, to 15 K in the center. The cold bubble falls,
splashes on the ground and slides along the ground level, creating
Kelvin-Helmholz vortices. The governing equation are integrated
until 900 s. The kinematic viscosity of 75 m?/s is introduced to
obtain grid converged solution.

s T _

Equation set

non-conservative Euler

conservative Euler

for p, v, T for p, pv, p6
Grid Arakawa-C struct. [
Stabilization artificial 4" order Rusanov flux
Artif. bnd. T(¥) = 5 — % Cos (w%) (see [1])

Test cases

Mountain waves

We observe the impact of single isolated hill on a horizontal wind
in a neutrally stratified atmosphere (see [Bonaventura 00]). The
orography is 'Witch of Agnesi’' hill, f(z) = h»/(1 4+ (2/a)?)) with
the hill height h,, = 1 m and the hill half-length a = 16000 m. A
very accurate solution can be constructed due to relatively small hill
height (see [Baldauf 10]). The governing equation are integrated
until 86 000 s, by which the flow became stationary. The domain is
[100,400] km x [0,10] km, and the extended domain (see below)
is [0,500] km x [0,20] km.
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Fig. 1. (left) Vertical velocity with [—-3e-3,4e-4] m/s and CI=1e-3 m/s; and (right) potential
temperature with [—-0.025,0.017] K and CI=7e-3 K with 7. = 1/160 for Az = 1631 m (k1-
177%x113) and 7. = 1/40 for Az = 815 m (k1-354x226).
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Fig. 1. COSMO solutions (C-3000m and C-1500m) and DUNE solution (k1-87x57 and
k1-177x113) of the vertical velocity at (left) Az = 3000 m and Az = 200 m with 7. = 0.1;
and (right) Ax = 1500 m and Az = 100 m with 7. = 0.025;

Treatment of artificial boundary

A mayor difficulty of mountain wave test case is accurate treatment
of artifical boundaries. Out of several techniques for treatment of
such boundaries (see [Colonius 04] and [Hu 04]) we choose sponge
layer technique. Our governing equations of the form

U +v - FU)=8SWU) inQx(0,T)

are now solved on an extended domain Q22 x(0,T), where a damping
function is introduced to gradually force any deviation from the
reference solution towards 0. The new governing equation become

oU+V-FU)=SWU)—7(U-U) in Q0 x(0,7).

The damping function - = 7(x) is taken as in Table 1.

0-0061) r2e'5f ............. O-OO6D rzegf ,,,,,,,,,,,,,
8:88?1@[3‘%8 sl RN ] 8:882_[)[_3%8 | o
= 0.003- |, L - 0.003-
£ 0.002 s = 0.002 £
— 0.0014 i — 0.0014
: 0 R :E ....................... T 3 0 o i; ________________________
-0.0014% ¢ P 0.0010%
_0.002_ \\_,'I ] 0,005 L J;
0O 5 10 15 20 0 5 10 15 20

z [km], 43x29 z [km], 87x57

Fig. 3. Influence of 7. (see Table 1.), (left) at 43 x 29; and (right) at 87 x 57; for the DUNE
solution in comparison to the reference solution. We use D — 7. in the legend.
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Fig. 4. (Left) Influence of 7. (see Table 1.) on the solution; and (right) convergence of
DUNE (D-k1 and D-k2) and COSMO (CQ).
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Fig. 6. The potential temperature perturbation in K at height z = 1200 m after 900 s at
different resolutions w.r.t. reference solution (C-200m). Resolutions for the DUNE solutions
(k5-12x3, k5-24x6, k5-44x11) has been reduced to match the error of the COSMO solution.
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Fig. 7. DUNE solutions are solved on different resolutions to approximatelly match the error
of the COSMO solution on 200, 100, and 50 m.

Inertia-gravity waves

We consider the evolution of a potential temperature deviation
from an stably stratified background atmosphere (see [Skamarock
and Klemp 94]). The perturbation is so small that the bubble
does not have enough buoyancy to rise, but rather oscillates in the
vertical direction, while being carried by a constant horizontal mean
of 20 m/s.
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Fig. 8. Development of the potential temperature perturbation with isolines [-0.0015,0.003] K
and CI=0.005 K of the inertia-gravity waves at times ¢t = 0,1000, 2000, 3000 s.

|
00)
|

T
o
|

I
N
|

0.003 4—t— 0.003 ‘
0.0014 [ {4 hi ot 0.001{ /i AL
-0.001- HA S R -0.001- T
0.002 Cé%bé)c())xrﬂ """ - 0.002 I%ngxrg """ -
. | k|5—9§OX§4 i— | ' | k|5-96|OX§4 e i
0 100 200 300 0 100 200 300

Fig. 9. The potential temperature perturbation in K at height z = 5000 m with high-
resolution solution (k5-960x64), COSMO (C-1000m, C-500m) and DUNE (k5-60x4, k5-
90x6).
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Fig. 10. DUNE solutions are solved on different grid to match approximately the error of
the COSMO solution on 1000, 500, 250 m. The reference solution is high-resolution DUNE
k5-960x64.

Conclusions

1. For the same number of stored variables (degrees of freedom
for discontinuous Galerkin or points for finite difference) the
DUNE core of order at least 3 demonstrates higher subscale
resolution than the COSMO core;

2. on the highest resolution prescribed by the test case the
DUNE core of order at least 3 is more efficient than the
COSMO core;

3. The local conservation and strightforward applicability of the
dynamical grid adaptation for the DUNE core have not been
considered.
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