Wave propagation in discrete heterogeneous media

Aurora Marica^{*} and Enrique Zuazua

BCAM - Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain 14-th International Conference on Hyperbolic Problems: Theory, Numerics, Applications HYP2012 - Università di Padova, June 25-29, 2012

Objectives and problem formulation	
Wave equation (WE) ($x \in \mathbb{R}, \ t > 0$)	Schrödinger equation (SE) ($x \in \mathbb{R}, t > 0$)
$\overline{\partial_{tt}u-\partial_{xx}u=0,\;u(x,0)=u^0(x),\;u_t(x,0)=u^1(x)}$	$i\partial_t u + \partial_{xx} u = 0, \; u(x,0)$:
Observability inequality (OI) ($\Omega:=\mathbb{R}\setminus(-1,1)$, $T\geq 2$)	Dispersive estimates (DE): i) Gain of integ

 $\|\|u\|_{L^q_t(\mathbb{R},L^p_x(\mathbb{R}))}\leq c(p)\|arphi\|_{L^2(\mathbb{R})}$

 $-\partial_{xx}u=0,\;u(x,0)=arphi(x)$

:): i) Gain of integrability

Admissibility conditions: $2 \le p \le \infty$ and 2/q = 1/2 - 1/p

ii) Smoothing effect

$$\begin{pmatrix} 1 & \int R & \\ 1 & 1/2 & (1 & 1)^2 \end{pmatrix} = 1/2$$

 \Box Discrete versions of OI and DE (non-uniformity in h, filtering mechanisms) Behaviour of high frequency Gaussian wave packets in complex media (complex schemes, splitting) under filtering, non-uniform meshes, etc.)

 $||(u^0,u^1)||^2_{\dot{H}^1 imes L^2(\mathbb{R})} \leq C(T)\int ||(u(\cdot,t),u_t(\cdot,t))||^2_{\dot{H}^1 imes L^2(\Omega)}\,dt$

Applications: control, stabilization and inverse problems

$|\partial_x^{\scriptscriptstyle 1/2} u(x,t)|^2 \, dx \, dt$ $\operatorname{sup}_{R}(\overline{R})$ $\leq c \|arphi\|_{L^2(\mathbb{R})}$

Applications: well-posedness of non-linear Schrödinger equation

Discontinuous Galerkin (DG) approximations

<u>Notations:</u> $\{\cdot\}$, $[\cdot]$ - average/jump; s > 1 - penalty parameter; \mathcal{G}^h , \mathcal{T}^h - uniform grid/triangulation of size h of \mathbb{R} ; \mathcal{V}^h - space of **piecewise linear** and **discontinuous** functions

Symmetric interior penalty DG (SIPG) approximation

Bilinear form

Objectives

$$ig|_{\mathcal{A}^h_s(u,v)}=(\partial^h_x u,\partial^h_x v)_{L^2(\mathcal{T}^h)}-(\{\partial^h_x \mathrm{u}\},[\mathrm{v}])_{\ell^2(\mathcal{G}^h)}-([\mathrm{u}],\{\partial^h_x \mathrm{v}\})_{\ell^2(\mathcal{G}^h)}+rac{s}{h}([\mathrm{u}],[\mathrm{v}])_{\ell^2(\mathcal{G}^h)}$$

Discrete wave equation

 $\ \ \text{Find} \ u^h(\cdot,t)\in \mathcal{V}^h \ \text{s.t.} \ (u^h_{tt}(\cdot,t),\phi)_{L^2(\mathbb{R})}+\mathcal{A}^h_s(u^h(\cdot,t),\phi)=0, \ \ \forall \phi\in \mathcal{V}^h \$ $\widehat{U}^h(\xi,t)$, the vector of Fourier transforms of $\{u^h(\cdot,t)\}$ and $[u^h(\cdot,t)]$, verifies the system:

They vanish for $\xi = \pi/h$, $\xi \in \{0, \pi/h\} \implies$ non-uniform OI as $h \rightarrow 0$ (see Fig. 1(b)).

 $ig|\widehat{U}^h_{tt}(\xi,t)+\widehat{S}^h_s(\xi)\widehat{U}^h(\xi,t)=0, \hspace{1em} \xi\in\Pi^h:=[-\pi/h,\pi/h]ig|$ **Eigenvalues** of $\widehat{S}^h_s(\xi)$: physical and spurious $(\widehat{\Lambda}^h_{s,ph}(\xi))$ and $\widehat{\Lambda}^h_{s,sp}(\xi)$ **Dispersion relations:** $\lambda = \sqrt{\Lambda}$ (see Fig. 1(a))

Bi-grid filtering mechanism for the DG method (cf. [5])

Discrete initial data with null jumps + averages obtained by a bi-grid algorithm of mesh ratio $1/2 \Rightarrow$ uniform OI as $h \rightarrow 0$ (see Fig. 1(c-d))

(c)

(d)

Legend

(a) In black/dotted black, the physical/spurious dispersion relation $\widehat{\lambda}^1_{s,ph}(\xi)$ and $\widehat{\lambda}^1_{s,sp}(\xi)$ for s=5; in blue/red/green, the dispersion relations for the continuous wave equation, for its finite differences and P_1 -finite element schemes (marked points = wave numbers where the group velocity vanish). (b) The average/jump components (in green/red) of the DG approximation at the wave number $\xi_0=49\pi/50h$ and at time t = 1 compared to the Gaussian initial data (in blue) and the solution of the continuous wave equation at time t = 1 (in black). (c,d) The average/jump components (in green/red) of the DG approximation at the wave number $\xi_0 = 21\pi/32h$ and at time t=1 under a bi-grid filtering of mesh ratio 1/2 of the initial data.

