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Objectives and problem formulation

Wave equation (WE) (x ∈ R, t > 0)

∂ttu− ∂xxu = 0, u(x, 0) = u0(x), ut(x, 0) = u1(x)

Observability inequality (OI) (Ω := R \ (−1, 1), T ≥ 2)

||(u0, u1)||2
Ḣ1×L2(R)

≤ C(T )

T∫
0

||(u(·, t), ut(·, t))||2Ḣ1×L2(Ω)
dt

Applications: control, stabilization and inverse problems

Objectives

� Discrete versions of OI and DE (non-uniformity in h, filtering mechanisms)
� Behaviour of high frequency Gaussian wave packets in complex media (complex schemes, splitting
under filtering, non-uniform meshes, etc.)

Schrödinger equation (SE) (x ∈ R, t > 0)

i∂tu+ ∂xxu = 0, u(x, 0) = ϕ(x)

Dispersive estimates (DE): i) Gain of integrability

‖u‖Lqt (R,Lpx(R)) ≤ c(p)‖ϕ‖L2(R)

Admissibility conditions: 2 ≤ p ≤ ∞ and 2/q = 1/2− 1/p

ii) Smoothing effect

sup
R

( 1

R

∫
R

∫ R

−R
|∂1/2
x u(x, t)|2 dx dt

)1/2

≤ c‖ϕ‖L2(R)

Applications: well-posedness of non-linear Schrödinger equation

Discontinuous Galerkin (DG) approximations

Notations: {·}, [·] - average/jump; s > 1 - penalty parameter; Gh, T h - uniform
grid/triangulation of size h of R; Vh - space of piecewise linear and discontinuous functions

Symmetric interior penalty DG (SIPG) approximation

Bilinear form

Ahs(u, v) = (∂hxu, ∂
h
xv)L2(T h) − ({∂hxu}, [v])`2(Gh) − ([u], {∂hxv})`2(Gh) +

s

h
([u], [v])`2(Gh)

Discrete wave equation

Find uh(·, t) ∈ Vh s.t. (uhtt(·, t), φ)L2(R) +Ahs(u
h(·, t), φ) = 0, ∀φ ∈ Vh

Ûh(ξ, t), the vector of Fourier transforms of {uh(·, t)} and [uh(·, t)], verifies the system:

Ûh
tt(ξ, t) + Ŝhs (ξ)Ûh(ξ, t) = 0, ξ ∈ Πh := [−π/h, π/h]

Eigenvalues of Ŝhs (ξ): physical and spurious (Λ̂h
s,ph(ξ) and Λ̂h

s,sp(ξ))

Dispersion relations: λ =
√

Λ (see Fig. 1(a))

Group velocities ∂ξλ̂hs,ph and ∂ξλ̂hs,sp

They vanish for ξ = π/h, ξ ∈ {0, π/h} =⇒ non-uniform OI as h→ 0 (see Fig. 1(b)).

Bi-grid filtering mechanism for the DG method (cf. [5])

Discrete initial data with null jumps + averages obtained by a bi-grid algorithm of mesh
ratio 1/2⇒ uniform OI as h→ 0 (see Fig. 1(c-d))
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Figure 1

Legend

(a) In black/dotted black, the physical/spurious dispersion relation λ̂1
s,ph(ξ) and λ̂1

s,sp(ξ) for s = 5; in blue/red/green, the dispersion
relations for the continuous wave equation, for its finite differences and P1-finite element schemes (marked points = wave numbers where the
group velocity vanish). (b) The average/jump components (in green/red) of the DG approximation at the wave number ξ0 = 49π/50h and
at time t = 1 compared to the Gaussian initial data (in blue) and the solution of the continuous wave equation at time t = 1 (in black).
(c,d) The average/jump components (in green/red) of the DG approximation at the wave number ξ0 = 21π/32h and at time t = 1 under a
bi-grid filtering of mesh ratio 1/2 of the initial data.

Bi-grid algorithms

Gaussian initial data: ϕ = ϕγξ0
such that

ϕ̂γξ0
(ξ) =

√
2π

γ
exp

(
−
|ξ − ξ0|2

2γ

)
χΠh(ξ)

γ ≤ h−2/3 for SE and γ ≤ h−1/2 for WE

Fourier representation of the restriction operator Γk : Gh→ G2kh

Γ̂kf
h
(ξ) =

2k−1−1∑
j=−2k−1

f̂h
(
ξ +

2jπ

2kh

)

Fourier symbol of the linear interpolation between grids of size 2kh and h

b̂hk(ξ) :=
k∏
j=1

cos2(2j−1ξh)
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Figure 2

Legend: a) ϕ̂γξ0 with ξ0 = π/h, π/2h, 2π/3h (blue, red, green) and their projections Γk with b) k = 1

and c) k = 2. In black, the bi-grid symbols b̂hk(ξ)
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Figure 3. Solutions of continuous and finite difference discrete SE for

the initial data ϕγπ/2h

Legend: green - solution of continuous SE at t = 0, magenta -
solution of continuous SE at t = 1,blue - solution of discrete SE without
filtering at t = 1, and red/black - solution of discrete SE with bi-grid
of ratio 1/2 and 1/4 at t = 1.

High frequency propagation of waves (WE) in discrete heterogeneous media - open problem

x=uniform grid of size h of (0, 1), y=non-uniform grid of (0, 1) and

u0(y) = ϕγξ0
(y − y0) exp(iξ0y0)

Legend:
(e) h = 1/200, uniform grid of size h for y ∈ (0, 1/2) and h/2 for y ∈ (1/2, 1) and y0 = 1/4
(f-g) h = 1/200, y = tan(πx/4), y0 = 1/4; (h) h = 1/200, y = sin(πx/3) for x ∈ (0, 1/2),
y = 1− sin(π(1− x)/3) for x ∈ (1/2, 1) and y0 = 1/2; (i) h = 1/100, uniform grid of size h/8 and

h/4 for y ∈ (0, 1/4) and y ∈ (3/4, 1), y = 1/4 + tan(x/4)/2 for y ∈ (1/4, 3/4), and y0 = 7/8

We illustrate some phenomena, most of them being pathological and requiring further analysis:
� reflection-transmission problem at the interface between two piecewise uniform discrete media (see Fig. 4(e) )
� torsion of the rays of Geometric Optics, reflecting before touching the boundary of the domain (see Fig. 4(f-i))

(e)ξ0 = π/2h (f)ξ0 = π/2hmin (g)ξ0 = π/hmin (h)ξ0 = π/2hmin (i)ξ0 = π/2hmin
Figure 4
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