Figure 1

Bi-grid algorithms

Gaussian initial data: $\varphi = \varphi_{\xi_0}^{\gamma}$ such that $egin{aligned} \widehat{arphi}_{\xi_0}^{\gamma}(\xi) &= \sqrt{rac{2\pi}{\gamma}} \exp\left(-rac{|\xi-\xi_0|^2}{2\gamma}
ight) \chi_{\Pi^h}(\xi) \end{aligned}$ $\gamma \leq h^{-2/3}$ for SE and $\gamma \leq h^{-1/2}$ for WE Fourier representation of the **restriction operator** $\Gamma_k: \mathcal{G}^h \to \mathcal{G}^{2^k h}$ $\widehat{|\widehat{\Gamma_k f}^h(\xi)|} = \sum_{i=-2^{k-1}}^{2^{k-1}-1} \widehat{f^h}\left(\xi+rac{2j\pi}{2^k h}
ight)$

Group velocities $\partial_{\xi} \widehat{\lambda}^{h}_{s.nh}$ and $\partial_{\xi} \widehat{\lambda}^{h}_{s.sp}$

Fourier symbol of the linear interpolation between grids of size $2^k h$ and h

$$\left|\widehat{b}^h_k(\xi):=\prod_{j=1}^k\cos^2(2^{j-1}\xi h)
ight|$$

Figure 2

Legend: a) $\widehat{\varphi}_{\xi_0}^{\gamma}$ with $\xi_0 = \pi/h, \ \pi/2h, \ 2\pi/3h$ (blue, red, green) and their projections Γ_k with b) k = 1and c) k = 2. In black, the bi-grid symbols $\widehat{b}_k^h(\xi)$

Figure 3. Solutions of continuous and finite difference discrete SE for the initial data $arphi^\gamma_{\pi/2h}$

Legend: green - solution of continuous SE at t = 0, solution of continuous SE at t=1, blue - solution of discrete SE without filtering at t = 1, and red/black - solution of discrete SE with bi-grid of ratio 1/2 and 1/4 at t = 1.

High frequency propagation of waves (WE) in discrete heterogeneous media - open problem

 $x{=}{\mathsf{un}}{\mathsf{iform}}$ grid of size h of (0,1), $y{=}{\mathsf{non-uniform}}$ grid of (0,1) and

 $\left| u^0(y) = arphi_{eta_0}^\gamma(y-y_0) \exp(i \xi_0 y_0)
ight|$

Legend:

x=1/200, uniform grid of size h for $y\in (0,1/2)$ and h/2 for $y\in (1/2,1)$ and $y_0=1/4$ (f-g) h=1/200, $y= an(\pi x/4)$, $y_0=1/4$; (h) h=1/200, $y=\sin(\pi x/3)$ for $x\in(0,1/2)$, $y=1-\sin(\pi(1-x)/3)$ for $x\in(1/2,1)$ and $y_0=1/2$; (i) h=1/100, uniform grid of size h/8 and h/4 for $y\in (0,1/4)$ and $y\in (3/4,1)$, y=1/4+ an(x/4)/2 for $y\in (1/4,3/4)$, and $y_0=7/8$.

We illustrate some phenomena, most of them being pathological and requiring further analysis: \Box reflection-transmission problem at the interface between two piecewise uniform discrete media (see Fig. 4(e)) \Box torsion of the rays of Geometric Optics, reflecting before touching the boundary of the domain (see Fig. 4(f-i))

References:

www.bcamath.org

- Beckermann B., Serra-Capizzano S., On the asymptotic spectrum of finite element matrix sequences, SIAM J. Numer. Anal., 2007 🗈 Ervedoza S., Zuazua E., The wave equation: control and numerics, Lecture Notes in Mathematics, CIME Subseries, Springer Verlag, to appear Ignat L., Zuazua E., Convergence of a two-grid algorithm for the control of the wave equation, JEMS, 2009. 🗈 Ignat L., Zuazua E., Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 2009.
- \square Marica A., Zuazua E., Localized solutions and filtering mechanisms for the DG semi-discretizations of the 1 d wave equation, C. R. Acad. Sci. Paris, 2010.
- \blacksquare Marica A., Zuazua E., On the quadratic FEM for 1 d waves: propagation, observation, control and numerical implementation, Proc. CFL-80, Springer, to appear.
- Marica A., Zuazua E., High frequency wave packets for the Schrödinger equation and its numerical approximations, C. R. Acad. Sci. Paris, 2011.

{marica, zuazua } @bcamath.org